/
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS VOL IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS VOL

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS VOL - PDF document

liane-varnes
liane-varnes . @liane-varnes
Follow
436 views
Uploaded On 2015-01-15

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS VOL - PPT Presentation

19 NO 4 APRIL 2001 649 Reduced Complexity Sequence Detection for HighOrder Partial Response Channels Michael Leung Borivoje Nikolic Member IEEE Leo KiChun Fu and Taehyun Jeon Abstract Detector hardware complexity of highorder partial response magn ID: 31578

APRIL

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "IEEE JOURNAL ON SELECTED AREAS IN COMMUN..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

IEEEJOURNALONSELECTEDAREASINCOMMUNICATIONS,VOL.19,NO.4,APRIL2001649ReducedComplexitySequenceDetectionforHigh-OrderPartialResponseChannelsMichaelLeung,BorivojeNikolic,Member,IEEE,LeoKi-ChunFu,andTaehyunJeonDetectorhardwarecomplexityofhigh-orderpartialresponsemagneticreadchannelsisamajorobstacletohighdatarateoperationandreducedareaandpowerconsumption.Themethodpresentedherereducesthecomplexityofsingle-stepandtwo-stepimplementationsoftheViterbidetectorbyapplyingadistance-enhancingcodethateliminatessomestatesfromthecodetrellis.Thecomplexityofthedetectorisfurtherreducedbyeliminatingless-probablebranchesfromthetrellis.Thisisaccomplishedbyasimplecontrolmechanismthatusesthesignsoftheconsecutiveinputsamples.Thereducedsetofadd-com-pare-select(ACS)unitsisdynamicallyassignedtothedetectorstates,decreasingthecomplexityoftheViterbidetectorbyroughly50%.Thismethodisdemonstratedonhigh-orderpartialresponsesystemswiththeEPR4targetandan11-level/32-statetarget.Thesimulationresultsshownegligiblebiterrorrate(BER)degradationforsignal-to-noiseratiosintherangeofoperationofcontemporarydiskdrivereadchannels.IndexTerms—Magneticrecording,partialresponsesignalling, (1)where denotesaunitsampledelay.Afrequentlyusedsetoftargetsisrepresentedbyaclassofpolynomials[6] (2)When ,thechannelisknownaspartialresponseclass-4 correspondstoextendedPR4(EPR4); usuallydenotedasE PR4. requiresa -stateimplementation.Itisgenerallyreal-izedasanarrayof channel,andSectionVIdealswiththereducedcomplexityde- 650IEEEJOURNALONSELECTEDAREASINCOMMUNICATIONS,VOL.19,NO.4,APRIL2001TABLEIIZESOFACSU TABLEIIRRORVENTSIN PR4.SEQUENCESINRACKETSNEOR thecomplexityofthetwo-stepdetectorallowsfortradingareaandpowerforspeed.B.Time-VaryingMaximumTransitionRunlength(TMTR)CodesandQuasi-MTR(QMTR)CodeRecently,severaltrelliscodesthateliminatethemostcommonerroreventsbyusingcodingconstraintshavebeenproposedforPRsignaling[8]–[18].MostcommonerrorsinhigherorderPRchannelsarecausedbysequencesofthreeormoreconsecutiverecordedtransitions.Therefore,restrictingthemaximumtransitionrunlength(MTR)intherecordingcodecaneliminatedominanterrorevents.ThelistofshortdistanceerroreventsfortheE PR4channelissummarizedinTableII.Errorevents(sequences)canbedefinedasdifferencesbetweenrecordedanddetecteddataUserdata: Channelinput: Channeloutput: Bliss[12]–[14],Karabedetal.[11]andKnudsen–Fitzpatricketal.[17]introducedatthesametimea8/9blockcodethatmapseightinputbitsintoninecodebitswithtime-varyingMTR(TMTR)constraints.ThemajordisadvantageofthiscodeisthatitsrestrictiononallowedtribitsrequiresanimplementationoftheViterbidetectorthatisvariableintime,whichsignificantlyincreasesthedetector’scomplexityandreducesthespeed.TheTMTRblockcodeisconstructedbydeletingallcode-wordsthatcontainquadbitsandbyrestrictingtribitstocertainpositions[11].Becausethebeginningofthetribitisallowedatpositions2,4,6,and9,withthetribitstartingatposition9beingwrappedupinthenextword,thisimplementationresultsinatime-varyingtrellis.WhenthecodeisappliedtoanE trellis,theresultingdetectorstillhas16states.Twostates,0101and1010,havetobeeliminatedfromthetrellisincycles1,3,5,7,and8,andthetrellischangeseveryninecyclestoconformtocodeconstraints.Therealignmentofthedetectoris,thus,re-quiredeveryninecyclestoaccommodatethesechanges.TheTMTRblockcoderesultsinmaximumzerorunlengthof [14].HigherratecodesarepossiblebyrelaxingtheMTRcon-straints.In[17],aconstructionofarate9/10code,whichalsorequiresatime-varyingdetector,isreported.Toavoidcode-ratelossintheTMTRcode,arate16/17quasi-MTR(QMTR)codewasreportedin[19].Thecodeeliminatesquadbitsbutleavesalltribits,whichresultsinahighercoderate.TheapplicationoftheQMTRcodeingeneraldoesnotincreasetheminimumerrordistance,butitreducesthenumberofpossibleerrorevents.IntheE PR4channel,theQMTReliminatesthedominanterroreventsoftypes2,3,and4fromTableII,leavingonlytworemainingerrorpatternstobecorrectedbyapostprocessor.C.Turbo-PostprocessingandParityBitsAnalternativewayofcopingwithdominanterroreventsusesapostprocessortocorrectthem.AsoriginallyproposedbyWood[20],Turbo-PRMLenhancestheperformanceofthePR4channel.ATurbo-PRMLdetectorconsistsofaconventionalPRdetectorfollowedbyapostprocessorcontrolledbyanerrorfilterblock.ThefiltercorrelatestheidealPRMLsampleswithactualequalizedPRMLsamples.Ifthecorrelationexceedsaspecifiedthresholdvalue,thepossibleerroriscorrectedinthepostprocessor.Toenhancetheperformanceoferrorpostprocessing,paritybitscanbeappendedtochanneldatablocksconsistingofseveralcodewords[21].Usually,oneormoreparitybitscanbeusedtoidentifyoccurrenceofanerrorinablock.Errorfilters,matchedtoaselectedsetofdominanterrorevents,areusedtopinpointtheerrorlocationandtocorrecttheerrorifthedetectedparityisincorrect.D.ReducedComplexitySequenceDetectorIthasbeendemonstratedthatthesequencecouldbeestimatedusingreduced-stateestimationwithasmalllossintheerrorrate[22].Theperformancelossislargerthan1dBfortheEPR4channelandisunacceptableforthemagneticrecordingapplica-tions.Near-optimalperformancewasachievedinEPR4-equal-izedmagneticreadchannels,withsignificantlyreducedcompu-tationalrequirements[23].Amethodproposedin[24],basedontheeliminationofpathswithhighererrordistances,resultedinacapabilitytosharehardwarebetweenstatesofthedetector.ThecomplexityoftheViterbidetectorcanbereducedbydy-namicallyeliminatingimprobablebranchesfromthetrellis[23].ShafieeandMoonproposedamethodofreducingthedetec-tioncomplexityoftheEPR4equalizedsequencebydividingtherangeofdataintosix“ambiguityzones.”Ambiguityzonedetec-tionwasfirstproposedbyKobayashiin1971[25].EqualizationtargetsinEPR4are and andtheyrepre-senttheboundariesbetweensixambiguityzones: and .This etal.:REDUCEDCOMPLEXITYFORHIGH-ORDERPRCHANNELSeliminationoftrellisbranchesisdependentonthevaluesofchannelsamples,andamaximumofonlytwovaluesareal-lowedastheoutput ofthePRchannel.Twovaluesareal-lowedforzones onlyonevalueisallowedforzones and Theprobabilityofnoiseadded—suchthatitbringsthesampleoutsideofthezone—issmall,assumingahighsignal-to-noiseratio(SNR)operatingrange.ThisleadstoasimplificationoftheEPR4trellisbyeliminationofrestrictedbranches.Thesizeofthedetectoris,thus,significantlyreduced,butitsimplemen-tationiscomplicatedbyaddingtimevariance.OtherapproachestoreducingthecomplexityoftheViterbidetectorhavebeenproposedin[26]and[27].Insteadofelim-inatingimprobablebranchesfromthetrellis,theseapproachesfocusonmergingtrellisstates.Usingsimilarconceptsasinsetpartitioning[28],symmetrictrellisstatesarepairedandmergedtoshareACSresourcesbycreatingparallelbranches.Incomingsamplevalues[27]orpreliminarydecisionsinthesurvivalreg-isters[26]areusedtodiscriminatethepathswithintheparallelbranches.In[27],acompare-select-add(CSA)structureisused[29],whichrequiresthecomparison,selection,andadditionop-erationstobecarriedoutsequentiallytoreducethehardware.Thetrellissimplificationmethodin[27]isnotsystematicandproducesnonoptimalCSAsharing.MultiplexersarerequiredattheinputandoutputofACSunitsandinbranchmetricsaddi-tions.Usingpreliminarydecisions[26]reducesthenumberoftrellisstatesbyhalf,butitintroducesanadditionaltightfeed-backloop.DecisionsfromtheACSunitsofthecurrentcompu-tationcycleareneededtogeneratebranchmetricsforthenextcycle.Atypicalimplementationrequiresparallelbranchmetricshardware,andtheACSdecisionswouldbeusedtomultiplexinthecorrectbranchmetricvaluesattheendofthecomputationcycle.III.TEDUCTIONBYONSTRAINTSANDATE8/9TMTRCODEWITHTATIONARYETECTORApplicationofcodingcanaffectthetrellisandthecomplexityofthedetectorbydefiningconstraintsthatrestricttheoccur-renceofcertainpatternsinthecode.OneofthecommonlyusedcodesthatreducesthecomplexityofthematchingdetectorintheE PR4channelistherate2/3(1,7)runlength-limited(RLL)code[30].Theresultingtrellishas10states,comparedwith16statesforafulltrellis.Thecodehasdistance-enhancingprop-ertiessimilartotheTMTRcode,butthecoderateislow.How-ever,arate8/9TMTRcoderequiresatime-varyingdetector.Atime-invarianttrelliswithsomestatespermanentlyeliminatedallowsfortheuseofalowercomplexitysequencedetectortomatchthecodeconstraints.ToexploretheTMTRcodestructureforpossibletrelliscom-plexityreduction,anewrate16:18TMTRcodeisderived.Thecodehasamaximumzerorunlengthof andthesamedis-tancepropertiesastherate8/9TMTRcode.Theresultingtrellishasaperiodof2,ratherthanof9.Theapplicationofthiscodekeepsthetwo-stepimplementationofthedetectorstationary.Thenewcodeeliminatesthesamedistanceerroreventsasthe8/9TMTRcode,bynotallowingquadbitsincodewordsandbylimitingtheoccurrenceoftribitstocertainbitpositionsin- Fig.1.Rate16:18TMTRcodewithanillustrationofresolvingboundaryquadbitsandtribits.sidethecodeword.Expansionoftheconstraintsto18-bitcode-words[12]andcreationofa16:18blockcoderesultinasta-tionarytrellis.However,direct16-to18-bitmappingwouldrequirelargeencoding/decodinglogicandtheresultingcodewouldhavelongbyteerrorproperties.Thenewcodeisconstructedbyaninitialencodingofoddandevenuserdatabytesseparately.Theoddcodewordsallowtribitstostartatevenbitpositions,whereasevencodewordsallowtribitstostartatoddbitpositions,thus,resultinginpossiblecon-catenation.IfaftertheinitialencodingeitheraquadbitoratribitatapositionthatviolatestheMTRconstraintisdetectedattheboundarybetweentheoddandevencodewords,theevencode-wordisremappedtoasetofreservedcodewords.Informationabouttheremappingisencodedintheadjacentoddcodeword,asillustratedinFig.1[15].Practicalerrorpropagationislim-itedtotwobytes.Three-byteerrorpropagationispossibleonlywhenanerroreventof5bitsinlengthhitsbothremappedbitsintheoddcodeword.Theencoderanddecoderaredesignedusing“gated”parti-tions[16],whichresultsinabout2.5morecomplexitythanaTMTRencoder/decoder.However,thisincreasedcomplexityisstillaverysmallportionofthereadchannelchip.Thiscode,whenappliedtotheE PR4trellis,requiresonlya14-state,two-step,stationaryViterbidetectorinsteadofa16-statedetector.These14statesrequireeightfour-wayandsixthree-wayACSunitsforimplementation,asshowninFig.2.IV.IMPROVEDETHODOFThecomplexityoftheViterbidetectorcanbereducedbydynamicallyeliminatingimprobablebranchesfromthetrellis,basedonthevaluesofchannelsamples[23].TheschedulingofdynamicallyassignedACSunitsiscomplicated,especiallywhenitisappliedtohigh-orderPRtargets.Whenpostpro-cessingtechniquesareusedtocorrectdominanterrorsintheViterbidetector,thenumberofprunedbrancheshastobecarefullydeterminedsothatthereducedtrellisoperationwillnotaffecttheoverallbiterrorrate(BER).Anexampleofan PR4trellisisusedasademonstrationoftheimprovedtrellisreductionscheme.WiththeapplicationofatrelliscodetotheE PR4channel,theminimumsquareddistanceforanerroreventis10.Thiscor-respondstoasingle-bitchannel-inputerrorevent, orequivalently, attheoutputofthe 652IEEEJOURNALONSELECTEDAREASINCOMMUNICATIONS,VOL.19,NO.4,APRIL2001 Fig.2.Two-stepE PR4trelliswithstates1010and0101eliminatedbycodingchannel.Forsample-by-samplethresholddetection,theequiv-alentsampleerroreventforanoiselesssampleofvalue segmentedintotheregions[ ]or[ ]is .Therefore,foranobservedsampleofvalue ,pruningoffalltrellisbranchesexceptthosethatcorrespondto[ ],where and aretheceilingandfloorof willhavelittleeffectontheoverallsystemBER.Theeffectiveerrordistanceofpruningoutthetruebranchis dBlargerthanthatofthedominanterroreventoftype .Moreover,theerrordistanceofcommontrellis-coded PR4errorevents,e.g., willfur-therbereducedbycorrelationbetweenthenoisesamples.Theprobabilityofmisdetectingthetruesignalsequence asan-othersignalsequence (assuming isalsoavalidsequence)is (6)where and isthevarianceofthenoiseprojectedintotheerroreventsubspacealongthedirectionoftheerrorevent (7) Fig.3.RelativeerroreventSNRforpruningerrorandthreedominantregularerrorevents.SNRisnormalizedsuchthattherelativeSNRfor[+]zeroatuserdensityof3.5. isthevectorrepresentationof ,and istheauto-correlationmatrixofthenoiseattheoutputoftheequalizer.Fortheerrorevent thecor- ’sare and .Tocomparetheprobability ofpruningthetruebranch(ey=[4])tovariousdominanterroreventsintrellis-codedE PR4systems,wedenote theerroreventSNRfor Fig.3showstherelativeerroreventSNRforaLorentzianpulsewithwhiteGaussiannoise.FourerroreventSNRcurvesarecharted,includingthetrellispruningerrorevent, andthethreemostdominanterroreventsinatrellis-coded PR4system.AsshowninFig.3,theSNRforthepruningerroreventisatleast3dBlargerthanfortheotherdominanterrorevents.Itisaround4dBbetterthan (ratherthanonly2.04dB),duetotheeffectofnoisesamplecorrelation.Furthermore,theSNRpenaltyforpruningthiserroreventissignificantlylargerthanforthenexttworegulardominanterrorevents.Therefore,theeffectofbranchpruningonsystemBERshouldbeinsignificantevenifpostprocessingisusedtofurthereliminatemajordominanterrorevents.ThiseffectwillbefurtherdemonstratedbysimulationresultsforapracticalTheseparationofallpossibleinputcasesthatcorrespondto foreachsamplevaluewouldresultincomplicatedcontrolandselectionlogic.Inthispaper,asimplemethodologyoftrellisreductionistraced.Asinglethresholdatzeroisused.Themethodusesthesignofashortsequenceofdatasamplestoconfigurethedetector:1)Iftheinputsignalisgreaterthan0,mostofthenegativesignallevelsaredisallowed.Whentheinputsignalisneg-ative,mostofthepositivesignallevelsaredisallowed.2)Furthertrellisreductionispossiblebyobservingthesignsofprecedingandfollowinginputsamples.Becausecer-tainstateswouldbedisallowedbythepolarityofprevioussamplesandbecauseotherstateswillbedisallowedbythepolarityofthefollowingsamples,additionalbranchescanbeprunedfromthetrellisinthecurrentstate.3)AdditionaltrellisbranchesareaddedbacktotheprunedtrellistosimplifytheACSunitassignment. etal.:REDUCEDCOMPLEXITYFORHIGH-ORDERPRCHANNELS (a)(b)(c)(d) (e)(f)(g)(h)Fig.4.Reducedtrellisesfortheincomingsignalsamples,previousone,currenttwo,andnextone,markedaspositive()ornegative():(a)����,(b),(c),(d),(e),(f),(g),and(h)+++Theeffectofthesetrellis-pruningstepscanbemoreeasilyun-derstoodbyexaminingtheirapplicationtotheE PR4trellisinthenextsection.V.RETECTORMPLEMENTATIONIN PR4CWiththeapplicationofthenewTMTRcode,thestates0101and1010arepermanentlyeliminatedandtheresultingtwo-step PR4trellishasonly14states,asshowninFig.2.ThemethodoutlinedinSectionIVisappliedtotheresultingtrellis.1)Iftheinputsignallevelisgreaterthan0,theallowedinputlevelsare andwhentheinputsignallevelislessthan0,theallowedinputlevelsare 2)Asequenceoffourincomingsamplesisanalyzed,andtheresultingtwo-steptrellisisformed.Theselectionisbasedontheprecedingsample,twocurrentsamples,andthenextsample.Basedontheabovecriteria,thereducedtrellisesinFig.4areformed.Onlyeightoutof16reducedtrellisesareshowninFig.4,becausetheremainingeightaresymmetricaltotheonesshown.Fortheimplementationofthistypeofsequencedetector,asmallernumberofACSunitsisneeded.Aminimalimplemen-tationofthe14-stateE PR4trelliscontainsthefollowing:•fourfour-wayACSunits; 654IEEEJOURNALONSELECTEDAREASINCOMMUNICATIONS,VOL.19,NO.4,APRIL2001 (a) Fig.5.(a)Exampleofsharingtwo-wayACSbetweenstates0and15.(b)Exampleofsharingtwo-wayACSbyusingonlyinputmultiplexer.•onethree-wayACSunit;•fourtwo-wayACSunits;•twoadders(one-wayACS).The14stateswillbedynamicallyassignedto11ACSunits,whichrequireadditionalmultiplexersinthecriticalpathandcontrollogicoutsideofthecriticalpath.ThisapproachreducesthehardwarecomplexityoftheViterbidetectorbyapproximately50%.Forexample,thetotalnumberofaddersinACSunitsisreducedto29,comparedwith64inthefulltrellisimplementation.Fordifferentsequencesofinputs,differentdetectorstructuresareneeded,asseeninFig.4.TherequirementsforthenumberandsizeofACSunitsforeachstatevarywithdifferentsamplesequences.ThedirectassignmentplanforthestatesthatsharethereducedsetofACSunitswouldleadtoacomplicatedcon-trol,resultinginsignificantoverheadinmultiplexerlogic.Themultiplexersofdifferentsizes,fromtwo-waytofive-way,wouldbeneeded.A.SimplifiedACSAssignmentAsimplesolutionistoaddmoreresourcesbesidestheinitialfourfour-way,onethree-way,fourtwo-wayACSunits,andtwoadders.Thestraightforwardassignmentplancanbederivedifthesymmetricalstates(0and15,1and14,2and13,3and12,4and11,6and9,7and8)sharethesameresources.Inthiscase,afewbranchesareaddedbacktotheprunedtrellisandsomeoftheACSunitsareextendedtoacceptmoreinputs.Theminimumsolutionrequiresfourfour-way,threethree-way,threetwo-wayACSunits,andoneadder.Intheproposedimplementation,thebranchmetrics(BM)andACSunitswouldbeassignedtogether.Thisimplementa-tioneliminatestheBMmultiplexersinfrontoftheACSunits. Fig.6.Reducedcomplexitydetectorstructure.SharingofACSunitscanbedonebyaddingthemultiplexersbothattheinputsandattheoutputsoftheACSunits.Becausetheassignmentissimple,onlytwocontrolsignalsareneededattheinputandattheoutput,whichwillcontrol11two-waymultiplexersattheinputand11two-waydemultiplexersattheoutput.Becausethestates{0,15},{1,14},{2,13},{3,12},{4,11},{6,9},and{7,8}sharethesameresources,thecontrollogicisbasedonlyonasinglesamplesign[Fig.5(a)].Moreover,thedemultiplexersafterACSunitscanbeelimi-natediftheimplementationisACS-based,orassignmentdriven,asopposedtobeingbasedonconventionalstates[Fig.5(b)][31].Inthiscase,wearebasingourdetectiononACSunits,notonactualstates.ThisisthereasonwhyACSunitsarenamed:0/15,15/0,1/14,2/13,13/2,3/12,4/11,11/4,6/9,9/6,7/8.Thisresultsinaslightlymorecomplicatedcontrolof11two-waymultiplexersattheinput.TheresultingACSassignmentplanisshowninTableIII,andthedetectorarchitectureisshowninFig.6.Aproblemthatarisesbyaddingextrabranchesinthetrellisisthatsomeofthestatesthatgeneratethemdonotexist.Suchstatesshouldnotbeconsideredinthecalculationofnewstates.Thiscanbedonebyaddingasinglevaliditytagbittoeverystate. etal.:REDUCEDCOMPLEXITYFORHIGH-ORDERPRCHANNELSTABLEIIIACSUSAGEEPENDINGONTHEIGNSWITHESOURCESANDNDICATETHEIZEOFTHEACSU InvalidstatescouldexistincasesinwhichtwostatesshareonlyoneACSresource(states1and14,3and12,7and8).Thereducedcomplexitydetectorhasonlyfourtimingcriticalfour-wayACSunits,whichresultsinamuchshorterintercon-nectlength.ThespeedpenaltyassociatedwithaddingthegatethatevaluatesthetagbitandmultiplexersiswellcompensatedforbyreducedinterconnectlengthintheACSarray.Thedetectorstructureresultingfromtheassignmentplanusingsymmetricstatesissimilartothestructurereportedin[27].AsdescribedinSectionII-D,themethodin[27]producesnonoptimalACSsharing,whichrequires12trellisstateswhenappliedtotheTMTR-codedtrellis.TheadditionofextrabranchesbacktotheprunedtrellisresultsinonlyonemultiplexingoperationattheinputofACS,whereasforthedetectorin[27],multiplexersarerequiredattheinputandattheoutputofACSunitsaswellasinBMadditions.Moreover,themultiplexingoperationsattheinputofACSarerelativelycomplex.ThereducedcomplexitysystemwassimulatedtoverifytheproperoperationandtoevaluatethepossiblelossinBERcomparedwithfullimplementation.Theresultingcomparisonoftrellis-codedE PR4channels,atauserdensityof3.0,implementingan8/9codeandafulltrellisfrom[11]withstationaryTMTRcodewithreducedtrellis,isshowninFig.7.AbaselineperformanceisshownfortheRLL-coded,rateTABLEIVEQUIREDIZESANDPERATIONSINACSU 16/17EPR4detector.Simulationsconfirmthat,indeed,thereisasmallloss—below0.3dB—atlowerSNRs,andvirtuallynolossathigherSNRwithBERlowerthan .Additivewhite 656IEEEJOURNALONSELECTEDAREASINCOMMUNICATIONS,VOL.19,NO.4,APRIL2001 Fig.7.ComparisonofBERversusSNRfortrellis-codedE PR4channels(SNRlevelsareshownbeforeequalization).Gaussiannoise(AWGN)isaddedtotheinputoftheanalogfrontendofthechannel.SNRisdefinedasthezero-to-peakamplitudeoftheinputsignaloverthenoisepowerwithintwotimestheNyquistbandwidth.BERcurvesaregeneratedwith100errorsforeachdatapointinthegraph(i.e., bitsareexercisedforBERat ).Fig.8demonstratestheperfor-manceofthereducedcomplexitydetectorwhenusedwithanerrorpostprocessor.Fourperformancecurvesareshown;theycorrespondtothefollowingdetectors:1)E PR4withstationaryTMTRcode,fulltrellis;2)E PR4withstationaryTMTRcode,reducedtrellis;3)E PR4withstationaryTMTRcode,fulltrelliswithideal4)E PR4withstationaryTMTRcode,reducedtrelliswithidealpostprocessing.Allgraphsareshownwithrate8/9(16:18)codes;i.e.,therewasnocode-rateadjustmentforeventualparitybitsusedtoen-hancethepostprocessing.Postprocessingsystemsaredenoted inFig.8.Theidealpostprocessingisimplementedinasimulatorbynotcountingerrorsoftype[ ]and[ ],thus,assumingidealpostprocessorperformance.Thepurposeofthissetupistoverifytheperformanceofthereducedcomplexitydetectorinthepresenceoftheerrorpostprocessor.AsseenfromFig.8,thereisnoperformancedegradationbetweenfullandreducedtrellisimplementationswithorwithoutapostprocessor.VI.APPLICATIONOFTHEETHODTOARTIALTodemonstratethewideapplicationrangeoftheproposedmethodforreductionofdetectorcomplexity,itwasappliedtoseveralhigherorderPRchannelssuitableforapplicationathigheruserdensities.Athigheruserdensities,channelBERcanbeimprovedbyemployinga32-stateViterbidetectorthatcorrespondstotargetsthatbettermatchthechannelresponse.ThePRoftype matchestheLorentzianchannelatauserdensityof3.0.Theresultingtargethas11discretesignallevels[ Fig.8.ComparisonofBERversusSNRforfullandreducedimplementationsofatrellis-codedE PR4channelwithandwithoutpostprocessing. Fig.9.Performancecomparisonofthenew[121][211]targetversusE withtrellisandRLLcodes. ]andrequiresa32-stateViterbide-tector.Thedominanterroreventsforthischannelare[ withasquareddistanceof10,[ ]withsquareddistanceof20,andasinglebiterroreventwithasquareddistanceof22.Thus,thecodinggainobtainedbyusingtheTMTRcodethateliminatesallshort-distanceerroreventsis3.4dB.Withcode-ratelossaccountedfor,thenewtargetdemonstratesabout1.7dBimprovementovertheE PR4channelwitha16/17RLLcode,orabout1dBimprovementwiththeuseoftheTMTRcode,asshowninFig.9.ApplicationoftheQMTRcodetothe32-statetrellisperma-nentlyeliminatestwostates(01010and10101)ineverystep,asshowninFig.10(a).ApplicationoftheTMTRcodetothe32-statetrelliseliminatesthestates01010and10101aswellastwomorestates,butresultsinastep-by-steptimevaryingstruc-ture,asshowninFig.10(b)and(c).Usingatwo-stepdetectorstructureforbothQMTRandTMTRcodesresultsinstationarytrellises,asshowninFig.11(a).TwostatesareremovedinthecaseoftheQMTRcode,andfourstatesareremovedwhenusingaTMTRcodere-sultingintwopossibletrellisstructures,asshowninFig.11(b)and(c). etal.:REDUCEDCOMPLEXITYFORHIGH-ORDERPRCHANNELS (a)(b)(c)Fig.10.(a)Single-steptrellisdiagramwithQMTRcode,(b)single-steptrellisdiagramwithTMTRcode(versionA),and(c)single-steptrellisdiagramwithTMTRcode(versionB).ThereductionmethoddescribedinSectionIVwasappliedtothenewtargetwitha16/18TMTRcodeanda16/17QMTRcode.Whentheincomingsampleispositive,anyBMthatcor-respondstoatargetvalueof orbelowisremovedfromthetrellis.Whenthesampleisnegative,BMsthatcorrespondtotargets 2oraboveareeliminated.TodemonstratetheeffectoftrellisreductioninBER,thefollowingtestcaseswereselected:1)newtargetwithQMTRcode(rate16/17);2)newtargetwithTMTRcode(rate16/18);3)newtargetwithQMTRcodewithidealpostprocessing(rate8/9,assumesadding3bitsfor6bytesforrequiredparityforpostprocessing);4)newtargetwithTMTRcodewithidealpostprocessing(rate48/58,assumesadding4bitsfor6bytesforrequiredparityforpostprocessing).Allfourofthesecasesweresimulatedtwicewithfullandwithreducedcomplexitydetectors.TheresultssummarizedinFig.12shownoperformancedegradationinanyofthecases.Thepostprocessingoperationsareassumedidealinthesimulations.Threeerroreventtypeshadsimplybeenomittedinerrorcounting.Theremovederrorpatternswereasfollows:•inQMTR: •inTMTR: Toeachdatablockof6userbytes,evenandoddparitybitsareaddedwithadditionalbitsneededtoavoidcodeconstraintVII.CSTIMATIONTheimplementationofasingle-stepE PR4Viterbidetectorrequiressevenbranchmetricsunits(BMU),16ACSunits,and16survivalregisters.Eachsingle-stepACSunitconsistsoftwoaddersandonecomparator,usuallyimplementedasasubtractor.Asthesubtractorsrequireonlycarrychainforimplementationofthecomparison,theyarelesscomplexthanadders.Forfulltwo-stepimplementation,BMsareaddedtogethertoform39differenttwo-stepBMs.Afour-wayACSunitconsistsoffouraddersandsixparallelsubtractors. 658IEEEJOURNALONSELECTEDAREASINCOMMUNICATIONS,VOL.19,NO.4,APRIL2001 (a)(b)(c)Fig.11.(a)Two-steptrellisdiagramwithQMTRcode,(b)two-steptrellisdiagramwithTMTRcode(versionA),and(c)two-steptrellisdiagramwithTMcode(versionB). Fig.12.PerformancecomparisonoffullversusreducedcomplexityimplementationforTMTRandQMTRcodeswithandwithoutpostprocessing.TableIshowsthenumberofaddersandcomparatorsrequiredandtheequivalentsizesofone-,two-,three-,andfour-wayACSunits,assumingthesizeofanadderis1.5timeslargerthanthatofacomparator.TableVshowsthatreducedcomplexitydetectorimplementstheViterbialgorithmatlessthana30%ofhardwareincreasefromsingle-stepwhileachievingtwo-stepthroughput.Fulltwo-stepimplementationisapproximately2.7timesbiggerthanissingle-stepimplementation.ToestimatethesavingsinhardwarerequirementswhenthereductionmethodisappliedtothePR(8),thefollowingtestcasesareselected:1)stationaryTMTRcodewithtwo-stepdetector;2)QMTRcodewithtwo-stepdetector;3)QMTRcodewithsingle-stepdetector.TableVIshowsthenumberofACSunitsusedwithQMTRandTMTRcodesforsingle-stepViterbiimplementation,where etal.:REDUCEDCOMPLEXITYFORHIGH-ORDERPRCHANNELSTABLEVOMPARISONBETWEENMPLEMENTATIONSOF PR4DETECTORS TABLEVIOMPARISONOFETECTORSFORTHEARGETWITH TABLEVIIOMPARISONOFETECTORSFORTHEARGETWITH TMTR_AdenotesthetrellisusedintheoddcycleandTMTR_Bdenotesthetrellisusedintheevencycle.Italsocomparesthehardwarecomplexityoftheregular,single-step32-stateViterbiusingaQMTRcodewiththereducedsingle-stepstructureandshowsthatthereducedtrellismethodresultsina45%reductioninsize. 660IEEEJOURNALONSELECTEDAREASINCOMMUNICATIONS,VOL.19,NO.4,APRIL2001ThenumberofACSunitsrequiredandtheestimatedsizeofdifferenttwo-stepdetectorsareshowninTableVII.Thetablesummarizesthecomplexitiesofthefulltwo-stepimplementa-tionsandthesavingsthatcorrespondtodifferentcodes.There-duced-complexitydetectorshowsabouta45%reductioninsizeforbothQMTRandTMTRcodes,comparedwiththefullim-VIII.CTheproposedmethodsignificantlyreducestheimplementa-tioncomplexityoftheViterbidetectorforhigh-orderPRchan-nels.Thisisachievedbyeliminatinglesslikelytakenbranchesfromthetrellis,inconjunctionwithappliedtrelliscoding.Theeliminationusesasimplemethodbasedonthesignoftheinputsample.Thesmallerareaandpowerofthedetector,achievedbyusingasimpleassignmentofACSunits,couldbetradedforspeedenhancement.SystemlevelsimulationshaveshownthatthereisnosignificantlossinBERwhencomparedwithfulltrellisimplementation.Themethodisdemonstratedonatrellis-codedE PR4channelresultingina50%complexityreduction.Similarcomplexityandperformanceresultsareachievedfora32-statedetectorthatmatchesadifferentequalizationtarget,withdifferentrecordingcodesanddetectorimplementations.CKNOWLEDGMENTThisworkwasinitiatedbythelateR.Yamasaki,forwhoseguidancetheauthorsaredeeplygrateful.[1]G.Forney,Jr.,“Maximum-likelihoodsequenceestimationofdigitalse-quencesinthepresenceofintersymbolinterference,”IEEETrans.In-form.Theory,vol.IT-18,pp.363–378,May1972.[2]A.J.Viterbi,“Errorboundsforconvolutionalcodesandanasymptoti-callyoptimumdecodingalgorithm,”IEEETrans.Inform.Theory,vol.IT-13,pp.260–269,Apr.1967.[3]G.D.Forney,Jr.,“TheViterbialgorithm,”Proc.IEEE,vol.61,pp.268–278,Mar.1973.[4]P.KabalandS.Pasupathy,“Partial-responsesignaling,”IEEETrans.,vol.COM-23,pp.921–934,Sept.1975.[5]H.KobayashiandD.T.Tang,“Applicationofpartial-responsechannelcodingtomagneticrecordingsystems,”IBMJ.Res.Devel.,vol.14,pp.368–375,July1970.[6]H.ThaparandA.Patel,“Aclassofpartialresponsesystemsforin-creasingstoragedensityinmagneticrecording,”IEEETrans.Magn.vol.MAG-23,pp.3666–3668,Sept.1987.[7]P.BlackandT.Meng,“A140MB/s32-stateradix-4Viterbidecoder,”IEEEJ.Solid-StateCircuits,vol.27,pp.1877–1885,Dec.1992.[8]R.KarabedandP.Siegel,“Codingforhigherorderpartialresponsechannels,”inProc.1995SPIEInt.Symp.onVoice,VideoandData,vol.2605,Philadelphia,PA,Oct.1995,pp.115–126.[9]J.MoonandB.Brickner,“Maximumtransitionruncodesfordatastoragesystems,”IEEETrans.Magn.,vol.32,pp.3992–3994,Sept.[10]B.E.Moision,P.H.Siegel,andE.Soljanin,“Distance-enhancingcodesfordigitalrecording,”IEEETrans.Magn.,vol.34,pp.69–74,Jan.1998.[11]R.Karabed,P.H.Siegel,andE.Soljanin,“Constrainedcodingforbi-narychannelswithhighintersymbolinterference,”IEEETrans.Inform.,vol.45,pp.1777–1797,Sept.1999.[12]W.G.Bliss,“An8/9ratetime-varyingtrelliscodeforhighdensitymag-neticrecording,”inProc.Dig.IEEEInt.Magn.Conf.,InterMag’97NewOrleans,p.BS-09. ,“An8/9ratetime-varyingtrelliscodeforhighdensitymagneticIEEETrans.Magn.,vol.33,pp.2746–2748,Sept.1997. ,“Trelliscodingsystemfordiscstoragesystems,”U.S.Patent6.032.284,Feb.29,2000.[15]B.Nikolic,M.Leung,andL.Fu,“Arate8/9slidingblockcodewithstationarydetectorformagneticrecording,”IEEETrans.Magn.,vol.37,pp.1653–1657,May2001,tobepublished.[16]B.NikolicandM.Leung,“Slidingblock(rate8/9)trelliscodeformag-neticrecording,”U.S.Patent6,081,210,June27,2000.[17]K.Knudson-FitzpatrickandC.S.Modlin,“Time-varyingMTRcodesforhighdensitymagneticrecording,”inProc.1997GlobalTelecomm.Conf.(GLOBECOM’97),Conf.Record,Phoenix,AZ,pp.1250–1253.[18]K.A.SchouhamerImmink,P.H.Siegel,andJ.K.Wolf,“Codesfordigitalrecorders,”IEEETrans.Inform.Theory,vol.44,pp.2260–2299,Oct.1998.[19]T.Nishiya,K.Tsukano,T.Hirai,S.Mita,andT.Nara,“Rate16/17max-imumtransitionrun(3;11)codeonanEEPRMLchannelwithanerror-correctingpostprocessor,”IEEETrans.Magn.,vol.35,pp.4378–4386,Sept.1999.[20]R.Wood,“Turbo-PRML:AcompromiseEPRMLdetector,”Trans.Magn.,vol.29,pp.4018–4020,Nov.1993.[21]T.Conway,“Anewtargetresponsewithparitycodingforhighdensitymagneticrecordingchannels,”IEEETrans.Magn.,vol.34,pp.2382–2386,July1998.[22]M.V.EyubogluandS.U.H.Qureshi,“Reduced-statesequenceestima-tionforcodedmodulationonintersymbolinterferencechannels,”J.Select.AreasCommun.,vol.7,pp.989–995,Aug.1989.[23]H.ShafieeandJ.Moon,“Areduced-complexitytrellissearchdecodingalgorithmforextendedclassIVpartialresponsesystems,”inCOMM/ICC’92,vol.1,Chicago,IL,pp.120–124.[24]R.Behrensetal.,“Methodandapparatusforreduced-complexityViterbi-typesequencedetectors,”U.S.Patent5.291.499,Mar.1994.[25]H.KobayashiandD.T.Tang,“Ondecodingofcorrelativelevelcodingsystemswithambiguityzonedetection,”IEEETrans.Commun.,vol.COM-19,pp.467–477,Aug.1971.[26]R.He,J.R.Cruz,andH.Song,“Areduced-statesequenceestimationtechniqueanditsapplications,”IEEETrans.Magn.,vol.35,pp.2331–2333,Sept.1999.[27]K.Tsukano,T.Nishiya,T.Hirai,andT.Nara,“SimplifiedEEPRViterbidetectorbasedonatransformedradix-4trellisforadiskdrive,”Trans.Magn.,vol.35,pp.4387–4401,Sept.1999.[28]J.Bergmans,DigitalBasebandTransmissionandRecording.Dordrecht:KluwerAcademic,1996.[29]G.Fettweis,R.Karabed,P.H.Siegel,andH.K.Thapar,“Reduced-com-plexityViterbidetectorarchitecturesforpartialresponsesignaling,”inProc.1995GlobalTelecommun.Conf.(Globecom’95),Singapore,pp.[30]R.T.BehrensandA.J.Armstrong,“Anadvancedread/writechannelformagneticdiskstorage,”inProc.Conf.Record26thAsilomarConf.Sig-nals,Syst.Comput.,PacificGrove,CA,Oct.26–28,1992,pp.956–960.[31]B.Nikolic,M.Leung,L.Fu,V.G.Oklobdzija,andR.Yamasaki,“Re-ducedcomplexitysequencedetectionforE PR4magneticrecordingchannel,”inProc.1999IEEEGlobalConf.Commun.,GLOBECOM’99,Conf.Record,vol.1,partB,RiodeJaneiro,Brazil,pp.960–964. MichaelLeungreceivedtheB.Eng.degreeinelec-tronicandcommunicationengineeringfromtheUni-versityofBirmingham,Birmingham,U.K.,in1987,andtheM.S.andPh.D.degreesinelectricalengi-neeringfromStanfordUniversity,Stanford,CA,in1988and1993,respectively.HewastheManageroftheAdvancedChannelAr-chitectureGroupinTexasInstrument’sStorageProd-uctsGroup,SanJose,CA,wherehehadworkedonthedefinitionofsignalprocessingarchitecturesandimplementationofadvancedHDDstoragechannelICs.HeiscurrentlytheManageroftheDSPArchitectureGroupwithTripathTechnology,SantaClara,CA,andisworkingonarchitectureofADSLandopticaltransceiverICproducts.Histechnicalinterestsincludecommunicationchanneltheory,coding,DSParchitectureandimplementation,andhigh-speedCMOSdigitaldesign. etal.:REDUCEDCOMPLEXITYFORHIGH-ORDERPRCHANNELS BorivojeNikolic(S’93–M’99)receivedtheDipl.IngandM.Sc.degreesinelectricalengineeringfromUniversityofBelgrade,Yugoslavia,andthePh.D.degreefromtheUniversityofCalifornia,Davis,in1992,1994,and1999,respectively.HeisanAssistantProfessorintheDepartmentofElectricalEngineeringandComputerSciencesoftheUniversityofCaliforniaatBerkeley.HewasonthefacultyoftheUniversityofBelgradefrom1992to1996.Duringhisgraduatestudies,hespenttwoyearswithSiliconSystems,Inc.,TexasInstrumentsStorageProductsGroup,SanJose,CA,workingondiskdrivesignalprocessingelectronics.Hisresearchinterestsincludehigh-speedandlow-powerdigitalintegratedcircuitsandVLSIimplementationofcommunicationsandsignalprocessingalgorithms.HereceivedtheCollegeofEngineeringbestdoctoraldissertationawardandtheAnilK.JainprizeforthebestdoctoraldissertationinelectricalandcomputerengineeringattheUniversityofCaliforniaatDavisin1999,aswellastheCityofBelgradeawardforthebestDiplomathesisin1992. LeoKi-ChunFureceivedtheB.SdegreeinelectricalengineeringandcomputersciencefromtheUniversityofCaliforniaatBerkeleyin1993.From1992to1993,heworkedasaResearchAssistantintheCenterofX-rayOpticsatLawrenceBerkeleyLaboratory,whereheconductedresearchondiffractionpropertiesofX-raythroughvariesmetal.In1993,hejoinedtheAdvancedChannelArchitectureGroupinSiliconSystems,Inc.,lateracquiredbyTexasInstrumentsIncorporated(TI)asTIsStorageProductsGroup,SanJose,CA,whereheworkedasaSystemEngineeronsignalprocessingarchitectureandmodelingDSPalgorithmonadvancedHDDstoragechannelICs.Histechnicalinterestsincludecoding,DSParchitecture,andimplementation.In2000,hejoinedtheDSPArchitectureGroupatTripathTechnology,SantaClara,CA,andiscurrentlyworkingonthearchitectureofADSLandopticaltransceiverIC TaehyunJeonreceivedtheB.S.degreefromYonseiUniversity,Seoul,Korea,in1989,andtheM.S.andPh.D.degreesfromtheUniversityofMinnesota,Minneapolis,in1993and1997,respectively,allinelectricalengineering.From1994to1997,hewasaResearchAssistantwiththeUniversityofMinnesota,Minneapolis.Uponcompletionofhisgraduatestudies,hejoinedMotorola,Inc.,whereheworkedontheadvancedreadchannelarchitecturedevelopmentforhigh-den-sitydatastoragesystems.Since1998,hehasbeenwithTexasInstruments,Inc.,SanJose,CA,whereheiscurrentlyaMemberoftheTechnicalStaff.Hiscurrentresearchinterestsincludecommunicationtheoryandsignalprocessingfordigitaldatatransmissionsystemswithemphasisonchannelcharacterizationandmodeling,modulationcoding,equalization,anddetection.