/
Classes of Submodular Constraints Expressible by Graph Classes of Submodular Constraints Expressible by Graph

Classes of Submodular Constraints Expressible by Graph - PDF document

liane-varnes
liane-varnes . @liane-varnes
Follow
413 views
Uploaded On 2015-06-15

Classes of Submodular Constraints Expressible by Graph - PPT Presentation

Jeavons Computing Laboratory University of Oxford Wolfson Building Parks Road Oxford OX1 3QD United Kingdom stanislavzivnypeterjeavons comlaboxacuk Abstract Submodular constraints play an important role both in the ory and practice of valued constra ID: 86418

Jeavons Computing Laboratory University

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Classes of Submodular Constraints Expres..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

variablesinthescopeoftheconstraint.Thegoalisto ndanassignmentofvaluestoallofthevariableswhichhastheminimumtotalcost.Weremarkthatin nitecostscanbeusedtoindicateinfeasibleassignments(hardconstraints),andhencetheVCSPframeworkincludesthestandardCSPframeworkasaspecialcaseandisequivalenttotheConstraintOptimisationProblem(COP)framework[21],whichiswidelyusedinpractice.Onesigni cantlineofresearchontheVCSPistoidentifyrestrictionswhichensurethatinstancesaresolvableinpolynomialtime.Therearetwomaintypesofrestrictionsthathavebeenstudiedintheliterature.Firstly,wecanlimitthestructureoftheinstances.Wewillnotdealwiththisapproachinthispaper.Secondly,wecanrestricttheformsofthevaluedconstraintswhichareallowedintheproblem,givingrisetoso-calledlanguagerestrictions.Severallanguagerestrictionswhichensuretractabilityhavebeenidenti edintheliterature,(seee.g.,[8]).Oneimportantandwell-studiedrestrictiononvaluedconstraintsissubmodularity.Infacttheclassofsubmodularconstraintsistheonlynon-trivialtractablecaseinthedichotomyclassi cationoftheBooleanVCSP[8].Theconceptofsubmodularitynotonlyplaysanimportantroleintheory,butisalsoveryimportantinpractice.Forexample,manyoftheproblemsthatariseincomputervisioncanbeexpressedintermsofenergyminimisation[16].TheproblemofenergyminimisationisNP-hardingeneral,andthereforealotofresearchhasbeendevotedtoidentifyinginstanceswhichcanbesolvedmoreeciently.KolmogorovandZabihidenti edclassesofinstancesforwhichtheen-ergyminimisationproblemcanbesolvedeciently[16],andwhichareapplicabletoawidevarietyofvisionproblems,includingimagerestoration,stereovisionandmotiontracking,imagesynthesis,imagesegmentation,multi-camerascenereconstructionandmedicalimaging.Theso-calledregularitycondition,whichspeci estheecientlysolvableclassesin[16],isequivalenttosubmodularity.Thenotionofsubmodularityoriginallycomesfromcombinatorialoptimi-sationwheresubmodularfunctionsarede nedonsubsetsofagivenbaseset[14,18].ThetimecomplexityofthefastestknownalgorithmfortheproblemofSubmodularFunctionMinimisation(SFM)isroughlyO(n6)[19].How-ever,thereareseveralknownspecialclassesofSFMthatcanbesolvedmoreecientlythanthegeneralcase(see[3]forasurvey).Cohenetal.showedthatVCSPswithsubmodularconstraintsoveranarbi-trary nitedomaincanbereducedtotheSFMproblemoveraspecialfamilyofsetsknownasaringfamily[8].ThisproblemisequivalenttothegeneralSFMproblem[23],thusgivinganalgorithmoforderO(n6+n5L),whereListhelook-uptime(neededtoevaluateanassignmenttoallvariables),foranyVCSPwithsubmodularconstraints.Thistractabilityresulthassincebeengeneralisedtoawiderclassofvaluedconstraintsoverarbitrary nitedomainsknownastournament-pairconstraints[6].Analternativeapproachcanbefoundin[9].InthispaperwefocusonsubmodularconstraintsoveraBooleandomainf0;1g,whichcorrespondpreciselytosubmodularsetfunctions[8].WedescribeanalgorithmbasedongraphcutswhichcanbeusedtosolvecertainVCSPswithsubmodularconstraintsoveraBooleandomainmuchmoreecientlythan2 assignmentfortheinstancePisamappingsfromVtoD.Thecostofanassignmentsisde nedasfollows:CostP(s)=Xhhv1;v2;:::;vmi;i2C(hs(v1);s(v2);:::;s(vm)i):AsolutiontoPisanassignmentwithminimumcost.Anyset�ofcostfunctionsiscalledavaluedconstraintlanguage.TheclassVCSP(�)isde nedtobetheclassofallVCSPinstanceswherethecostfunc-tionsofallvaluedconstraintsliein�.InanyVCSPinstance,thevariableslistedinthescopeofeachvaluedcon-straintareexplicitlyconstrained,inthesensethateachpossiblecombinationofvaluesforthosevariablesisassociatedwithagivencost.Moreover,ifwechooseanysubsetofthevariables,thentheirvaluesareconstrainedimplicitlyinthesameway,duetothecombinede ectofthevaluedconstraints.Thismotivatestheconceptofexpressibilityforcostfunctions,whichisde nedasfollows:De nition2.ForanyVCSPinstanceI=hV;D;Ci,andanylistofvariablesofI,l=hv1;:::;vmi,theprojectionofIontol,denotedl(I),isthem-arycostfunctionde nedasfollows:l(I)(x1;:::;xm)=minfs:V!Djhs(v1);:::;s(vm)i=hx1;:::;xmigCostI(s):Wesaythatacostfunctionisexpressibleoveravaluedconstraintlanguage�ifthereexistsaninstanceI2VCSP(�)andalistlofvariablesofIsuchthatl(I)=.WecallthepairhI;liagadgetforexpressingover�.VariablesfromVnlarecalledextraorhiddenvariables.Notethatinthespecialcaseofrelations(crispcostfunctions)thisnotionofexpressibilitycorrespondstothestandardnotionofexpressibilityusingcon-junctionandexistentialquanti cation(primitivepositiveformulas)[4].Wedenotebyh�itheexpressivepowerof�whichisthesetofallcostfunctionsexpressibleover�uptoadditiveandmultiplicativeconstants.2.2SubmodularfunctionsandpolynomialsAfunction :2V!Qde nedonsubsetsofasetViscalledasubmodularfunction[18]if,forallsubsetsSandTofV, (S\T)+ (S[T) (S)+ (T):TheproblemofSubmodularFunctionMinimisation(SFM)consistsin ndingasubsetSofVforwhichthevalueof (S)isminimal.Foranylattice-orderedsetD,acostfunction:Dk! Q+iscalledsub-modularifforeveryu;v2Dk,(min(u;v))+(max(u;v))(u)+(v)wherebothminandmaxareappliedcoordinate-wiseontuplesuandv.Notethatex-pressibilitypreservessubmodularity:ifevery2�issubmodular,and02h�i,then0isalsosubmodular.Usingresultsfrom[8]and[24],itcanbeshownthatanysubmodularcostfunctioncanbeexpressedasthesumofa nite-valuedsubmodularcostfunc-tionfin,andasubmodularrelationcrisp,thatis,=fin+crisp.More-over,itisknownthatallsubmodularrelationsarebinarydecomposable[15],4 Foranyd2Dandc2 Q+,wede netheunarycostfunctioncdasfollows:cd=(cifx6=d,0ifx=d.Itisstraightforwardtocheckthatallwandcdaresubmodular.Wede netheconstraintlanguage�cuttobethesetofallcostfunctionswandcdoveraBooleandomain,forc;w2 Q+andd2f0;1g.Theorem5.Theproblems(s;t)-Min-CutandVCSP(�cut)arelinear-timeequivalent.Proof.Consideranyinstanceof(s;t)-Min-Cutwith(directed)graphG=hV;Eiandweightfunctionw:E! Q+.De neacorrespondinginstanceIofVCSP(�cut)asfollows:I=hV;f0;1g;fhhi;ji;w(i;j)ijhi;ji2Eg[fhs;10i;ht;11igi:NotethatinanysolutiontoIthesourceandtargetnodes,sandt,musttakethevalues0and1,respectively.Moreover,theweightofanycutcontainingsandnotcontainingtisequaltothecostofthecorrespondingassignmenttoI.Hencewehaveshownthat(s;t)-Min-CutcanbereducedtoVCSP(�cut)inlineartime.Ontheotherhand,givenaninstanceI=hV;D;CiofVCSP(�cut),constructagraphonV[fs;tgasfollows:anyunaryconstraintonvariablevwithcostfunctionc0(respectivelyc1)isrepresentedbyanedgeofweightcfromthesourcenodestonodev(respectively,fromnodevtothetargetnodet).Anybinaryconstraintonvariableshv1;v2iwithcostfunctionwisrepresentedbyanedgeofweightwfromnodev1tov2.ItisstraightforwardtocheckthatasolutiontoIcorrespondstoaminimum(s;t)-cutofthisgraph.utCorollary6.VCSP(�cut)canbesolvedincubictime.Proof.ByTheorem5,VCSP(�cut)hasthesametimecomplexityas(s;t)-Min-Cut,whichisknowntobesolvableincubictime[13].utUsingastandardreduction(see,forexample,[3]),wenowshowthatallbinarysubmodularcostfunctionsoveraBooleandomaincanbeexpressedover�cut.Theorem7.�sub;2h�cuti.Proof.ByCorollary4,anycostfunctionfrom�sub;2canberepresentedbyaquadraticBooleanpolynomialp(x1;x2)=a0+a1x1+a2x2+a12x1x2wherea120.Thiscanthenbere-writtenasp(x1;x2)=a00+Xi2Pa0ixi+Xj2Na0j(1�xj)+a012(1�x1)x2;whereP\N=;,P[N=f1;2g,a012=�a12,anda0i;a0j;a0120.(Thisisknownasaposiform[3].)6 Givenanypolynomialp,wecanuseasimilarconstructiontoreplaceeachtermofdegree3inturn,introducingadistinctnewvariableyeachtime.Proceedinginthisway,wecanexpressanypolynomialprepresentingacostfunctionin�negasaquadraticpolynomialwithnon-positivequadraticcoe-cients,introducingknewvariables,wherekisthetotalnumberoftermsofdegree3.Suchaquadraticpolynomialcanbeexpressedover�sub;2,byCorol-lary4.utCorollary10.Forany xedk,VCSP(�neg;k)canbesolvedincubictime.Proof.ByTheorem9,anyinstanceofVCSP(�neg;k)canbereducedtoVCSP(�sub;2)inlineartimebyreplacingeachconstraintwithasuitablegadget.Forany xedk,thenumberofnewvariablesintroducedinanyofthesegadgetsisboundedbyaconstant.TheresultthenfollowsfromCorollary8.NextweconsidertheclassofsubmodularconstraintsoveraBooleandomainwhichtakeonlythecostvalues0and1.(SuchconstraintscanbeusedtomodeloptimisationproblemssuchasMax-CSP,see[7].)De ne�f0;1g;ktobethesetofallf0;1g-valuedsubmodularcostfunctionsoveraBooleandomain,ofarityatmostk,andset�f0;1g=[k�f0;1g;k.Theminimisationofsubmodularcostfunctionsfrom�f0;1gwasstudiedin[11],wheretheywerecalled2-monotonefunctions.Theequivalenceof2-monotoneandsubmodularcostfunctionsandageneralisationof2-monotonefunctionstonon-Booleandomainswasshownin[7].De nition11.Acostfunctioniscalled2-monotoneifthereexisttwosetsA;Bf1;:::;ngsuchthat(x)=0ifAxorxBand(x)=1otherwise(whereAxmeans8i2A;xi=1andxBmeans8i62B;xi=0).Theorem12.�f0;1gh�sub;2i.Proof.Any2-monotonecostfunctioncanbeexpressedover�sub;2using2extravariables,y1;y2:(x)=miny1;y22f0;1gf(1�y1)y2+y1Xi2A(1�xi)+(1�y2)Xi62Bxig:utCorollary13.Forany xedk,VCSP(�f0;1g;k)canbesolvedincubictime.Finally,weconsidertheclass�sub;3ofternarysubmodularcostfunctionsoveraBooleandomain.Thisclasswasstudiedin[1],fromwhereweobtainthefollowingusefulcharacterisationofcubicsubmodularpolynomials.Lemma14([1]).Acubicpolynomialp(x1;:::;xn)overBooleanvariablesrep-resentsasubmodularcostfunctionifandonlyifitcanbewrittenasp(x1;:::;xn)=a0+Xfig2C+1aixi�Xfig2C�1aixi�Xfi;jg2C2aijxixj+Xfi;j;kg2C+3aijkxixjxk�Xfi;j;kg2C�3aijkxixjxk;8 Lemma17.Ifaquarticpolynomialp(x1;:::;xn)overBooleanvariablesrep-resentsasubmodularcostfunction,thenitcanbewrittensuchthat,forallfi;jg2C2:1.aij0,and2.aij+Pkjfi;j;kg2C+3aijk+Pk;ljfi;j;k;lg2C+4aijkl+Fij0whereFi;jisanon-positivevaluewhichisequaltothesumofthecoecientsofcertainnon-positivecubicandquarticterms,C2denotesthesetofquadraticterms,andC+idenotesthesetoftermsofdegreeiwithpositivecoecients,fori=3;4.Proof.Letpbeaquarticsubmodularpolynomialandletiandjbegiven,thenpcanalwaysbeputinaformsothatthesecondorderderivativeis:i;j=ai;j+Xkjfi;j;kg2C+3aijkxk+Xk;ljfi;j;k;lg2C+4aijklxkxl�Xkjfi;j;kg2C�3aijkxk�Xk;ljfi;j;k;lg2C�4aijklxkxl:Consideranassignmentwhichsetsxi=xj=1andxk=08k6=i6=j.ByProposition3,aij0,whichprovesthe rstcondition.Bysettingxk=1forallksuchthatfi;j;kg2C+3andxk=xl=1forallk;lsuchthatfi;j;k;lg2C+4,wegetthesecondcondition.Wesetto1allvariableswhichoccurinsomepositivecubicorquarticterm.Thesecondconditionthensaysthatthesumofallthesepositivecoecientsminusthosewhichareforced,byoursettingofvariables,tobe1(Fij),isatmost0.(NotethatthisalsoprovesLemma14.)utNextweshowausefulexampleofa4-arysubmodularcostfunctionwhichcanbeexpressedoverthebinarysubmodularcostfunctionsusingoneextravariable.Example18.Letbethe4-arycostfunctionde nedasfollows:(x)=minf2k;5g,wherekisthenumberof0sinx2f0;1g4.Thecorrespondingquarticpolynomialrepresentingisp(x1;x2;x3;x4)=5+x1x2x3x4�x1x2�x1x3�x1x4�x2x3�x2x4�x3x4:Isiseasytocheckthatpissubmodular.Itcanbeshownbysimplecaseanalysisthatpcannotbeexpressedasaquadraticpolynomialwithnon-positivequadraticcoecients(fromthede nitionofp,thepolynomialwouldhavetobe5�x1x2�x1x3�x1x4�x2x3�x2x4�x3x4whichisnotequaltoponx1=x2=x3=x4=1).However,pcanbeexpressedover�sub;2usingjustoneextravariable,viathefollowinggadget:p(x1;x2;x3;x4)=miny2f0;1gf5+(3�2x1�2x2�2x3�2x4)yg:10 5.2ThegeneralcaseWenowgeneralisetheresultfromtheprevioussectiontosubclassesofsub-modularconstraintsofarbitraryarities.Wede ne�new;ktobethesetofallk-arysubmodularcostfunctionsoveraBooleandomainwhosecorrespondingpolynomialssatisfy,forevery1ijk,aij+k�2Xs=1Xfi;j;i1;:::;isg2C+s+2ai;j;i1;:::;is0:Inotherwords,forany1ijk,thesumofaijandallpositivecoecientsofcubicandhigherdegreetermswhichincludexiandxjisnon-positive.Theorem22.Foreveryk4,�new;kh�sub;2i.Proof.Notethatthecasek=4isprovedbyTheorem19.Firstweshowthatinordertoprovethestatementofthetheorem,itissucienttohaveauniformwayofgeneratinggadgetsover�sub;2forpolynomialsofthefollowingtype:pk(x1;:::;xk)=kYi=1xi�X1ikxixj:Notethatpk(x)=��m2,wheremisthenumberof1sinx,and�02=�12=0,unlessm=k(xconsistsof1sonly),inwhichcasepk(x)=��m2+1.Assumethatforanyk5,wecanconstructagadgetPkforpkover�sub;2.Givenacostfunction2�new;k,letpbethecorrespondingpolynomialwhichrepresents.BytheconstructioninTheorem9,wecanreplaceallnegativetermsofdegree3.BytheconstructionsinTheorem15andTheorem19,wecanreplaceallpositivecubicandquarticterms.Nowforanypositivetermofdegreed,5dk,wereplaceitwiththegadgetPd.Thisconstructionworksifallquadraticcoecientsoftheresultingpolynomialarenon-positive.However,thisisensuredbythede nitionof�new;kandbythechoiceofthegadgets.Itremainstoshowhowtouniformlygenerategadgetsforpk,wherek5.Weclaim,thatforanyk4,thefollowing,denotedbyPk,isagadgetforpk:pk(x1;:::;xk)=miny0;:::;yk�42f0;1gfy0(3�2kXi=1xi)+k�4Xj=1yj(2+j�kXi=1xi)g:Noticethatinthecaseofk=4,thegadgetcorrespondstothegadgetusedintheproofofTheorem19,andthereforethebasecaseisproved.Weproceedbyinductionink.AssumethatPiisagadgetforpiforeveryik.WeprovethatPk+1isagadgetforpk+1.Firstly,takethegadgetPkforpk,andreplaceeverysumPki=1xiwithPk+1i=1xi.WedenotethenewgadgetP0.ItisnotdiculttoseethatP0isavalidgadgetforpk+1onallassignmentswithatmostk�11s.Also,onany12 thisimpliesthatoneofthetwoisredundant,asallconstraintsinvolvingthatvariablecanreplaceitwiththeothervariablewithoutchangingtheoverallcost.HencewerequireatmostjDjjDjkdistincthiddenvariablestoexpress.ut6ConclusionInthispaperwe rstconsideredbinarysubmodularconstraintsoveraBooleandomain,andshowedthattheycanbeminimisedincubictimeviaareductiontotheminimumcutproblemforgraphs.Wetheninvestigatedwhichothersub-modularconstraintsareexpressibleusingbinarysubmodularconstraintsoveraBooleandomain,andhencecanalsobeminimisedecientlyusingminimumcuts.Usingknownresultsfromcombinatorialoptimisation,weidenti edseveralsuchclassesofconstraints,includingallternarysubmodularconstraints,andallf0;1g-valuedsubmodularconstraintsofanyarity.Byconstructingsuitablegadgets,weidenti edcertainnewclassesofk-arysubmodularconstraints,wherek4,whichcanalsobeexpressedbybinarysubmodularconstraints.Themainopenproblemraisedbythispaperiswhetherallbounded-aritysubmodularconstraintsoveraBooleandomaincanbeexpressedbybinarysub-modularconstraints,andhencesolvedincubictime.Intermsofpolynomials,thisisequivalenttothefollowingproblem:cananyBooleanpolynomialwithnon-positivesecondorderderivativesbeexpressedastheprojectionofaquadraticpolynomialwithnon-positivequadraticcoecients?Theresultspresentedinthispaperprovideapartialanswertothisquestionusingconstructivemethodswhichcanbeusedtoobtainconcretereductionstoproblemssuchas(s;t)-Min-Cut.Wenotethatanalternativegeneralap-proachtotheproblemofdeterminingtheexpressivepowerofvaluedconstraintswasdevelopedin[5].Itwasshowntherethattheexpressivepowerofanyval-uedconstraintlanguageischaracterisedbyacollectionofalgebraicpropertiescalledfractionalpolymorphisms[5].Inordertoshowthat�sub;kh�sub;2iitwouldthereforebesucienttoshowthat�sub;2and�sub;khavethesamefrac-tionalpolymorphisms.However,thisalgebraicapproachisnon-constructive,andhencehascertainlimitations:evenifitcouldbeestablishedinthiswaythat�sub;kh�sub;2i,thiswouldnotdirectlyprovideuswithagadgetforanygivenproblem(andhenceanecientalgorithm).Conversely,ifitcouldbeestablishedusingthealgebraicapproachthat�sub;k6h�sub;2i,thatwouldstillleaveopenthequestionofidentifyingwhichsubclassesof�sub;kcanbeexpressedover�sub;2,andhencesolvedeciently.Thispaperprovidesa rststepinansweringthatquestionusingconstructivetechniquesthatcouldbeimplementedinvaluedcon-straintsolvers.AcknowledgementsTheauthorswouldliketothankDavidCohenandMar-tinCooperforfruitfuldiscussionsonsubmodularconstraintsandChrisJe ersonforhelpwithusingtheconstraint-solverMINION,whichhelpedusto ndandsimplifysomeofthegadgetspresentedinthispaper.StanislavZivnygratefullyacknowledgesthesupportofEPSRCgrantEP/F01161X/1.14