/
JUXTAPOSITION:ANEWWAYTOCOMBINELOGICS3deductionmeta-rulesintheirfullgen JUXTAPOSITION:ANEWWAYTOCOMBINELOGICS3deductionmeta-rulesintheirfullgen

JUXTAPOSITION:ANEWWAYTOCOMBINELOGICS3deductionmeta-rulesintheirfullgen - PDF document

kittie-lecroy
kittie-lecroy . @kittie-lecroy
Follow
396 views
Uploaded On 2016-06-18

JUXTAPOSITION:ANEWWAYTOCOMBINELOGICS3deductionmeta-rulesintheirfullgen - PPT Presentation

8AmetaruleisarulethatgovernsrelationsamongentailmentsbutdonotthemselvesstateentailmentsConditionalIntroductionReasoningbyCasesandClassicalReductioaremetarulesConjunctionIntroductionandEliminatio ID: 367411

8Ameta-ruleisarulethatgovernsrelationsamongentailmentsbutdonotthemselvesstateentailments.ConditionalIntroduction ReasoningbyCases andClassicalReductioaremeta-rules.ConjunctionIntroductionandEliminatio

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "JUXTAPOSITION:ANEWWAYTOCOMBINELOGICS3ded..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

JUXTAPOSITION:ANEWWAYTOCOMBINELOGICS3deductionmeta-rulesintheirfullgenerality.8Thenaturaldeductionrulesen-codemorelogicalstrengththanonemighthaveexpected.Perhapssurprisingly,thecollapseresultsrelyonthisextrastrength.Thus,thecollapseresultsturnouttobeveryfragile.Indeed,theissueofwhenexactlylogicscollapseturnsouttoberatherdelicate.Thepurposeofthispaperistwo-fold.First,Idevelopanewframeworkforcombininglogicalsystems,called\juxtaposition".Iprovegeneralmetalogicalresultsconcerningthecombinationoflogicsbyjuxtaposition.Second,Iexaminetheparticularcaseofcombiningclassicalandintuitionistlogics.Ishowhowthegeneralresultscanbeappliedtoshedlightonthephenomenonofcollapse.Idemonstratethatthecollapseresultsaremuchmorelimitedthanonemighthaveexpected.Thepaperwillproceedasfollows.Inthenextsection,Iintroducethegen-erallogicalapparatusthatwillbeemployed.Inthispaper,Ifocusonthecaseofpropositionallogics.Theapproachtosemanticsemployedhereisbroadlyalgebraic.Iconsidertwosemanticframeworks.The rstinvolvessetsoflogi-calmatrices,algebraswithanarbitrarysetofdesignatedvalues.Thesecond,moreinteresting,frameworkinvolvessetsofunitalmatrices,algebraswithasingledesignatedvalue.9Insectionthree,Ipresentthemainconstructionsforcombining(\juxtaposing")logicalsystems.Juxtaposingconsequencerelationsisstraightforward{thejuxtapositionoftwoconsequencerelationsistheleastconsequencerelationthatextendstheoriginalconsequencerelations.(Inthispaper,consequencerelationsarerequiredtoobeytheusualstructuralrulesandtobesubstitutioninvariant.)Thejuxtapositionoftwoalgebraicstructuresisonlyslightlymorecomplicated.Ajuxtaposedmodelisanorderedpairofmod-els,eachofwhichisbasedontherespectivealgebraicstructure.Therearetwomodi cationstothisbasicideathatareneededtogetthesemanticstowork.First,eachofthetwomodelsmustprovidesemanticvaluesforsentencesoftheentirelanguage.Therefore,eachmodeltreatssentenceswithmainconnectivesgovernedbytheotherlogicasthoughtheywereadditionalsentencesymbols.Second,thetwomodelsmustagreeonwhichsentencesgetassigneddesignatedvalues.Inthisway,juxtaposedmodelsmustbe\coherent".Insectionfour,Icomparejuxtapositiontotwoothermethodsofcombininglogics{algebraic bringandmodulated bring.Section veisdevotedtopre-sentingbasicmetalogicalresultsconcerningjuxtaposition.Inparticular,Ishowthatunderreasonableconditions,juxtapositionpreservesstrongsoundness.Ishowthatunderreasonableconditions,juxtapositionpreservesconsistency.Ialsoshowthatunderreasonableconditions,thejuxtapositionoftwoconsequencerelationsisastrongconservativeextensionoftheoriginalrelations.Insectionsix,Iturntostrongcompleteness.Inthissection,Ipresentdirectproofsof 8Ameta-ruleisarulethatgovernsrelationsamongentailmentsbutdonotthemselvesstateentailments.ConditionalIntroduction,ReasoningbyCases,andClassicalReductioaremeta-rules.ConjunctionIntroductionandElimination,DisjunctionElimination,ModusPonens,andDoubleNegationEliminationarenotmeta-rulesinthissense.9Thereareothernaturalapproachestoalgebraicsemantics.Forexample,wecouldmakeuseofclassesoflogicalmatriceswherethedesignatedvaluescanbecharacterizedbyasetofequations.SeeBlok&Pigozzi(1989). 4JOSHUAB.SCHECHTERstrongcompletenessthatapplyinawiderangeofcases.Indeed,Iprovidenec-essaryandsucientconditionsforthecasewherethetwostocksofconnectivesaredisjoint.Finally,insectionseven,Iturntothephilosophicallyimportantcaseofcombiningclassicalandintuitionistlogics.Applyingthegeneralmet-alogicalresults,Ishowthatalogicwithtwostocksofclassicalconnectivesisconsistent,conservative,andstronglysoundandstronglycompletewithrespecttoaparticularclassofjuxtaposedstructures{the\bi-Boolean"structures.Ishowthatalogicwithtwostocksofintuitionistconnectivesisconsistent,con-servative,andstronglysoundandstronglycompletewithrespecttotheclassof\bi-Heyting"structures.10Alogicwithonestockofintuitionistconnectivesandonestockofclassicalconnectivesisconsistent,conservative,andstronglysoundandstronglycompletewithrespecttotheclassof\Heyting-Boolean"structures.Iprovethatnoneoftheselogicscollapse.Ialsoinvestigatethequestionofwhichrules(andmeta-rules)leadtocollapsewhenaddedtotheselogics.x2.BasicNotions.2.1.Syntax.Alanguageforpropositionallogiccanbespeci edbyasigna-tureandasetofsentencesymbols.AsignatureC=fCngn2Nisanindexedfamilyofsetsoverthenaturalnumbers.11Foreachn2N,Cnisthe(possiblyempty)setofconnectivesofarityn.Asetofsentencesymbols,P,isanon-emptyset.Forconvenience,weonlyworkwithin nitesetsofsentencesymbols.Toavoidambiguity,weassumethattheelementsofeachCnandParenotthem-selvessequences.WealsoassumethatCmandCnaredisjointifm6=nandthateachCnisdisjointwithP.SupposeCandC0aretwosignatures.WesaythatCandC0aredisjointjustincaseforeachn2N,CnandC0naredisjoint.Otherwise,wesaythatCandC0overlap.WesaythatC0isasub-signatureofCjustincaseforeachn2N,C0nCn.GivenasignatureCandasetofsentencesymbolsP,thesetofsentencesgeneratedbyCandP,Sent(C;P),isinductivelyde nedtobetheleastsetsuchthat:If 2Pthen 2Sent(C;P);Ifc2Cnand 1;:::; n2Sent(C;P)thenc 1::: n2Sent(C;P).Wewrite , , ,and(sometimeswithsuperscripts)tostandforsentences.12Wewrite�andtostandforsetsofsentences.Wewritep,q,andrtostandforsentencesymbols.Wewrite [ =p]tostandfortheresultofuniformlysubstitutingeachoccur-renceofpin with .Wewrite�[ =p]tostandforthesetf [ =p]j 2�g.LetbeanyfunctionfromasubsetofPtosomeset.Wewrite tostandfortheresultofuniformlysubstitutingeachoccurrenceofanypinthedomainofin with(p).Wewrite�tostandforthesetf j 2�g. 10Thisisadi erentusageof\bi-Heyting"thantheonefamiliarfromSkolem.11Inthispaper,superscriptsareusedasindicesandnotasexponents.12Followingstandardpractice,wedon'tconformtostrictconventionsgoverninguseandmentionwhenthereislittledangerofconfusion. JUXTAPOSITION:ANEWWAYTOCOMBINELOGICS5Foreaseofcomprehension,whendisplayingsentencesinthelanguageofclas-sicalpropositionallogic,weusein xratherthanpre xnotation.2.2.ConsequenceRelations.Aconsequencerelation,`,forasetofsen-tencesSent(C;P)isarelationholdingbetweensubsetsofSent(C;P)andele-mentsofSent(C;P)suchthatthefollowingconditionsobtainforevery , ,�,,andp:Identity.f g` ;Weakening.If�` then�[` ;Cut.If�` and[f g` then�[` ;UniformSubstitution.If�` then�[ =p]` [ =p].13Inthispaper,wedonotrequirethatconsequencerelationsbecompact.Thatis,itneednotbethecasethatif�` thenthereisa nite�suchthat` .SupposeC�isasub-signatureofCandP�isasubsetofP.Suppose`�isaconsequencerelationforSent(C�;P�)and`isaconsequencerelationforSent(C;P).Wesaythat`extends`�justincaseforevery�Sent(C�;P�)and 2Sent(C�;P�),if�`� then�` .Wesaythat`isastrongconservativeextensionof`�justincaseforevery�Sent(C�;P�)and 2Sent(C�;P�),�`� justincase�` .Let`beaconsequencerelationforSent(C;P).Wesaythat isdeduciblefrom�justincase�` .Wesaythat isatheoremof`justincase;` .Asusual,wewrite` for;` .Wesaythat�Sent(C;P)isconsistentwithrespectto`justincasethereisan 2Sent(C;P)suchthat�0 .14Wesaythat`isconsistentjustincasethereisan 2Sent(C;P)suchthat0 .Wesaythat`isnon-trivialjustincasethereisanon-empty�Sent(C;P)andan 2Sent(C;P)suchthat�0 .Wesaythat`hasnomerefollowersjustincase` whenever�` foreverynon-empty�Sent(C;P).15Wesaythat`hastheoremsjustincasethereisatleastonetheoremof`.Thesenotionsarerelatedasfollows:Anyconsequencerelationthathastheoremshasnomerefollowers.Anyconsistentconsequencerelationthathasnomerefollowersisnon-trivial.Anynon-trivialconsequencerelationisconsistent.2.3.Semantics.Theapproachtosemanticsweemployisbroadlyalgebraic.AstructureoverasignatureCisanorderedtripleB=hB;D;isuchthatBisthecarriersetofthestructure,Disanon-emptypropersubsetofB,andforeveryc2Cn,(c)isafunctionfromthen-thCartesianpowerofBtoB.BisthesetofsemanticvaluesofB.DisthesetofdesignatedvaluesofB.isthedenotationfunctionofB.SinceDisanon-emptypropersubsetofB,Bmusthaveatleasttwoelements.IfDhasonlyasingleelement,wesaythatBisaunitalstructureandwewrite1tostandforthesingledesignatedvalue. 13Aconsequencerelationisthusrequiredtobestructuralinthesenseof Los&Suszko(1958).14Consistencyisde nedhereasnon-explosion.Inaparaconsistentlogic,aconsistentsetmaycontainbothasentenceanditsnegation.15Iborrowtheterm\nomerefollowers"fromHumberstone(2011),pages459{460. 6JOSHUAB.SCHECHTERGivenastructureB=hB;D;iandasetofsentencesymbolsP,avaluationforBandPisafunctionfromPtoB.AmodeloverasignatureCandasetofsentencesymbolsPisanorderedpairM=hB;VisuchthatBisastructureoverC,andVisavaluationforBandP.WesaythatthemodelMisbasedonthestructureB.GivenaclassofstructuresBoverC,wesaythatMisbasedonBjustincaseMisbasedonsomeelementofB.IfMisbasedonaunitalstructure,wecallMaunitalmodel.SupposeM=hB;ViisamodeloverCandPbasedonB=hB;D;i.Forany 2Sent(C;P),thevalueof inM,k kM,isrecursivelyde nedasfollows:k kM=V( )if 2P;kc 1::: nkM=(c)(k 1kM;:::;k nkM)ifc2Cnand 1;:::; n2Sent(C;P).GivenamodelM,wewriteM tomeanthat hasadesignatedvalueinM.Forshort,wesaythatMdesignatesthesentence .Thisobtainsjustincasek kM2D.WewriteM�tomeanthatMdesignateseachofthesentencesin�.Thisobtainsjustincaseforevery 2�,M .IfamodelMoverCandPeitherdesignateseveryelementofSent(C;P)ordesignatesnoelementofSent(C;P),wesaythatMistrivial.Otherwise,wesaythatMisnon-trivial.ForanystructureBoverCandanysetofsentencesymbolsP,thereisanon-trivialmodeloverCandPbasedonB.GivenaclassofstructuresBoverC,wewriteB tomeanthat isvalidinB.ThisobtainsjustincaseforeverymodelMoverCandPbasedonB,M .Wewrite�B tomeanthat�entails inB.Thisobtainsjustincase,foreverymodelMoverCandPbasedonB,ifM�thenM .162.4.SoundnessandCompleteness.Givenaconsequencerelation`forthesetofsentencesSent(C;P)andaclassofstructuresBoverC,wesaythat`isstronglysoundwithrespecttoBjustincaseforevery�Sent(C;P)and 2Sent(C;P),if�` then�B .Wesaythat`isstronglycompletewithrespecttoBjustincaseforevery�Sent(C;P)and 2Sent(C;P),if�B then�` .Wesaythat`isstronglydeterminedwithrespecttoBjustincaseforevery�Sent(C;P)and 2Sent(C;P),�B justincase�` .Wesaythat`isstronglysound,stronglycomplete,orstronglydetermined(simpliciter)justincase`isstronglysound,stronglycomplete,orstronglydetermined(respectively)withrespecttosomenon-emptyclassofstructures.Wesaythat`isstronglyunitalsound,stronglyunitalcomplete,orstronglyunitaldetermined(simpliciter)justincase`isstronglysound,stronglycomplete,orstronglydetermined(respectively)withrespecttosomenon-emptyclassofunitalstructures. 16Strictlyspeaking,thesede nitionsrequirePtobe xedbycontext.However,whether isvalidinBdoesnotdependonPsolongasPcontainsallofthesentencesymbolsthatoccurin .Similarly,whether�entails inBdoesnotdependonPsolongasPcontainsallofthesentencesymbolsthatoccurin�and . 12JOSHUAB.SCHECHTERbothBooleanandHeytingalgebras.ButthesemustallbeBooleanalgebras.Thus,theresultinglogicendsupbehavingpurelyclassicallyforbothstocksofconnectives.Indeed,wecanshowthatcorrespondingconnectivesbecomeintersubstitutable.Thelogiccollapses.Thereisasecondwaytoseetheproblem.Supposewehavealanguagewithtwoofeachoftheusuallogicalconnectives.Suppose`iiistheconsequencerelationforthislanguagethatobeysalloftheintuitionisttheoremsandentailmentsforeachstockofconnectives.Aswewillseebelow,anyconsequencerelationthatextends`iiandobeysEntailmentCongruencecollapses.Buttheproofofthestrongdeterminationresultforalgebraic bringcruciallydependsonthecombinedlogicobeyingEntailmentCongruence.Sothereisnowaytoavoidcollapse.Therearemethodsofcombininglogicsdesignedtoavoidcollapse.31Perhapsthemostwellworkedoutismodulated bring.32Themethodofcombiningconsequencerelationsandthemethodofcombiningclassesofstructuresaresigni cantlymorecomplicatedformodulated bringthanforalgebraic bringorforjuxtaposition.Butthebasicideaisstraightforward.AmodulatedstructureisaquadruplehB;;f1g;isuchthathB;f1g;iisastructureandisapre-orderwith nitemeetsandtopelement1.EachmodulatedstructureB12inthemodulated bringB12oftwoclassesofmodulatedstructuresB1andB2correspondstoapair(orpairs)ofmodulatedstructureshB1;B2i,whereB12B1andB22B2.ThesemanticvaluesofB12aretheunionofthesemanticvaluesoftheoriginaltwostructures.Togettheconstructiontowork,however,arestrictionhastobeimposedonwhichpairsofmodulatedstructuresyieldamodulatedstructureinB12.Inparticular,theremustbetranslationsbetweenthesemanticvaluesofB1andthesemanticvaluesofB2.Thesetranslationsareestablishedbysomethingcalledabridge,whichisprovidedasaninputtothemodulated bringprocedure.Theprooftheoryformodulated bringreliesonavariantofHilbertcalculicalledmodulatedHilbertcalculi.Thestrongdeterminationresultforalgebraic bringreliesuponthefactthatanymodulatedHilbertcalculusthathasthe-oremsandobeysEntailmentCongruenceisstronglydeterminedwithrespecttosomeclassofmodulatedstructures.33Thestrongdeterminationresultformodulated bringisasfollows:Themodulated bring(byanadequatebridge)oftwomodulatedHilbertcalculithateachhavetheoremsandobeyEntailmentCongruenceisstronglydeterminedwithrespecttoaclassofmodulatedstruc-tures.Inparticular,itisstronglydeterminedwithrespecttothemodulated bring(bythebridge)oftheclassofallmodulatedstructuresinwhich`1issoundandtheclassofmodulatedstructuresinwhich`2issound.34Moreover,asucientconditionfortherebeinganadequatebridgeisthatthetwoconse-quencerelationsarefordisjointlanguages.35Sothereisastrongdetermination 31See,forinstance,crypto- bringasde nedinCaleiro&Ramos(2007).32SeeSernadasetal.(2002).AlsoseeCarniellietal.(2008),chapter8.33SeeTheorem5.6inSernadasetal.(2002)andTheorem8.5.10inCarniellietal.(2008)foracloselyrelatedresult.34SeeTheorem5.12inSernadasetal.(2002)andTheorem8.5.16inCarniellietal.(2008).35SeeExample5.13inSernadasetal.(2002)andExample8.5.17inCarniellietal.(2008). JUXTAPOSITION:ANEWWAYTOCOMBINELOGICS13resultforanypairofmodulatedHilbertcalculifordisjointlanguageswhichhavetheoremsandobeyEntailmentCongruence.Asbefore,thisresultisweakerthanthestrongdeterminationresultforjux-taposition.However,itcanbeusedtocombinetheclassicalandintuitionistconsequencerelations.Moreover,itcanbeshownthattheresultingmodulatedHilbertcalculusdoesnotcollapse.Somodulated bringdoesprovideawaytoavoidthecollapseofclassicalandintuitionistlogics.Thismaysoundstrangegivenourresultthatanyconsequencerelationthatextends`iiandobeysEntailmentCongruencecollapses.Modulated bringisde-signedtopreserveEntailmentCongruence.Sothemodulated bringofclassicalandintuitionistlogicobeysEntailmentCongruence.Whydoesn'titcollapse?Theansweristhattheresultofmodulated bringclassicalandintuitionistlogic(overdisjointlanguagesbyanadequatebridge)isnotaconsequencerela-tioninthesensede nedabove.Theresultingrelationobeystheusualstructuralrules,butitisnotsubstitutioninvariant.AmodulatedHilbertcalculuscomeswithasetof\safesubstitutions"andisonlyguaranteedtobesubstitutionin-variantwithrespecttothosesubstitutions.Fortheparticularcaseofcombiningclassicalandintuitionistlogic,therelevantsetofsafesubstitutionsonlypermitustouniformlysubstitutesentenceswithaintuitionistmainconnective(oranintuitionistsentencesymbol)intotheintuitionistaxiomsandrules.Thus,whilemodulated bringenablesustocombineclassicalandintuitionistlogicwithoutcollapse,itdoesnotyieldasubstitutioninvariantconsequencerelation.Aswewillseebelow,juxtapositionenablesustocombineclassicalandintuitionistlogicinawaythatpreservessubstitutioninvariance.ThecostisthattheresultingconsequencerelationdoesnotobeyEntailmentCongruence.Butthatseemstobeasmallercosttobear.x5.PreservationTheorems.Inthissection,weprovegeneralresultsaboutthemetalogicalpropertiesofjuxtaposition.Inparticular,weshowthatifthetwosignaturesaredisjoint,juxtapositionpreservesstrongsoundnessandstrongunitalsoundness.Weshowthatunderreasonableconditions,juxtapositionpre-servesconsistency.Wealsoshowthatunderreasonableconditions,thejuxtapo-sitionoftwoconsequencerelationsisastrongconservativeextensionofeachofthem.Inwhatfollows,inthissectionandthenext,weassumethatC1andC2aretwosignaturesandC12istheirjuxtaposition.Unlessotherwisespeci ed,C1andC2mayoverlap.WeassumethatP1andP2aresetsofsentencesymbolsandP12istheirjuxtaposition.Weassumethat`1isaconsequencerelationforSent(C1;P1),`2isaconsequencerelationforSent(C2;P2),and`12isaconsequencerelationforSent(C12;P12).Unlessotherwisespeci ed,`12neednotbethejuxtapositionof`1and`2,orevenajuxtaposedconsequencerelationover`1and`2.WealsoassumethatCisasignature,C�isasub-signatureofC,Pisasetofsentencesymbols,and`isaconsequencerelationforSent(C;P).5.1.TheExistenceofCoherentNon-TrivialModels.We rstprovideasimplesucientconditionforwhenthereisacoherentnon-trivialjuxtaposedmodelbasedonajuxtaposedstructure.Toprovethisresult,weintroducean-othersemanticnotion,thatofajuxtapositionoftwomodels. 14JOSHUAB.SCHECHTERSupposeM1=hB1;V1iisamodeloverC1andP1andM2=hB2;V2iisamodeloverC2andP2.AjuxtapositionofthemodelsM1andM2isajuxtaposedmodel,hB1;V+1;B2;V+2i,overC1,C2,andP12suchthat:Ifp2P1,V+1(p)=V1(p);andIfp2P2,V+2(p)=V2(p).Noticethatajuxtapositionoftwounitalmodelsisajuxtaposedunitalmodel.Ajuxtapositionoftwomodelsneednotbecoherent.Giventwomodels,thereneednotbeacoherentjuxtapositionofthem.Ifthereisacoherentjuxtaposition,itneednotbeunique.SupposeM12isajuxtapositionofM1andM2.Itisroutinetoshowthatforany 2Sent(Ci;Pi),k kM12i=k kMi.Therefore,ifM12iscoherentthenforany 2Sent(Ci;Pi),M12 justincaseMi .Thefollowinglemmaprovidesasimplesucientconditiononwhentwomodelshaveacoherentjuxtaposition.Lemma5.1.SupposeC1andC2aredisjointsignatures.SupposeM1=hB1;V1iisamodeloverC1andP1andM2=hB2;V2iisamodeloverC2andP2.ThenthereisacoherentjuxtapositionofM1andM2justincaseforeveryp2P1\P2,M1pjustincaseM2p.Proof.Supposethereissomep2P1\P2suchthatM1pandM22p.V1(p)2D1andV2(p)62D2.SothereisnocoherentjuxtapositionofM1andM2.Similarly,ifM12pandM2p,thereisnocoherentjuxtapositionofM1andM2.Nowsupposeforeveryp2P1\P2,M1pjustincaseM2p.WeshowthatthereisacoherentjuxtapositionofM1andM2.LetdibeanelementofDiandletaibeanelementofBi�Di.Let[]ibethefunctionfromSent(C12;P12)toBiinductivelyde nedasfollows:Ifp2Pi,[p]i=Vi(p);Ifp2P1�P2,[p]2=d2ifV1(p)2D1and[p]2=a2otherwise;Ifp2P2�P1,[p]1=d1ifV2(p)2D2and[p]1=a1otherwise;Ifc2Cni,[c 1::: n]i=i(c)([ 1]i:::[ n]i);Ifc2Cn1,[c 1::: n]2=d2if1(c)([ 1]1:::[ n]1)2D1and[c 1::: n]2=a2otherwise;Ifc2Cn2,[c 1::: n]1=d1if2(c)([ 1]2:::[ n]2)2D2and[c 1::: n]1=a1otherwise.If isani-atom,letV+i( )=[ ]i.LetM12=hB1;V+1;B2;V+2i.Clearly,M12isajuxtapositionofM1andM2.Weshowthatforeach 2Sent(C12;P12),k kM1212D1justincasek kM1222D2.Noticethatk kM12i=[ ]i.Soweneedonlytoshowthat[ ]12D1justincase[ ]22D2.Ifp2P1\P2,[p]12D1justincaseV1(p)2D1justincaseM1pjustincaseM2pjustincaseV2(p)2D2justincase[p]22D2.Ifp2P1�P2,[p]12D1justincaseV1(p)2D1justincase[p]2=d2justincase[p]22D2.Ifp2P2�P1,[p]22D2justincaseV2(p)2D2justincase[p]1=d1justincase[P]12D1.Ifc2Cn1and 1::: n2Sent(C12;P12),[c 1::: n]12D1justincase1(c)([ 1]1:::[ n]1)2D1justincase[c 1::: n]2=d2(sinceC1andC2aredisjoint)justincase[c 1::: n]22D2.Ifc2Cn2and 1::: n2 16JOSHUAB.SCHECHTERcoherentjuxtaposedmodelbasedonB12thatdesignateseachelementof�[alsodesignates .So�[B12 .Cut:Suppose�B12 and[f gB12 .SupposeM12isacoherentjuxtaposedmodelbasedonB12thatdesignateseachelementof�[.SinceeverycoherentjuxtaposedmodelbasedonB12thatdesignateseachelementof�alsodesignates ,M12designates .SinceeverycoherentjuxtaposedmodelbasedonB12thatdesignateseachelementof[f galsodesignates ,M12designates .So�[B12 .UniformSubstitution:Suppose�[ =p]2B12 [ =p].Since�[ =p]2B12 [ =p],thereisacoherentjuxtaposedmodelM12=hB1;V1;B2;V2ibasedonB12thatdesignateseachelementof�[ =p]butdoesnotdesignate [ =p].LetV0i()=k[ =p]kM12iifisani-atom.LetM012=hB1;V01;B2;V02i.Clearly,M012isajux-taposedmodelbasedonB12.Byasimpleinduction,forany2Sent(C12;P12),kkM012i=k[ =p]kM12i.SinceM12iscoherent,soisM012.M012designateseachelementof�butdoesnotdesignate .Therefore,�2B12 .Lemma5.4.SupposeB12isthejuxtapositionofB1andB2.If�B1 or�B2 ,then�B12 .Proof.Suppose�Bi forsomei2f1;2g,�Sent(Ci;Pi),and 2Sent(Ci;Pi).SupposeM12=hB1;V1;B2;V2iisacoherentjuxtaposedmodelbasedonB12suchthatM12�.LetVijPibetherestrictionofVitoPi.LetMijPi=hBi;VijPii.MijPiisamodeloverCiandPi.Forevery 2Sent(Ci;Pi),k kMijPi=k kM12i.SoMijPi�.SinceMijPiisbasedonBi,MijPi .SoM12 .Therefore,�B12 .Theorem5.5(PreservationofStrongSoundness).Suppose`12isthejux-tapositionof`1and`2andB12isthejuxtapositionofB1andB2.If`1isstronglysoundwithrespecttoB1and`2isstronglysoundwithrespecttoB2,then`12isstronglysoundwithrespecttoB12.Proof.Bythede nitionof`12,itsucestoshowthatB12isaconsequencerelationforSent(C12;P12)suchthatif�`1 or�`2 then�B12 .ByLemma5.3,B12isaconsequencerelationforSent(C12;P12).Bystrongsound-ness,if�`1 then�B1 andif�`2 then�B2 .ByLemma5.4,if�B1 or�B2 then�B12 .Therefore,if�`1 or�`2 then�B12 .Thisresultisfullygeneral{inparticular,itdoesnotrequirethatC1andC2bedisjoint.However,toshowthatjuxtapositionpreservesstrongsoundnessorstrongunitalsoundness(simpliciter),wemustshowthatthereisacoherentnon-trivialjuxtaposedmodelbasedonB12.IfC1andC2aredisjoint,wecanapplyProposition5.2.Indeed,ifC1andC2aredisjoint,wecanshowthatthejuxtapositionoftwoconsequencerelationsisstronglysoundjustincasebothofthemare.Toprovethisstrongerresult,we rstneedtoproveasimplelemma.Lemma5.6.SupposeC1andC2aredisjointsignatures.SupposeB12isthejuxtapositionofB1andB2,eachofwhichisanon-emptyclassofstructures.Foranyi2f1;2g,�Sent(Ci;Pi),and 2Sent(Ci;Pi),if�B12 ,then�Bi . JUXTAPOSITION:ANEWWAYTOCOMBINELOGICS17Proof.Suppose�Sent(C1;P1)and 2Sent(C1;P1).Suppose�2B1 .SothereisamodelM1basedonB1suchthatM1�andM12 .SinceB2isnon-empty,therearemodelsbasedonit.ByLemma5.1,thereisacoherentjuxtaposedmodelM12basedonB12thatisthejuxtapositionofM1withsomeM2basedonB2.(WemustpickM2sothatitdesignatesthesameelementsofP1\P2asM1.)SoM12�andM122 .Therefore,�2B12 .Thecasewhere�Sent(C2;P2)and 2Sent(C2;P2)isanalogous.Corollary5.7.SupposeC1andC2aredisjointsignatures.Suppose`12isthejuxtapositionof`1and`2.Then:1.`12ishC1;C2i-stronglysoundjustincase`1and`2areeachstronglysound;2.`12ishC1;C2i-stronglyunitalsoundjustincase`1and`2areeachstronglyunitalsound.Proof.Suppose`1isstronglysoundwithrespecttoB1and`2isstronglysoundwithrespecttoB2,whereB1andB2arenon-emptyclassesofstructures.LetB12bethejuxtapositionofB1andB2.ByTheorem5.5,`12isstronglysoundwithrespecttoB12.SinceB1andB2arenon-empty,soisB12.ByProposition5.2,thereisacoherentnon-trivialjuxtaposedmodelbasedonB12.Therefore,`12ishC1;C2i-stronglysound.Nowsuppose`12isstronglysoundwithrespecttoB12,anon-emptyclassofstructures.Suppose�Sent(Ci;Pi)and 2Sent(Ci;Pi).Suppose�2Bi .SinceB12isnon-empty,soareB1andB2.ByLemma5.6,�2B12 .Bystrongsoundness,�012 .So�0i .So`iisstronglysoundwithrespecttoBi,anon-emptyclassofstructures.Therefore,`1and`2areeachstronglysound.B12isaclassofjuxtaposedunitalstructuresjustincaseB1andB2areeachclassesofunitalstructures.Therefore,`12ishC1;C2i-stronglyunitalsoundjustincase`1and`2areeachstronglyunitalsound.5.3.ConservativenessandConsistency.Ournextgeneralresultscon-cernconservativenessandthepreservationofconsistency.We rstprovideasucientconditiononwhenthejuxtapositionoftwocon-sequencerelationsisastrongconservativeextensionoftheoriginalrelations.Proposition5.8.SupposeC1andC2aredisjointsignatures.Suppose`12isthejuxtapositionof`1and`2.If`1and`2areeachstronglydetermined,then`12isastrongconservativeextensionofeachof`1and`2.Proof.Suppose�Sent(Ci;Pi)and 2Sent(Ci;Pi).Suppose�`i .Bythede nitionof`12,�`12 .Nowsuppose�`12 .Suppose`1isstronglydeterminedwithrespecttoB1and`2isstronglydeterminedwithrespecttoB2,whereB1andB2arenon-emptyclassesofstructures.LetB12bethejuxtapositionofB1andB2.ByTheorem5.5,`12isstronglysoundwithrespecttoB12.So�B12 .ByLemma5.6,�Bi .Therefore,bystrongcompleteness,�`i .Conservativenessiscloselytiedtoconsistency.If�isconsistentwithrespecttosomeconsequencerelation,�isconsistentwithrespecttoanystrongconservativeextensionofit.Thus,wehavethefollowing: 18JOSHUAB.SCHECHTERProposition5.9.SupposeC1andC2aredisjointsignatures.Suppose`12isthejuxtapositionof`1and`2.Suppose`1and`2areeachstronglydeter-mined.If(fori=1or2)�Sent(Ci;Pi)isconsistentwithrespectto`i,then�isconsistentwithrespectto`12.CombiningtheseresultswithTheorem2.1,thefollowingresultsareimmediate:Theorem5.10(PreservationofConsistency).SupposeC1andC2aredis-jointsignatures.Supposeeachof`1and`2isconsistentandhasnomerefollowers.Suppose`12isthejuxtapositionof`1and`2.Then`12isconsistent.If�Sent(Ci;Pi)isconsistentwithrespectto`i,�isconsistentwithrespectto`12.Theorem5.11(StrongConservativeness).SupposeC1andC2aredisjointsignatures.Supposeeachof`1and`2isconsistentandhasnomerefollowers.Suppose`12isthejuxtapositionof`1and`2.Then`12isastrongconservativeextensionofeachof`1and`2.36x6.StrongCompletenessandStrongDetermination.Asusual,itissomewhatmorediculttoprovecompletenessresults.Inthissection,wepresentdirectproofsofstrongcompletenessandstrongunitalcompletenessthatapplyinawiderangeofcases.37Thegeneralstrategyofproofreliesonamodi cationofthefamiliarLindenbaum-Tarskiconstructions.38We rstproveaveryabstractcompletenessresultthatrequirestheretobesuitableequivalencerelationswithwhichtobuildourLindenbaum-Tarskimodels.Wetheninvestigatewhensuchrelationsexist.6.1.TheLindenbaum-TarskiConstruction.LetbeanequivalencerelationonSent(C;P).WesaythatisacongruenceoverC�justincase:Foreveryc�2C�n, 1;:::; n; 2Sent(C;P),andk2f1;:::;ng,if k thenc� 1::: k::: nc� 1::: ::: n.Wesaythatiscompatiblewith`and�Sent(C;P)justincase:Forevery ; 2Sent(C;P),if  then�` justincase�` .Wesaythatisstronglycompatiblewith`and�Sent(C;P)justincaseiscompatiblewith`and�and:Forevery ; 2Sent(C;P),ifboth�` and�` then  .WesaythatissuitableforC�,`,and�justincaseisacongruenceoverC�compatiblewith`and�.WesaythatisunitalsuitableforC�,`,and�justincaseisacongruenceoverC�stronglycompatiblewith`and�.We 36SeeCruz-Filipeetal.(2007),Proposition2.17,foraslightlystrongerresult.Inparticular,thejuxtapositionoftwonon-trivialconsequencerelationsoverdisjointsignaturesisastrongconservativeextensionofeachofthem.Theirproofofthisresultispurelyproof-theoretic,relyingona xed-pointargument.37SeeZanardoetal.(2001)andSernadasetal.(2002)forcompletenessresultsconcerningalgebraic bringandmodulated bring,respectively.38SeeRasiowa(1974)andRasiowa&Sikorski(1970)fortheapplicationoftheLindenbaum-Tarskimethodtologicsthatcontainconditionals.SeeBlok&Pigozzi(1989)fortheapplicationofthismethodinamoregeneralsetting. 22JOSHUAB.SCHECHTERNoticethatinthecasethat`12ishC1;C2i-stronglysoundwithrespecttoB12,wealsogettheconverseofthisresult:Supposethereisacoherentnon-trivialjuxtaposedmodelM12basedonB12.SinceM12isnon-trivial,forsome 2Sent(C12;P12),M122 .Bystrongsoundness,012 .So,`12isconsistent.Summarizingourresults,wehavethefollowing:Theorem6.7.Suppose`12hasnomerefollowers.Supposeforeveryi2f1;2gandnon-empty�Sent(C12;P12)consistentwithrespectto`12,�iisanequivalencerelationonSent(C12;P12)suitableforCi,`12,and�.Then:1.`12isstronglycompletewithrespecttoB12;2.If`12isthejuxtapositionof`1and`2,then`12isstronglysoundwithrespecttoB12;3.If`12isconsistent,thenthereisacoherentnon-trivialmodelbasedonB12;4.B12isaclassofjuxtaposedunitalstructuresjustincaseforeveryi2f1;2gandnon-empty�Sent(C12;P12)consistentwithrespectto`12,�iisunitalsuitableforCi,`12,and�.6.2.StrongDetermination.Theorem6.7raisesthequestionofwhenthereisanequivalencerelationonSent(C12;P12)suitableorunitalsuitableforCi,`12,and�.Thecaseofsuitabilityisstraightforward.Thefollowingresultiseasytoprove:Lemma6.8.Suppose�Sent(C;P).ThentheidentityrelationonSent(C;P)isanequivalencerelationonSent(C;P)suitableforC�,`,and�.LetB=12betheLindenbaum-TarskiclassofjuxtaposedstructuresforC1,C2,and`12,usingtheidentityrelationonSent(C12;P12)forthesuitableequivalencerelations.CombiningLemma6.8withTheorem6.7,wearriveatthefollowingresult:Proposition6.9.Suppose`12hasnomerefollowers.Then:1.`12isstronglycompletewithrespecttoB=12;2.If`12isthejuxtapositionof`1and`2,then`12isstronglysoundwithrespecttoB=12;3.If`12isconsistent,thenthereisacoherentnon-trivialmodelbasedonB=12.TheidentityrelationonSent(C;P)isthemost ne-grainedequivalencerela-tionsuitableforC�,`,and�.Wecanalsocharacterizethemostcoarse-grainedsuchrelation.WesaythatpstrictlyC�-occursinjustincasepdoesnotoccurwithinthescopeofanyconnectivenotfromC�.Suppose�Sent(C;P).Wede neabinaryrelationonSent(C;P)asfollows:h ; i2 �C�justincaseforevery2Sent(C;P)andpthatstrictlyC�-occursin;�`[ =p]justincase�`[ =p]:Thisisamodi cationofthede nitionofthewell-knownLeibnizcongruence.40Wewrite  (mod �C�)tostandfortheclaimthath ; i2 �C�. 40TheLeibnizcongruencemaybede nedasfollows:  (mod �)justincaseforevery2Sent(C;P)andpoccurringin,�`[ =p]justincase�`[ =p].SeeBlok&Pigozzi(1989)fordiscussionofthiscongruence. JUXTAPOSITION:ANEWWAYTOCOMBINELOGICS25Inde ningthisrelation,itturnsouttobehelpfultoworkwithanexpansionofourlanguage.LetPbeacountablyin nitesetofsentencesymbolsdisjointwithP.(Inwhatfollows,wealwayschoosePtobedisjointwithwhateversetsofsentencesymbolsweareworkingwith.)Let`betheleastconsequencerelationforSent(C;P[P)thatextends`.Lemma6.17.`existsandisastrongconservativeextensionof`.Proof.LetbeanyfunctionfromPtoP.Let�` justincase�` .Itisroutinetoshowthat`isaconsequencerelationforSent(C;P[P)thatextends`.ItisalsoroutinetoshowthattheintersectionofallconsequencerelationsforSent(C;P[P)thatextend`isitselfaconsequencerelationforSent(C;P[P).Therefore,`exists.Suppose�` .Since`extends`,�` .Nowsuppose�0 .AgainletbeanyfunctionfromPtoP.Itiseasytoseethat�0 .So�0 .Therefore,`isastrongconservativeextensionof`.Suppose�Sent(C;P).Wede neabinaryrelationonSent(C;P)asfollows:h ; i2�C�justincaseforevery2Sent(C�;P[P)andpoccurringin;�[f[ =p]g`[ =p]and�[f[ =p]g`[ =p]:Wewrite  (mod�C�)tostandfortheclaimthath ; i2�C�.Inthisde nition,isrestrictedtosentenceswithconnectivesfromC�.Thisiswhatenablesustoimproveourstrongunitaldeterminationresult.However,thisisalsowhatmotivatestheuseofanextrasetofsentencesymbols.BymakinguseoftheelementsofP,wecanapplyUniformSubstitutiontoshowthat�C�isacongruenceoverC�evenwhen�containsoccurrencesofeveryelementinP.42Lemma6.18.Suppose�Sent(C;P).Then�C�isanequivalencerelationonSent(C;P)suitableforC�,`,and�.Proof.Suppose�Sent(C;P).Clearly,�C�isanequivalencerelationonSent(C;P).CongruenceoverC�:Supposec�2C�n; 1;:::; n; 2Sent(C;P);andk2f1;:::ng.Suppose k (mod�C�).Suppose2Sent(C�;P[P)andpoccursin.Letp1;:::;pnbedistinctelementsofPthatdonotoccurin.�[f[c�p1:::pk:::pn=p][ k=pk]g`[c�p1:::pk:::pn=p][ =pk].Thatis,�[f[c�p1::: k:::pn=p]g`[c�p1::: :::pn=p].ByUniformSubstitution,�[f[c� 1::: k::: n=p]g`[c� 1::: ::: n=p].Byanalogousreasoning,�[ 42Thereisanalternativeapproachthatwecouldinsteadhaveadopted.Theideaistomakeuseofthefollowingequivalencerelation:h ; i20�C�justincaseforevery2Sent(C�;P)andpoccurringin,�[f[ =p]g`[ =p]and�[f[ =p]g`[ =p].UsingUniformSubstitution,wecanshowthatif�lacksoccurrencesofin nitelymanyelementsofPthen0�C�isacongruenceoverC�.Ifweretoadoptthisapproach,wewouldhavetomodifyourde nitionoftheLindenbaum-Tarskiclassofjuxtaposedstructuressothatitcontainsajuxtaposedstructureforeverynon-empty�Sent(C12;P12)consistentwithrespectto`12thatlacksoccurrencesofin nitelymanyelementsofP12.Ine ect,wewouldbeworkingwithrestrictionsofthelanguageratherthananexpansionofit. 26JOSHUAB.SCHECHTERf[c� 1::: ::: n=p]g`[c� 1::: k::: n=p].Hence,c� 1::: k::: nc� 1::: ::: n(mod�C�).Compatibilitywith`and�:Suppose  (mod�C�).Letp2P.So�[fp[ =p]g`p[ =p].Thatis,�[f g` .ByLemma6.17,�[f g` .Similarly,�[f g` .ByCut,�` justincase�` .Beforeweprovideconditionsforwhen�C�isunitalsuitableforC�,`,and�,we rstprovetwosimpleresultsconcerningleft-extensionalityoveraset:Lemma6.19.SupposeSent(C;P).Suppose`isleft-extensionalover.Thenanyconsequencerelationthatextends`isleft-extensionalover.Proof.SupposeCisasub-signatureofC+andPisasubsetofP+.Suppose`+isaconsequencerelationforSent(C+;P+)thatextends`.Suppose ; 2Sent(C+;P+);2;andpoccursin.LetqandrbedistinctelementsofPthatdonotoccurin.Since`isleft-extensionalover,fq;r;[q=p]g`[r=p].Since`+extends`,fq;r;[q=p]g`+[r=p].ByUniformSubstitution,f ; ;[ =p]g`+[ =p].Therefore,`+isleft-extensionalover.Lemma6.20.SupposeP�isanin nitesubsetofP.Then`isleft-exten-sionaloverSent(C�;P)justincase`isleft-extensionaloverSent(C�;P�).Proof.Suppose`isleft-extensionaloverSent(C�;P).SinceSent(C�;P�)isasubsetofSent(C�;P),`isleft-extensionaloverSent(C�;P�).Nowsuppose`isleft-extensionaloverSent(C�;P�).Supposethat2Sent(C�;P); ; 2Sent(C;P);andpoccursin.LetPcontainthoseel-ementsofP�P�thatoccurin.LetPcontainthoseelementsofP�thatdonotoccurin , ,or.LetbeaninjectivefunctionfromPtoP.SuchafunctionexistssincePis niteandPisin nite.Byleft-extensionalityoverSent(C�;P�),f ; ;[ =p]g`[ =p].ByUniformSubstitution,f ; ;[ =p]g`[ =p].Therefore,`isleft-extensionaloverSent(C�;P).Makinguseoftheseresults,wecanprovethefollowingresult:Lemma6.21.`isleft-extensionaloverSent(C�;P)justincaseforeverynon-empty�Sent(C;P)consistentwithrespectto`,�C�isunitalsuitableforC�,`,and�.Proof.Suppose`isleft-extensionaloverSent(C�;P).Supposethat�Sent(C;P).ByLemma6.18,forevery�Sent(C;P),�C�issuitableforC�,`,and�.Suppose�` and�` .Suppose2Sent(C�;P[P)andpoccursin.ByLemma6.19,`isleft-extensionaloverSent(C�;P).ByLemma6.20,`isleft-extensionaloverSent(C�;P[P).Sof ; ;[ =p]g`[ =p].Since`extends`,�` and�` .ByCut,�[f[ =p]g`[ =p].Similarly,�[f[ =p]g`[ =p].So  (mod�C�).So�C�isunitalsuitableforC�,`,and�.Nowsupposeforeverynon-empty�Sent(C;P)consistentwithrespectto`,�C�isunitalsuitableforC�,`,and�.Suppose ; 2Sent(C;P);2Sent(C�;P);andpoccursin.Iff ; gisinconsistentwithrespectto`,thenf ; ;[ =p]g`[ =p].Suppose,then,thatf ; gisconsistentwithrespectto`.Sof ; gC�isunitalsuitableforC�,`,andf ; g.ByIdentity 28JOSHUAB.SCHECHTERM12basedonit.SinceM12isnon-trivial,forsome ; 2Sent(C12;P12),M12 andM122 .Sof g2B12 .Bysoundness,f g012 .So`12isnon-trivial.Itimmediatelyfollowsthat`12ishC1;C2i-stronglysoundonlyif`12iscon-sistent.Proposition6.25.`12ishC1;C2i-stronglycompletewithrespecttoaclassofjuxtaposedunitalstructuresonlyif`12isleft-extensionaloverSent(C1;P1)andoverSent(C2;P2).Proof.Suppose`12isstronglycompletewithrespecttoB12,aclassofjuxta-posedunitalstructuresoverC1andC2.Leti=1or2.Suppose2Sent(Ci;Pi)and ; 2Sent(C12;P12).SupposeM12isacoherentjuxtaposedunitalmodeloverC1,C2,andP12basedonB12suchthatM12 ,M12 ,andM12[ =p].InM12,k ki=k ki=k[ =p]ki=1i.Byinductiononthecom-plexityof,k[ =p]ki=k[ =p]ki.Sok[ =p]ki=1i.SoM12[ =p].Sof ; ;[ =p]gB12[ =p].Bystrongcompleteness,f ; ;[ =p]g`12[ =p].Therefore,`12isleft-extensionaloverSent(Ci;Pi).Proposition6.26.SupposeC1andC2aredisjoint.`12ishC1;C2i-stronglydeterminedwithrespecttoaclassofjuxtaposedstructuresonlyif`12hasnomerefollowers.Proof.Suppose`12isstronglydeterminedwithrespecttoB12,aclassofjuxtaposedstructuresoverC1andC2.Suppose012 .LetpbeanelementofP12thatdoesnotoccurin .Weshowthatfpg012 .Bycompleteness,2B12 .SothereisacoherentjuxtaposedmodelM12=hB1;V1;B2;V2ioverC1,C2,andP12basedonB12suchthatM122 .LeteachBi=hBi;Di;ii.LetdibeanelementofDiandletaibeanelementofBi�Di.Let[]ibethefunctionfromSent(C12;P12)toBiinductivelyde nedasfollows:If hasnooccurrenceofp,[ ]i=k kM12i;[p]i=di;Ifc2Cniandpoccursinatleastoneof 1;:::; n,[c 1::: n]i=i(c)([ 1]i:::[ n]i);Ifc2Cn1andpoccursinatleastoneof 1;:::; n,[c 1::: n]2=d2if1(c)([ 1]1:::[ n]1)2D1and[c 1::: n]2=a2otherwise;Ifc2Cn2andpoccursinatleastoneof 1;:::; n,[c 1::: n]1=d1if2(c)([ 1]2:::[ n]2)2D2and[c 1::: n]1=a1otherwise.SinceC1andC2aredisjoint,[]iiswell-de ned.If isani-atom,letV0i( )=[ ]i.LetM012=hB1;V01;B2;V02i.Clearly,M012isajuxtaposedmodelbasedonB12.ItisstraightforwardtoshowthatinM012,k ki=[ ]i.ItisalsostraightforwardtoshowthatM012iscoherent.M012pandM0122 .Sofpg2B12 .Bystrongsoundness,fpg012 .CombiningCorollaries6.13and6.23withPropositions6.24,6.25,and6.26,wearriveatthefollowingniceresult: JUXTAPOSITION:ANEWWAYTOCOMBINELOGICS29Corollary6.27.SupposeC1andC2aredisjoint.Suppose`12isthejux-tapositionof`1and`2.Then:1.`12ishC1;C2i-stronglydeterminedjustincase`12isconsistentandhasnomerefollowers;2.`12ishC1;C2i-stronglyunitaldeterminedjustincase`12isconsistent,hasnomerefollowers,andisleft-extensionaloverSent(C1;P1)andoverSent(C2;P2).6.6.JuxtaposedConsequenceRelations.Ourmaininterestinthispaperconcernsthecombinationoflogics.Anaturalquestiontoaskis:Whatpropertiesof`1and`2suceforajuxtaposedconsequencerelationover`1and`2tobehC1;C2i-stronglydeterminedorhC1;C2i-stronglyunitaldetermined?Theresultsaboveenableustoprovideafairlycomprehensiveanswertothisquestion.We rstde neanewnotion.Suppose 2Sent(C;P).Wesaythatanoccurrenceof in isamaximalnon-C�-occurrencejustincasethemainconnectiveof isnotfromC�andtheoccurrenceisnotproperlywithinthescopeofanyconnectivenotfromC�.Lemma6.28.Suppose`isC�-left-extensional.Thenanyconsequencere-lationthatextends`isC�-left-extensional.Proof.SupposeCisasub-signatureofC+andPisasubsetofP+.Suppose`+isaconsequencerelationforSent(C+;P+)thatextends`.Suppose ; ;2Sent(C+;P+)andpstrictlyC�-occursin.Withoutlossofgenerality,wecanassumethat2Sent(C+;P).(WecanuseUniformSubstitutiontocoverthecasewhereitdoesn't.)Let�betheresultofreplacingthemaximalnon-C�-occurrencesinwithdistinctelementsofPthatdonotoccurin ; ,or.LetqandrbedistinctelementsofPthatdonotoccurin�.So�2Sent(C;P)andpstrictlyC�-occursin.Since`isC�-left-extensional,fq;r;�[q=p]g`�[r=p].Since`+extends`,fq;r;�[q=p]g`+�[r=p].SincepstrictlyC�-occursin,byUniformSubstitutionfq;r;[q=p]g`+[r=p].AgainusingUniformSubstitution,f ; ;[ =p]g`+[ =p].Therefore,`+isC�-left-extensional.Proposition6.29.Suppose`12isajuxtaposedconsequencerelationover`1and`2.Supposeatleastoneof`1or`2hastheorems.Then:1.`12isstronglycompletewithrespecttoeachofB=12,B 12,andB12;2.If`12isthejuxtapositionof`1and`2,then`12isstronglysoundwithrespecttoeachofB=12,B 12,andB12;3.If`12isconsistent,thentherearecoherentnon-trivialmodelsbasedoneachofB=12,B 12,andB12;4.If`1and`2areeachleft-extensional,thenB 12andB12areclassesofjuxtaposedunitalstructures.Proof.Ifatleastoneof`1and`2hastheorems,`12hastheorems,andso`12hasnomerefollowers.Claims1{3thenfollowfromPropositions6.9,6.12,and6.22.If`iisleft-extensional,thenbyLemma6.28,`12isCi-left-extensional(andthus,isleft-extensionaloverSent(Ci;Pi)).Claim4thenfollowsfromPropositions6.15and6.22.Thefollowingcorollaryisimmediate: 30JOSHUAB.SCHECHTERCorollary6.30.Suppose`12isthejuxtapositionof`1and`2.Suppose`12isconsistent.Supposeatleastoneof`1and`2hastheorems.Then:1.`12ishC1;C2i-stronglydetermined;2.If`1and`2areeachleft-extensional,then`12ishC1;C2i-stronglyunitaldetermined.InthecasewhereC1andC2aredisjoint,wehavethefollowingniceresults:Proposition6.31.SupposeC1andC2aredisjoint.Suppose`12isthejuxtapositionof`1and`2.Supposeeachof`1and`2isconsistentandhasnomerefollowers.Supposeatleastoneof`1and`2hastheorems.Then:1.`12isstronglydeterminedwithrespecttoeachofB=12,B 12,andB12;2.Thereisacoherentnon-trivialmodelbasedoneachofB=12,B 12,andB12;3.B 12andB12areclassesofjuxtaposedunitalstructuresjustincase`1and`2areeachleft-extensional.Proof.ByTheorem5.10,`12isconsistent.Ifatleastoneof`1and`2hastheorems,`12hastheorems,andso`12hasnomerefollowers.Claims1{3thenfollowfromPropositions6.9,6.12,and6.22If`iisleft-extensional,thenbyLemma6.28,`12isCi-left-extensional(andthus,isleft-extensionaloverSent(Ci;Pi)).ByTheorem5.11,if`12isleft-extensionaloverSent(Ci;Pi),then`iisleft-extensional.Claim4thenfollowsfromPropositions6.15and6.22.Corollary6.32.SupposeC1andC2aredisjoint.Suppose`12isthejux-tapositionof`1and`2.Supposeatleastoneof`1and`2hastheorems.Then:1.`12ishC1;C2i-stronglydeterminedjustincaseeachof`1and`2iscon-sistentandhasnomerefollowers;2.`12ishC1;C2i-stronglyunitaldeterminedjustincaseeachof`1and`2isconsistent,hasnomerefollowers,andisleft-extensional.Proof.Theright-to-leftdirectionofeachclaimfollowsfromProposition6.31.Theleft-to-rightdirectionfollowsfromPropositions6.24,6.25,and6.26com-binedwithTheorem5.11.UsingTheorems2.1and2.2,thefollowingresultisimmediate:Corollary6.33.SupposeC1andC2aredisjoint.Suppose`12isthejux-tapositionof`1and`2.Supposeatleastoneof`1and`2hastheorems.Then:1.`12ishC1;C2i-stronglydeterminedjustincaseeachof`1and`2isstronglydetermined;2.`12ishC1;C2i-stronglyunitaldeterminedjustincaseeachof`1and`2isstronglyunitaldetermined.Thereisanadditionalresultworthstating.Wewillmakeuseofthisresultinourdiscussionofclassicalandintuitionistlogicbelow.WesaythataclassofstructuresBisfullfortheconsequencerelation`justincase`isstronglysoundwithrespecttoBandBcontainsatleastonerepresentativefromeveryisomorphismclassofstructuresfor`thathasasetofsemanticvalueswithcardinalityatmostthatofthelanguageof`.44WesaythatBisunitalfullfor 44ThisisaweakeningofDe nition4.4inZanardoetal.(2001)andDe nition3.3.11inCarniellietal.(2008). JUXTAPOSITION:ANEWWAYTOCOMBINELOGICS33Proof.Suppose�Sent(C;P).ByRe exivity,Symmetry,Transitivity,Weakening,andCut,�isanequivalencerelationonSent(C;P).CongruenceoverC�:Supposec�2C�n; 1;:::; n; 2Sent(C;P);andk2f1;:::ng.Suppose k (mod�).So�`( k; ).Sincesat-is esCongruenceoverC�,( k; )`(c� 1::: k::: n;c� 1::: ::: n).ByCut,�`(c� 1::: k::: n;c� 1::: ::: n).Hence,c� 1::: k::: nc� 1::: ::: n(mod�).Compatibilitywith�and`:Suppose  (mod�).So�`( ; ).Suppose�` .ByModusPonens,f g[( ; )` .ByCut,�` .Similarly,if�` ,then�` .So�` justincase�` .Lemma6.38.SupposeisanequivalencesetoverC�for`.ThenisaregularequivalencesetoverC�for`justincaseforeverynon-empty�Sent(C;P)consistentwith`,�isunitalsuitableforC�,`,and�.Proof.SupposeisaregularequivalencesetoverC�for`.Suppose�Sent(C;P).Suppose�` and�` .ByRegularity,f ; g`( ; ).ByCut,�`( ; ).So  (mod�).Therefore,�isunitalsuitableforC�,`,and�.Nowsupposeforeverynon-empty�Sent(C;P)consistentwith`,�isunitalsuitableforC�,`,and�.Suppose ; 2Sent(C;P).Iff ; gisinconsistentwithrespectto`,f ; g`( ; ).Suppose,then,thatf ; gisconsistentwithrespectto`.Sof ; gisunitalsuitableforC�,`,andf ; g.ByIdentityandWeakening,f ; g` andf ; g` .Bystrongcompatibilitywith`andf ; g,  (modf ; g).So,again,f ; g`( ; ).Therefore,isaregularequivalencesetoverC�for`.Suppose1isanequivalencesetoverC1for`12and2isanequivalencesetoverC2for`12.LetBh1;2i12betheLindenbaum-TarskiclassofjuxtaposedstructuresforC1,C2,and`12builtusingthe�irelations.Anyconsequencerelationthatisequivalentialoversomesignaturehastheorems.CombiningthisfactwithLemmas6.37and6.38andTheorem6.7,wearriveatthefollowingresult:Proposition6.39.Suppose1isanequivalencesetoverC1for`12and2isanequivalencesetoverC2for`12.Then:1.`12isstronglycompletewithrespecttoBh1;2i12;2.If`12isthejuxtapositionof`1and`2,then`12isstronglysoundwithrespecttoBh1;2i12;3.If`12isconsistent,thenthereisacoherentnon-trivialmodelbasedonBh1;2i12;4.Bh1;2i12isaclassofjuxtaposedunitalstructuresjustincase1isaregularequivalencesetoverC1for`12and2isaregularequivalencesetoverC2for`12.Thereisaparticularlywell-behavedkindofequivalencesetoverC�.WesaythatisaninternalequivalencesetoverC�for`justincaseisanequivalencesetoverC�for`andSent(C�;fq;rg).Wesaythatisanregularinternalequivalencesetif,inaddition,satis estheRegularitycondition.Wesaythat JUXTAPOSITION:ANEWWAYTOCOMBINELOGICS35Indeed,itisstraightforwardtoshowthatif`isinternallyequivalentialandregularlyequivalential,theneveryinternalequivalencerelationisregular.)Suppose`isinternallyequivalentialoverC�.Let�C�standfortheuniqueequivalencerelationde nedonSent(C;P)generatedbyanyoftheinternalequiv-alencesetsoverC�for`.Wecanshowthat�C�= �C�=�C�isthemostcoarse-grainedequivalencerelationonSent(C;P)suitableforC�,`,and�.Lemma6.43.1.IfisanequivalencesetoverC�for`,thenisanequivalencesetoverC�foranyconsequencerelationthatextends`;2.IfisaregularequivalencesetoverC�for`,thenisaregularequiva-lencesetoverC�foranyconsequencerelationthatextends`.Proof.SupposeCisasub-signatureofC+andPisasubsetofP+.Suppose`+isaconsequencerelationforSent(C+;P+)thatextends`.Supposep,q,andraredistinctelementsofP.Suppose ; ; 2Sent(C+;P+).Re exivity:`(p;p).So`+(p;p).ByUniformSubstitution,`+( ; ).Symmetry:(p;q)`(q;p).So(p;q)`+(q;p).ByUniformSubstitution,( ; )`+( ; ).Transitivity:(p;q)[(q;r)`(p;r).So(p;q)[(q;r)`+(p;r).ByUniformSubstitution,( ; )[( ; )`+( ; ).ModusPonens:fpg[(p;q)`q.Sofpg[(p;q)`+q.ByUniformSubsti-tution,f g[( ; )`+ .CongruenceoverC�:Letc�2C�n.Letp1;:::pn;qbedistinctelementsofP.Let 1;:::; n; 2Sent(C+;P+)andk2f1;:::;ng.(pk;q)`(c�p1:::pk:::pn,c�p1:::q:::pn).So(pk;q)`+(c�p1:::pk:::pn;c�p1:::q:::pn).ByUniformSubstitution,( k; )`+(c� 1::: k::: n;c� 1::: ::: n).Regularity:ByRegularity,fp;qg`(p;q).Sofp;qg`+(p;q).ByUniformSubstitution,f ; g`( ; ).Proposition6.44.Suppose`isinternallyequivalentialoverC�.Suppose�Sent(C;P).Then�C�= �C�=�C�isthemostcoarse-grainedequiva-lencerelationoverSent(C;P)suitableforC�,`,and�.Proof.SupposeisaninternalequivalencesetoverC�for`.We rstshowthat  (mod�C�)justincase  (mod �C�).Suppose  (mod�C�).ByProposition6.11,  (mod �C�).Nowsuppose  (mod �C�).Suppose2.LetpbeanelementofPthatdoesnotoccurin .SinceisaninternalequivalencesetoverC�for`,pstrictlyC�-occursin( ;p).So�`( ;p)[ =p]justincase�`( ;p)[ =p].Thatis,�`( ; )justincase�`( ; ).ByRe exivityandWeakening,�`( ; ).So�`( ; ).Therefore,  (mod�C�).Wenextshowthat  (mod�C�)justincase  (modC�).Suppose  (mod�C�).So�`( ; ).Suppose2Sent(C�;P[P)andpoccursin.ByLemma6.43,isanequivalencesetoverC�for`.ByProposition6.35,f[ =p]g[( ; )`[ =p].Since`extends`,�`( ; ).ByCut,�[f[ =p]g`[ =p].Moreover,bySymmetry,�`( ; ).Sobyanalogousreasoning,�[f[ =p]g`[ =p].Therefore,  (mod�C�). 38JOSHUAB.SCHECHTERTheclassicalconsequencerelationisstronglydeterminedwithrespecttotheclassofBooleanstructures.47Itisconsistent,hastheorems,andisleft-extensional.ByTheorem5.10,`ccisconsistent.ByTheorem5.11,`ccisstronglyconserva-tiveover`c1and`c2.ItcanbeaxiomatizedusingtwocopiesofanyHilbert-styleaxiomatizationforclassicallogic.(Itcanalsobeaxiomatizedusingtwocopiesofanynaturaldeduction-styleaxiomatizationforclassicallogicrestrictedsothattherulesforonestockofconnectivescannotbeappliedwithinanysub-derivationusedintheapplicationofameta-rulegoverningaconnectivefromtheotherstock.)ByCorollary6.32,`ccishC1;C2i-stronglyunitaldetermined.Wecanextractadditionalinformationabout`ccusingProposition6.34.TheclassofallBooleanstructuresisunitalfullfortheclassicalconsequencerelation.WesaythatajuxtaposedunitalstructurehB1;B2iisabi-BooleanstructurejustincasebothB1andB2areBooleanstructures.ByProposition6.34,`ccisstronglydeterminedwithrespecttotheclassofallbi-Booleanstructures.Thecaseofthebi-intuitionistconsequencerelation,`iiisanalogous.Givenanynon-trivialHeytingalgebra,hB;i,thereisacorrespondingunitalstructurehB;f1g;iwhereBisthesamesetofsemanticvalues,1isthegreatestelementoftheHeytingalgebra,andforeverya;b2B:(:)(a)=a)0;(^)(a;b)=aub;(_)(a;b)=atb;(!)(a;b)=a)b;($)(a;b)=(a)b)u(b)a):Here,u,t,and),arethein mum,supremum,andimplicationrelationsontheHeytingalgebra,and0isitsleastelement.Letuscallsuchstructures\Heytingstructures".GivenaHeytingstructure,thepartialorderofthecorrespondingHeytingalgebracanberecovered:abjustincase(!)(a;b)=1.TheintuitionistconsequencerelationisstronglydeterminedwithrespecttotheclassofHeytingstructures.48Itisconsistent,hastheorems,andisleft-extensional.ByTheorem5.10,`iiisconsistent.ByTheorem5.11,`iiisstronglyconservativeover`i1and`i2.ItcanbeaxiomatizedusingtwocopiesofanyHilbert-styleaxiomatizationforintuitionistlogic.(Itcanalsobeaxiomatizedusingtwocopiesofanynaturaldeduction-styleaxiomatizationforintuitionistlogicrestrictedsothattherulesforonestockofconnectivescannotbeappliedwithinanysub-derivationusedintheapplicationofameta-rulegoverningaconnectivefromtheotherstock.)ByCorollary6.32,`iiishC1;C2i-stronglyunitaldetermined. 47Theclassicalconsequencerelationisalsostronglydeterminedwithrespecttotheclassofstructuresde nedasaboveexceptthatthesetofdesignatedvaluesisallowedtobeanyproper lterontheBooleanalgebra.48Theintuitionistconsequencerelationisalsostronglydeterminedwithrespecttotheclassofstructuresde nedasaboveexceptthatthesetofdesignatedvaluesisallowedtobeanyproper lterontheHeytingalgebra. JUXTAPOSITION:ANEWWAYTOCOMBINELOGICS39TheclassofallHeytingstructuresisunitalfullfortheintuitionistconsequencerelation.WesaythatajuxtaposedunitalstructurehB1;B2iisabi-Heytingstruc-turejustincasebothB1andB2areHeytingstructures.ByProposition6.34,`iiisstronglydeterminedwithrespecttotheclassofallbi-Heytingstructures.Finally,considertheintuitionist-classicalconsequencerelation,`ic.ByThe-orem5.10,`icisconsistent.ByTheorem5.11,`icisstronglyconservativeover`i1and`c2.ItcanbeaxiomatizedbycombiningaHilbert-styleaxiomatizationforclassicallogicandaHilbert-styleaxiomatizationforintuitionistlogic.(Itcanalsobeaxiomatizedusingacopyofanynaturaldeduction-styleaxiomatizationforintuitionistlogicandacopyofanynaturaldeduction-styleaxiomatizationforclassicallogic,eachrestrictedsothattherulesforonestockofconnectivescannotbeappliedwithinanysub-derivationusedintheapplicationofameta-rulegoverningaconnectivefromtheotherstock.)ByCorollary6.32,`icishC1;C2i-stronglyunitaldetermined.WesaythatajuxtaposedunitalstructurehB1;B2iisaHeyting-Booleanstruc-turejustincaseB1isaHeytingstructureandB2isaBooleanstructure.AgainusingProposition6.34,`icisstronglydeterminedwithrespecttotheclassofallHeyting-Booleanstructures.7.2.Non-CollapseResults.Theseresultsalreadyhaveimplicationsforthecollapseofclassicalandintuitionistlogics.Considerthecaseof`ic.Wehaveshownthatthisconsequencerelationisstronglyconservativeover`i1and`c2.Thissucestoshowthat`icdoesnotcollapse.49Sincep_:pisatheoremofclassicallogicbutnotatheoremofintuitionistlogic,0icp_1:1pand`icp_2:2p.Similarly,Peirce'slaw,((p!q)!p)!p,canbeusedtoshowthat!1and!2arenotintersubstitutable.DoubleNegationEliminationcanbeusedtoshowthat:1and:2arenotintersubstitutable,either.Theinterestoftheseresultsshouldnotbeunderemphasized.Juxtapositionisanaturalwaytocombineclassicalandintuitionistlogic.`ichasalloftheentailmentsofintuitionistlogic(forthe1-connectives)andalloftheentailmentsofclassicallogic(forthe2-connectives).Indeed,itisastrongconservativeextensionofbothintuitionistandclassicallogic.Itobeystheusualstructuralrules,andissubstitutioninvariant.Yet,theclassicalandintuitionistconnectivesarenotintersubstitutable.Thereisnocollapse.Noticethatthenon-collapseresultalsoappliesto`ii.Thisisastrictlyweakerrelationthan`ic.Thus,ifcorrespondingconnectivesarenotintersubstitutablein`ic,theyarenotintersubstitutablein`ii,either.Whataboutbi-classicallogic?Doesthislogicavoidcollapse?Theanswerisyes,butprovingthistakesabitmorework.Inparticular,toshowthat`ccdoesnotcollapse,wemakeuseofLemma5.1tobuildacoherentbi-Booleanmodel.ABooleanmodelcanbespeci edbyspecifyingaBooleanalgebraandavalu-ation.BooleanalgebrascanbevisuallyrepresentedusingHassediagrams.Suchadiagramcontainsnodes{eachrepresentingadistinctelementofthecarriersetofthealgebra{andlinesegmentsconnectingpairsofnodes.Giventwoelementsofthecarrierset,aandb,abjustincasethereisapathfromato 49Thiscanalsobeprovedusingthetechniqueofcrypto bring.SeeCaleiro&Ramos(2007). 42JOSHUAB.SCHECHTER�itomakeB�12intoaHeytingstructure.Hence,�1and�2mapcorrespondingconnectivestotheverysamefunctions.Itfollowsthatanytwosentencesthatareexactlyalikeexceptfortheirsubscriptswillhavethesamei-valuesinM�12.Let;02Sent(C12;P12)besentencesthatareexactlyalikeexceptforsomeoralloftheirsubscripts.Iffgisinconsistentwithrespectto`12,fg`120.Suppose,then,thatfgisconsistentwithrespectto`12.ByLemma6.2,Mfg12.Bytheabovereasoning,and0havethesamei-valuesinMfg12.SoMfg120.AgainusingLemma6.2,fg`120.Therefore,`12collapses.Thus,ifweenrich`ii(orastrongerlogic)withtherulethatsaysthat!1and!2areintersubstitutableasmainconnectives,theresultinglogiccollapses.Wecanleveragethisresulttogetfurthercollapseresults.Inintuitionistlogic, ! isequivalentto $( ^ ).Soitfollowsthatifweenrich`ii(orastrongerlogic)with(i)therulethatsaysthat$1and$2areintersubstitutableasmainconnectivesaswellas(ii)therulethatsaysthat^1and^2areintersub-stitutableingeneral,theresultinglogiccollapses.Inintuitionistlogic, ! isalsoequivalentto $( _ ).Soifweenrich`ii(orastrongerlogic)with(i)therulethatsaysthat$1and$2areintersubstitutableasmainconnectivesaswellas(ii)therulethatsaysthat_1and_2areintersubstitutableingeneral,theresultinglogiccollapses.Wecanproveadditionalcollapseresultsforenrichmentsofbi-classicallogic.Forexample:Proposition7.4.Suppose`12isaconsequencerelationforSent(C12;P12)thatextends`cc.Supposeforany ; 2Sent(C12;P12),f _1 g`12 _2 andf _2 g`12 _1 .Then`12collapses.Proof.f !1 g`cc:2 _1( !1 ).f:2 _1 ;:2 _1( !1 )g`cc:2 _1 .`cc:2 _2 andf:2 _2 g`12:2 _1 .ByCut,f !1 g`12:2 _1 .f:2 _1 g`12:2 _2 .f:2 _2 g`cc !2 .ByCut,f !1 g`12 !2 .Similarly,f !2 g`12 !1 .ByProposition7.3,`12collapses.Thus,ifweenrich`cc(orastrongerlogic)withtherulethatsaysthat_1and_2areintersubstitutableasmainconnectives,theresultinglogiccollapses.Inclassicallogic, ! isequivalentto:( ^: ).Soifweenrich`cc(orastrongerlogic)with(i)therulethatsaysthat:1and:2areintersubstitutableingeneralaswellas(ii)therulethatsaysthat^1and^2areintersubstitutableingeneral,theresultinglogiccollapses.Wecanalsoprovenon-collapseresultsforenrichedlogics.Forexample:Proposition7.5.Suppose`12istheleastconsequencerelationthatextends`ccsuchthatforany ; 2Sent(C12;P12),(i)f:1 g`12:2 andf:2 g`12:1 ;and(ii)f $1 g`12 $2 andf $2 g`12 $1 .Thenin`12,nopairofcorrespondingconnectivesareintersubstitutable.Inparticular:fp_1qg012p_2q;fp!1qg012p!2q;f:2(p$1q)g012:2(p$2q);f:2(p^1q)g012:2(p^2q);fp_1:1qg012p_1:2q. JUXTAPOSITION:ANEWWAYTOCOMBINELOGICS45Itfollowsfromthisresultthatifweenrich`icwithleft-extensionality,theresultingconsequencerelationdoesnotweaklycollapse.Takentogether,ourcollapseandnon-collapseresultsaresomewhatsurprising.Theyshowthattheissueofwhenalogiccollapses(orweaklycollapses)isverydelicate.Afullcatalogueofsuchresultsmustawaitanotheroccasion.7.5.Meta-Rules.Thereisa naltopicworthdiscussing{namely,thestatusofthefamiliarclassicalandintuitionistmeta-rules.Hereisalistofstandardnaturaldeductionmeta-rules:ConditionalIntroduction.If�[f g` then�` ! ;BiconditionalIntroduction.If�[f g` and�[f g` then�` $ ;ReasoningbyCases.If�[f g`and�[f g`then�[f _ g`;IntuitionistReductio.If�[f g` and�[f g`: then�`: ;ClassicalReductio.If�[f: g` and�[f: g`: then�` .Givenourresults,itiseasytoshowthatifweenrich`ii(orastrongerlogic)withConditionalIntroductionforbothof!1and!2,theresultinglogiccol-lapses:Proposition7.7.Let`12beaconsequencerelationforSent(C12;P12)thatextends`iiandobeysConditionalIntroductionforbothconditionals.Then`12collapses.50Proof.f ; !1 g`ii .ByConditionalIntroductionfor!2,f !1 g`12 !2 .Similarly,f !2 g`12 !1 .ByProposition7.3,`12collapses.Thisresulthasanimportantconsequence.Weknowthat`cc,`ii,and`icdonotcollapse.SononeoftheseconsequencerelationsobeyConditionalIn-troductionforbothconditionals.(Indeed,theydonotnotobeyConditionalIntroductionforeitherconditional.)Althoughjuxtapositionpreservesentail-ments,itdoesnotpreservethevalidityofmeta-rules.51Whatthisshowsisthatthemeta-rulesareinanimportantsensestrongerthanthecorrespondingentailmentsthattheylicense.Thestandardmeta-rulesarecloselyrelatedtooneanother:Proposition7.8.Suppose`isaconsequencerelationthatextendsthein-tuitionistconsequencerelation(inaperhapslargerlanguage).Suppose`obeysConditionalIntroduction.Then:1.`obeysBiconditionalIntroduction,ReasoningbyCases,andIntuitionistReductio;2.If`extendstheclassicalconsequencerelation,then`obeysClassicalRe-ductio.Proof.BiconditionalIntroduction:Suppose�[f g` and�[f g` .ByConditionalIntroduction,�` ! and�` ! .f ! ; ! g` $ .ByCut,�` $ . 50SeeHarris(1982)foradi erentproofofthisresult.51SeeConiglio(2007)foravariantof bringdesignedtopreservemeta-rules. 46JOSHUAB.SCHECHTERReasoningbyCases:Suppose�[f g`and�[f g`.ByConditionalIntroduction,�` !and�` !.f !; !; _ g`.ByCut,�[f _ g`.IntuitionistReductio:Suppose�[f g` and�[f g`: .ByConditionalIntroduction,�` ! and�` !: .f ! ; !: g`: .ByCut,�`: .ClassicalReductio:Suppose�[f: g` and�[f: g`: .ByConditionalIntroduction,�`: ! and�`: !: .Inclassicallogic,f: ! ;: !: g` .ByCut,�`: .Moreimportantlyforourpurposeshere,wealsohavethefollowingrelations:Proposition7.9.Suppose`isaconsequencerelationthatextendsthein-tuitionistconsequencerelation(inaperhapslargerlanguage).Then:1.If`obeysBiconditionalIntroductionorClassicalReductio,then`obeysConditionalIntroduction;2.If`extendstheclassicalconsequencerelationand`obeysReasoningbyCasesorIntuitionistReductio,then`obeysConditionalIntroduction.Proof.BiconditionalIntroduction:Suppose�[f g` .f ; g` ^ .ByCut,�[f g` ^ .�[f ^ g` .ByBiconditionalIntroduction,�` $( ^ ).f $( ^ )g` ! .ByCut,�` ! .ClassicalReductio:We rstshowthatif`obeysClassicalReductio,then`extendsclassicallogic.f:: ;: g`: .f:: ;: g`:: .ByClassicalReductio,f:: g` .Thus,`extendsclassicallogic.Wenextshowthat`obeysConditionalIntroduction.Suppose�[f g` .Inclassicallogic,�[f:( ! )g` .ByCut,�[f:( ! )g` .Inclassicallogic,�[f:( ! )g`: .ByClassicalReductio,�` ! .ReasoningbyCases:Suppose�[f g` .f g` ! .ByCut,�[f g` ! .Inclassicallogic,�[f: g` ! .ByReasoningbyCases,�[f _: g` ! .Inclassicallogic,` _: .ByCut,�` ! .IntuitionistReductio:Suppose�[f g` .Inclassicallogic,�[f:( ! )g` .ByCut,�[f:( ! )g` .Inclassicallogic,�[f:( ! )g`: .ByIntuitionistReductio,�`::( ! ).Inclassicallogic,f::( ! )g` ! .ByCut,�` ! .Itfollowsthatifweenrich`ii(orastrongerlogic)withtwocopiesofBicondi-tionalIntroductionorwithtwocopiesofClassicalReductio,theresultinglogiccollapses.Ifweenrich`cc(orastrongerlogic)withtwocopiesofReasoningbyCasesortwocopiesofIntuitionistReductio,theresultinglogiccollapses.52Thereisanothermeta-ruleworthdiscussing.Recallthede nitionofEntail-mentCongruence:EntailmentCongruence.If�[f g` and�[f g` thenforany2Sent(C;P)andpoccurringin,�[f[ =p]g`[ =p].Thismeta-ruleisnotanintroductionoreliminationrule.Itdoesnotgovernthebehaviorofanyparticularconnective.Roughlyspeaking,itgovernshow 52SeeMcGee(2000)foraproofoftheclaimthatif`12isaconsequencerelationforSent(C12;P12)thatobeystheusualnaturaldeductionrulesforintuitionistlogicforeachstockofconnectives,then`12collapses. JUXTAPOSITION:ANEWWAYTOCOMBINELOGICS49Cruz-Filipe,L.,Sernadas,A.,&Sernadas,C.(2007).Heterogenous bringofdeductivesystemsviaabstractproofsystems.LogicJournaloftheIGPL16,121{153.Czelakowski,J.(1981).Equivalentiallogics(I),(II).StudiaLogica40,227{236;355{372.Czelakowski,J.(2003).TheSuszkooperatorI.StudiaLogica74,181{231.Czelakowski,J.,&Pigozzi,D.(2004).Fregeanlogics.AnnalsofPureandAppliedLogic127,17{76.delCerro,L.F.,&Herzig,A.(1996).Combiningclassicalandintuitionisticlogic,or:Intuitionisticimplicationasaconditional.InBaader,F.&Schultz,K.,editors,FrontiersofCombiningSystems,pp.93{102.Dordrecht:KluwerAcademicPublishers.Field,H.(2001).Somethoughtsonradicalindeterminacy.InTruthandtheAbsenceofFact,pp.258{277.Oxford:ClarendonPress.Gabbay,D.(1998).FibringLogics.Oxford:OxfordUniversityPress.Gentzen,G.(1934/1935).Untersuchungenuberdaslogischeschlieen.MathematischeZeitschrift39,176{210;405{431.Hand,M.(1993).Negationsincon ict.Erkenntnis38,115{29.Harman,G.(1986).ChangeinView:PrinciplesofReasoning.Cambridge,Mass.:TheMITPress.Harris,J.H.(1982).What'ssologicalaboutthe`logicalaxioms'?StudiaLogica41,159{171.Humberstone,L.(2011).TheConnectives.Cambridge,Mass.:TheMITPress. Los,J.,&Suszko,R.(1958).Remarksonsententiallogics.IndagationesMathematicae20,177{183.McGee,V.(1997).Howwelearnmathematicallanguage.ThePhilosophicalReview106(1),35{68.McGee,V.(2000).Everything.InSher,G.&Tieszen,R.,editors,BetweenLogicandIntuition:EssaysinHonorofCharlesParsons,Chapter3,pp.54{78.Cambridge:CambridgeUniversityPress.Parsons,C.(1990).Theuniquenessofthenaturalnumbers.Iyyun13,13{44.Popper,K.(1948).Onthetheoryofdeduction,partII:Thede nitionsofclassicalandintuitionisticnegation.IndagationesMathematicae10,111{120.Prucnal,T.,&Wronski,A.(1974).Analgebraiccharacterizationofthenotionofstructuralcompleteness.BulletinoftheSectionofLogic3,30{33.Rasiowa,H.(1974).AnAlgebraicApproachtoNon-ClassicalLogics.Warsaw:PolishSci-enti cPublishers.Rasiowa,H.,&Sikorski,R.(1970).TheMathematicsofMetamathematics(Thirded.).Warsaw:PolishScienti cPublishers.Rautenberg,W.(1981).2-elementmatrices.StudiaLogica40,315{353.Sernadas,A.,Sernadas,C.,&Caleiro,C.(1999).Fibringoflogicsasacategorialconstruc-tion.JournalofLogicandComputation9(2),149{179.Sernadas,C.,Rasga,J.,&Carnielli,W.(2002).Modulated bringandthecollapsingproblem.JournalofSymbolicLogic67(4),1541{1569.Shapiro,S.(1991).FoundationswithoutFoundationalism:TheCaseforSecond-OrderLogic.Oxford:OxfordUniversityPress.Williamson,T.(1987).Equivocationandexistence.ProceedingsoftheAristotelianSoci-ety87,109{127.Wojcicki,R.(1988).TheoryofLogicalCalculi:BasicTheoryofConsequenceOperations.Dordrecht:KluwerAcademicPublishers.Zanardo,A.,Sernadas,A.,&Sernadas,C.(2001).Fibring:Completenesspreservation.JournalofSymbolicLogic66(1),414{439.DEPARTMENTOFPHILOSOPHYBROWNUNIVERSITYBOX1918PROVIDENCE,RI,02912