/
4. FIBER-REINFORCED COMPOSITE 4. FIBER-REINFORCED COMPOSITE

4. FIBER-REINFORCED COMPOSITE - PowerPoint Presentation

lindy-dunigan
lindy-dunigan . @lindy-dunigan
Follow
595 views
Uploaded On 2016-07-01

4. FIBER-REINFORCED COMPOSITE - PPT Presentation

Komposit ini berupa serat fiber yang ditanam dalam matriks yang biasanya bersifat lebih lunak sehingga dihasilkan produk dengan rasio strengthweight yang ID: 385069

serat fiber composite matrix fiber serat matrix composite strength stress yang dan strain fibers komposit pada matriks composites longitudinal

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "4. FIBER-REINFORCED COMPOSITE" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

4. FIBER-REINFORCED COMPOSITE

Komposit

ini

berupa

serat

/fiber yang

ditanam

dalam

matriks

yang

biasanya

bersifat

lebih

lunak

,

sehingga

dihasilkan

produk

dengan

rasio

strength/weight yang

tinggi

.

Material

matriks

meneruskan

beban

kepada

serat

/fiber yang

berfungsi

menyerap

stress

.

Untuk

mendapatkan

strengthening

dan

stiffening

yang

efektif

,

maka

perlu

diketahui

panjang

kritik

dari

serat

. Slide2

PENGARUH PANJANG SERATSifat mekanik fiber-reinforced composite dipengaruhi oleh

sifat

serat

dan

bagaimana

beban

diteruskan

/

transmitted

pada

serat

.

Transmittance

beban

dipengaruhi

oleh

besarnya

ikatan

interfacial

antara

serat

dan

matriks

.

Dibawah

stress

tertentu

,

ikatan

antara

serat

dan

matriks

berakhir

di

ujung

serat

,

sehingga

pola

deformasi

matriks

yang

terjadi

adalah

seperti

gambar

di

slide

berikut

. Slide3

The deformation pattern in the matrix surrounding of fiber, subjected to an applied tensile Slide4

Ada panjang kritik tertentu yang diperlukan agar penguatan oleh

serat

menjadi

efektif

.Panjang kritik lc tergantung pada diameter serat d dan tensile strength *f , juga pada kekuatan ikatan serat-matriks c, menurut persamaan berikut:

Contoh

: untuk kombinasi kaca dan serat karbon, lc = 1 mm (= 20 – 150 kali dimeternya)

(3)Slide5

Stress–position profiles when fiber length is equal to the critical lengthSlide6

Stress–position profiles when fiber length is greater than the critical lengthSlide7

Stress–position profiles when fiber length is less than the critical lengthSlide8

Kekuatan komposit ini disebabkan oleh ikatan antara serat

penguat

dengan

matriks. Rasio panjang/diameter (disebut aspect ratio) dari serat penguat akan mempengaruhi sifat-sifat komposit. Semakin besar aspect ratio, maka semakin kuat komposit. Oleh

karena itu untuk

komposit konstruksi, serat yang panjang lebih baik daripada serat pendek. Akan tetapi

serat

panjang

lebih

sulit

diproduksi

daripada

serat

pendek

Serat

pendek

lebih

mudah

diatur

dalam

matriks

,

tetapi

efek

penguatannya

kurang

baik

dibandingkan

dengan

serat

panjang

.Slide9

Oleh karena itu perlu adanya trade-off antara jenis

serat

yang

digunakan

dengan

efek penguatan yang diinginkan. Jumlah serat juga berpengaruh terhadap kekuatan komposit; semakin banyak jumlah serat, maka semakin kuat komposit yang dihasilkan. Batas maksimum

jumlah serat adalah

sekitar 80% dari volume komposit. Jika jumlah serat > 80% maka matriks tidak dapat menutupi seluruh

serat

dengan

sempurna

.

Serat

dengan

l

>>

l

c

(normal: l > 15

l

c

)

disebut

kontinyu

,

sementara

Serat

dengan

l

< 15

l

c

disebut

diskontinyu

.

Jika

panjang

serat

<

l

c

,

maka

komposit

yang

dihasilkan

pada

dasarnya

sama

dengan

particulate composites.Slide10
Slide11
Slide12

Susunan atau orientasi serat terhadap serat lainnya,

konsentrasi

serat

,

dan

keseragaman distribusi akan mempengaruhi kekuatan dan sifat-sifat lainnya dari fiber-reinforced composites. Ada dua orientasi yang ekstrim: (i) sejajar teratur, dan (ii) acak seluruhnya. Serat

kontinyu biasanya

sejajar teratur, sementara serat diskontinyu dapat teratur atau acak.PENGARUH ORIENTASI DAN KONSENTRASI SERATSlide13

Sifat mekanik dari komposit jenis ini tergantung pada:

Perilaku

stress-strain

dari

serat

dan matriksFraksi volume masing-masing komponenArah stress atau beban pada material komposit.Sifat-sifat komposit yang memiliki fiber yang teratur sangat anisotropic

, yaitu besarnya

nilai sifat tergantung pada arah pengukuran. Kita perhatikan perilaku stress-strain apabila stress dikena-kan terhadap material

sejajar

dengan

arah

serat

,

yaitu

arah

longitudinal,

seperti

ditunjukkan

pada

Gambar

(a).Slide14

Ilustrasi dari fiber-reinforced composites yang (a) kontinyu dan

teratur

, (b)

diskontinyu

dan

teratur, and (c) diskontinyu dan acakSlide15

Misal perilaku stress vs strain dari fasa fiber dan matriks sebagaimana

ditunjukkan

pada

gambar

di slide berikut.Dalam hal ini fiber bersifat sangat rapuh/brittle dan matriks bersifat cukup elastis/ductile. Pada gambar tersebut: *f : fracture strength in tension for fiber *m

: fracture strength in tension for matrix *f

: fracture strain in tension for fiber *m : fracture strain in tension for matrixSlide16

(a) Schematic stress–strain curves for brittle fiber and ductile matrix materials. Fracture stresses and strains for both materials are noted. (b) Schematic stress–strain curve for an aligned fiber-reinforced composite that is exposed to a uniaxial stress applied in the direction of alignment; curves for the fiber and matrix materials shown in part (a) are also superimposed.Slide17

Perilaku stress-strain dari material komposit ditunjukkan pada gambar (b).Di daerah Stage I, fiber

dan

matriks

mengalami

deformasi secara elastis; perilaku stress-strain biasanya berupa kurva linier. Matriks mengalami deformasi plastis, sedangkan fiber mengalami stretch elastis.Di daerah Stage II, hubungan antara stress dan strain hampir linier dengan slope yang lebih

kecil daripada stage I.

The onset of composite failure ditandai dengan saat fiber mulai rusak, yaitu pada saat strain = *f.Pada kondisi

ini

komposit

belum

rusak

benar

,

karena

Tidak

semua

fiber

rusak

pada

saat

yang

sama

,

Meskipun

sebagian

fiber

telah

rusak

,

tetapi

matriks

masih

utuh

karena

*

f

<

*

mSlide18

Let us now consider the elastic behavior of a continuous and oriented fibrous composite that is loaded in the direction of fiber alignment. First, it is assumed that the fiber–matrix interfacial bond is very good, such that deformation of both matrix and fibers is the same (an isostrain situation). Under these conditions, the total load sustained by the composite

F

c

is equal to the sum of the loads carried by the matrix phase F

m

and the fiber phase F

f, or(4)Slide19

From the definition of stress:Equation (4) can be written as:

(5)

dividing through by the total cross-sectional area of the composite, we have:

(6)

where A

m

/Ac and Af/Ac are the area fractions of the matrix and fiber phases, respectively.Slide20

If the composite, matrix, and fiber phase lengths are all equal, Am/Ac is equivalent to the volume fraction of the matrix, Vm, and Af/Ac and likewise for the fibers, V

f

=

A

f

/A

c.Eq. (6) now becomes:(7)The previous assumption of an isostrain state means that(8)and when each term in eq. (7) is divided by its respective strain

(9)Slide21

Furthermore, if composite, matrix, and fiber deformations are all elastic, thenthe E’s being the moduli of elasticity for the respective phases. Substitution into eq. (6) yields an expression for the modulus of elasticity of a continuous and aligned fibrous composite in the direction of alignment (or longitudinal direction), as

(10.a)

(10.b)Slide22

Thus, Ecl is equal to the volume-fraction weighted average of the moduli of elasticity of the fiber and matrix phases. Other properties, including density, also have this dependence on volume fractions. for longitudinal loading, that the ratio of the load carried by the fibers to that carried by the matrix is

(11)Slide23

EXAMPLE 1A continuous and aligned glass fiber-reinforced composite consists of 40 vol% of glass fibers having a modulus of elasticity of 69 GPa and 60 vol% of a polyester resin that, when hardened, displays a modulus of 3.4 G

P

a

.

Compute the modulus of elasticity of this composite in the longitudinal direction.

If the cross-sectional area is 250 mm

2 and a stress of 50 MPa is applied in this longitudinal direction, compute the magnitude of the load carried by each of the fiber and matrix phases.Determine the strain that is sustained by each phase when the stress in part (b) is applied.Slide24

SOLUTIONThe modulus of elasticity of the composite is calculated using eq. (10.a):

= 30

GPa

To solve this portion of the problem, first find the ratio of fiber load to matrix load, using eq. (11); thus,Slide25

In addition, the total force sustained by the composite Fc may be computed from the applied stress  and total composite cross-sectional area Ac according to

this total load is just the sum of the loads carried by fiber and matrix

phases; that is,Slide26

The stress for both fiber and matrix phases must first be calculated. Then, by using the elastic modulus for each (from part a), the strain values may be determined.Slide27
Slide28

A continuous and oriented fiber composite may be loaded in the transverse direction; that is, the load is applied at a 90 angle to the direction of fiber alignment.For this situation the stress  to which the composite as well as both phases are exposed is the same, or

(12)

This is termed an

isostress

state. Also, the strain or

defor-mation

of the entire composite is(13)Slide29

But since

(14)

Substituting the above three to equations (13) yields:Slide30

where is Ecl the modulus of elasticity in the transverse direction. Now, dividing through by  yields

(15)

which reduces to

(16)Slide31

EXAMPLE 2Compute the elastic modulus of the composite material described in Example 1, but assume that the stress is applied perpendicular to the direction of fiber alignment.SOLUTION

According to eq. (13): Slide32

We now consider the strength characteristics of continuous and aligned fiber-reinforced composites that are loaded in the longitudinal direction. Under these circumstances, strength is normally taken as the maximum stress on the stress–strain curve.Often this point corresponds to fiber fracture, and marks the onset of composite failure.Table 1 lists typical longitudinal tensile strength values for three common fibrous composites.

Failure of this type of composite material is a relatively complex process, and several different failure modes are possible.

The mode that operates for a specific composite will depend on fiber and matrix properties, and the nature and strength of the fiber–matrix interfacial bond.Slide33

Onset of composite failureSlide34

Table 1. Typical Longitudinal and Transverse Tensile Strengths for Three Unidirectional Fiber-Reinforced Composites. The Fiber Content for Each Is Approximately 50 Vol%Slide35

If we assume that *f < *m, which is the usual case, then fibers will fail before the matrix. Once the fibers have fractured, the majority of the load that was borne by the fibers is now transferred to the matrix. This being the case, it is possible to adapt the expression for the stress on this type of composite, eq. (7), into the following expression for the longitudinal strength of the composite *cl

(17)

Here

’

m

is the stress in the matrix at fiber failure and, *f as previously, is the fiber tensile strength.Slide36

’mSlide37

The strengths of continuous and unidirectional fibrous composites are highly anisotropic, and such composites are normally designed to be loaded along the high strength, longitudinal direction. However, during in-service applications transverse tensile loads may also be present. Under these circumstances, premature failure may result inasmuch as transverse strength is usually extremely low—it sometimes lies below the tensile strength of the matrix. Thus, in actual fact, the reinforcing effect of the fibers is a negative one.

Typical transverse tensile strengths for three unidirectional composites are contained in Table 1.Slide38

Whereas longitudinal strength is dominated by fiber strength, a variety of factors will have a significant influence on the transverse strength; these factors include properties of both the fiber and matrix, the fiber–matrix bond strength, and the presence of voids. Measures that have been employed to improve the transverse strength of these composites usually involve modifying properties of the matrix.Slide39

Even though reinforcement efficiency is lower for dis-continuous than for continuous fibers, discontinuous and aligned fiber composites are becoming increasingly more important in the commercial market.Chopped glass fibers are used most extensively; carbon and aramid discontinuous fibers are also employed.

These short fiber composites can be produced having

moduli

of elasticity and tensile strengths that approach 90% and 50%, respectively, of their continuous fiber counterparts.Slide40

For a discontinuous and aligned fiber composite having a uniform distribution of fibers and in which l > lc, the longitudinal strength (*cd) is given by the relationship:

where

*

f

and ’

m

represent, respectively, the fracture strength of the fiber and the matrix when the composite fails.If l < lc then the longitudinal strength is given by(18)(19)where d is the fiber diameter and c

is the smaller of either the fiber–matrix bond strength or the matrix shear yield strength.Slide41

Normally, when the fiber orientation is random, short and discontinuous fibers are used.Under these circumstances, a “rule-of-mixtures” expression for the elastic modulus similar to eq. (10.a) may be utilized, as follows:

(20)

In this expression, K is a fiber efficiency parameter that depends on and the

E

f

/

Em ratio. Of course, its magnitude will be less than unity, usually in the range 0.1 to 0.6.Slide42

Thus, for random fiber reinforcement (as with oriented), the modulus increases in some proportion of the volume fraction of fiber. Table 2, which gives some of the mechanical properties of unreinforced and reinforced polycarbonates for dis-continuous and randomly oriented glass fibers, provides an idea of the magnitude of the reinforcement that is possible.Slide43

Table 2. Properties of Unreinforced and Reinforced Polycarbonates with Randomly Oriented Glass FibersSlide44

Table 3. Reinforcement Efficiency of Fiber-Reinforced Composites for Several Fiber Orientations and at Various Directions of Stress Application