PPT-Information Retrieval Text Mining - Text Mining & Information Retrieval
Author : kittie-lecroy | Published Date : 2018-02-28
Information Retrieval Information Retrieval Konsep dasar dari IR adalah pengukuran kesamaan sebuah perbandingan antara dua dokumen mengukur sebearapa
Presentation Embed Code
Download Presentation
Download Presentation The PPT/PDF document "Information Retrieval Text Mining - Text..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
Information Retrieval Text Mining - Text Mining & Information Retrieval: Transcript
Information Retrieval Information Retrieval Konsep dasar dari IR adalah pengukuran kesamaan sebuah perbandingan antara dua dokumen mengukur sebearapa . CSC . 575. Intelligent Information Retrieval. 2. Source: . Intel. How much information?. Google: . ~100 . PB a . day; 3+ million servers (15 . Exabytes. stored). Wayback Machine has . ~9 . PB + . 100 . 1. Overview . This presentation is for chapter 16 which discuss :. Chapter . 16: Text Mining for Translational . Bioinformatics. 1- terminologies.. 2- definitions.. 2-uses cases and applications.. 3-evaluation techniques and evaluation metrics.. Opportunities and Barriers. John . McNaught. Deputy Director. National Centre for Text Mining. John.McNaught@manchester.ac.uk. Topics. What is text mining? (briefly). What can it offer? (selectively). . lecture 2. history. Thomas . Krichel. 2011-09-19 . contents . based on a very fine paper by Michael Lesk “The Seven Ages of Information Retrieval”. . That paper was written in 1997, so it does not cover recent advances.. Information. Miles Efron, Jana . Diesner. , Peter . Organisciak. , Garrick Sherman, Ana . Lucic. {. mefron. , et al.}@. illinois.edu. GSLIS 2012. TREC: The Text REtrieval Conference. NIST. Web. Legal. Manuel Montes, Hugo . Jair. Escalante. Instituto Nacional de Astrofísica, Óptica y Electrónica, México.. http://ccc.inaoep.mx/~mmontesg. /. http://ccc.inaoep.mx/~hugojair/. {. mmontesg. , . hugojair. Hongning. Wang. CS@UVa. Recap: Core IR concepts. Information need. “. an individual or group's desire to locate and obtain information to satisfy a conscious or unconscious need. ” – wiki. An IR system is to satisfy users’ information need. CSC 575. Intelligent Information Retrieval. Intelligent Information Retrieval. 2. Web Mining. Today. Overview of Web Data Mining. Web Content Mining / Text Mining. Web Usage Mining. Web Personalization. What Is . T. ext . M. ining?. Also known as . Text Data Mining. Process of . examining large collections of . unstructured. textual . resources in order to generate new information, typically using specialized computer software. All slides ©Addison Wesley, 2008. How Much Data is Created Every . Minute?. Source: . https. ://www.domo.com/blog/2012/06/how-much-data-is-created-every-minute/. The Search Problem. Search and Information Retrieval. Hongning. Wang. CS@UVa. CS@UVa. CS6501: Information Retrieval. 1. Abstraction of search engine architecture. User. Ranker. Indexer. Doc Analyzer. Index. results. Crawler. Doc . Representation . Query Rep. Fatemeh. Azimzadeh. Books. (Manning et al., 2008). Christopher D. Manning, . Prabhakar. . Raghavan. , and . Hinrich. . Schütze. . Introduction to Information Retrieval. Cambridge University Press, 2008. . Universität des Saarlandes, Saarbrücken. Winter Semester 2011/12. The Course. Lecturers. Teaching Assistants. October 18, 2011. I.. 2. IR&DM, WS'11/12. D5: Databases & Information Systems Group . Cal Poly Pomona. Today. Who I am. CS 599 educational objectives (and why). Overview of the course, and logistics. Quick overview of IR and why we study it. 2. Who am I?. Instructor : . Sampath . Jayarathna.
Download Document
Here is the link to download the presentation.
"Information Retrieval Text Mining - Text Mining & Information Retrieval"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.
Related Documents