/
Double Beta  Decay   review Double Beta  Decay   review

Double Beta Decay review - PowerPoint Presentation

lindy-dunigan
lindy-dunigan . @lindy-dunigan
Follow
347 views
Uploaded On 2019-06-21

Double Beta Decay review - PPT Presentation

Fabrice Piquemal Laboratoire Souterrain de Modane CNRSIN2P3CEADSM and CENBG University Bordeaux 1 CNRSIN2P3 Thanks to G Gratta S A Giuliani S Schoenert T ID: 759423

100 detector background kev detector 100 kev background energy resolution mass 150nd mev liquid 76ge cts neutrino rejection laboratory

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Double Beta Decay review" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Double Beta Decay review

Fabrice PiquemalLaboratoire Souterrain de Modane (CNRS/IN2P3-CEA/DSM) and CENBG, University Bordeaux 1 CNRS/IN2P3

Thanks to: G. Gratta, S., A. Giuliani, S. Schoenert, T. Kishimito, M. Nomachi, K. Zuber, M. Chen, K. Inoue

NNN 2010, Toyama

Dec

,14-16 2010

Slide2

- Nature of neutrino : Dirac (n n) or Majorana (n =n)- Absolute neutrino mass and neutrino mass hierarchy Right-handed current interaction CP violation in leptonic sector Search of Supersymmetry and new particles

Double Beta decay: physics case

-

Leptonic

number violation

(A,Z)

 (A,Z+2) + 2e

-

Slide3

Double Beta decays

2nd order process of weak interaction

Already observed for several nuclei

Single beta

decay forbidden (energy) or strongly suppressed by large angular momentum changeDecay to ground state or excited states

bb

e

-

e

-

n

n

bb

(2n)

bb

(0n)

e

-

e

-

D

L =2

bb(0n)

 Majorana neutrino (

n

=

n)

Slide4

(V+A) current

<m

n

>,<l>,<h>

(A,Z) (A,Z+2) + 2 e-

Process parameters

T

1/2

=

F(

Q

bb,Z) |M|2 <mn>2

-1

Phase space factor

Nuclear matrix element

Effective mass:

<m

n

>= m1|Ue1|2 + m2|Ue2|2.eia1 + m3|Ue3|2.eia2|Uei|: mixing matrix elementa1 et a2: Majorana phase

5

Light neutrino exchange

<mn>

Majoron emission

<g

M>

SUSY

l

’111,l’113l’131,…..

Neutrinoless Double Beta decay

Discovery

implies

D

L=2 and

Majorana

neutrino

Slide5

bb

(0n) observables

Electron energy sum

150Nd distribution s arxiv: 1005.1241v1 [hep-ex]

Angular

distribution

Mass

mechanism

Mass

mechanism

RHC

Ee1 – Ee2 distribution

RHC

bb

(2n)

bb

(0n)

From

G. Gratta

Slide6

ExperimentsIsotopesTechniquesMain caracteristicsNEMO3100Mo,82SeTracking + calorimeterBckg rejection, isotope choiceSuperNEMO82Se, 150NdTracking + calorimeterBckg rejection, isotope choiceCuoricino130TeBolometersEnergy resolution, efficiencyCUORE130TeBolometersEnergy resolution, efficiencyGERDA76GeGe diodesEnergy resolution, eficiencyMajorana76GeGe diodesEnergy resolution, efficiencyCOBRA130Te, 116CdZnCdTe semi-conductorsEnergy resolution, efficiencyEXO136XeTPC ionisation + scintillation Mass, efficiency, final state signatureMOON100MoTracking + calorimeterCompactness, Bckg rejectionCANDLES48CaCaF2 scintillating crystalsEfficiency, BackgroundSNO++150NdNd loaded liquid scintillatorMass, efficiencyXMASS136XeLiquid XeMass, efficiencyCARVEL48CaCaWO4 scintillating crystalsMass, efficiencyYangyang124SnSn loaded liquid scintillatorMass, efficiencyDCBA150NdGazeous TPCBckg rejection, efficiency

Why

so

many

experiments

or

projects

?

Slide7

IsotopeQ (MeV)Abondance isotopique (%)G0(an-1) x 1025Enrichment method48Ca4.2710.1872.44Laser ?76Ge2.0407.80.24Centrifugation82Se2.9959.21.08Centrifugation96Zr3.3502.82.24Laser ?100Mo3.0349.61.75Centrifugation116Cd2.8027.51.89Centrifugation130Te2.52833.81.70Centrifugation136Xe2.4798.91.81Centrifugation150Nd3.3675.68.00Laser ?Centrifugation ?

Double beta

decay

isotopes

Slide8

arXiv

:1008.5260v2 :

Tomás R. Rodríguez, G. Martinez-Pinedo

Nuclear

Matrix

Element

Slide9

Q

bb

MeV

2

3

4

76

Ge

130

Te

76

Xe

100

Mo

82

Se

5

150

Nd

96

Zr

48

Ca

Background

components

+

bb

(2n)

for

tracko

-calo or calorimeter with modest energy resolution

Natural

radioactivity (40K, 60Co,234mPa, external 214Bi and 208Tl…) 214Bi and Radon, 208Tl (2.6 MeV g line) and Thoron, g from (n,g) reaction and muons bremstrahlung

+ for pure calorimeter Surface or bulk contamination in a emitters, cosmogenic production

2.614 MeV

Highest

gamma-ray

from

natural

radioactivity

Slide10

eA

M

.

t

N

Bckg . DE

(y)

<mn >  M1/4

Calorimeter

Semi-conductorsBolometersSource = detector

e, DE

b

b

b

b

Calorimeter

(Loaded) Scintillator

Source = detector

e

,

M

Tracko-calo

Source

 detector

N

Bckg, isotope choice

Xe TPC

Source = detector

b

b

e

,M, (N

Bckg

)

b

b

M

: masse (g)

e

: efficiencyKC.L.: Confidence levelN: Avogadro number

t: time (y)NBckg: Background events (keV-1.g-1.y-1)DE: energy resolution (keV)

Experimental

sensitivity

Slide11

Calorimeter

vs

Tracko

-calo

bb(0n)

bb(0n)

bb(0n)

bb(0n)

Calorimeter

Tracko-calo

High energy resolution

Modest background rejection

High background rejection

Modest energy resolution

keV

keV

MeV

Slide12

What is the most favorable isotope and the best technique ? Phase space factor: 48Ca, 150Nd, 96Zr Nuclear matrix element  not yet reliable predictions Backgrounds > 2,6 MeV 48Ca, 150Nd, 96Zr, 100Mo, 82Se, 116Cd > 3.2 MeV (radon) 48Ca, 150Nd, 96Zr Enrichment: 130Te (Natural isotopic abundance 34%) 136Xe (gaz, easy to enrich)Best techniques : Bolometers, Ge diodes: energy resolution 130Te (82Se, 116Cd), 76Ge Tracko-calo : background rejection 82Se, (48Ca, 150Nd) TPC Xe: background rejection if tagging of Ba 136Xe Large liquid scintillator: mass of isotopes 136Xe, 150NdA problem to understand: the background at ~100 kg (related to istopes and techniques)

Why

so

many

experiments

or

projects

?

Slide13

Effective neutrino mass and

q13

100 – 1000 cts/

yr

/ton

1 – 10 cts/

yr/ton

0.1 – 1 cts/

yr/ton

Isotopemass

~ 10 kg 2011

~ 1000 kg

Required background level

Heidelberg-Moscow (2001)

~11 kg of enriched

Ge

bb

(0n) ?

|

m

ee

|

S T

Petcov

 2009

J. Phys.:

Conf. Ser. 173 012025

~ 100 kg

2015

This

experimental

review

will

be

focused

on the

last

results

of 10 kg

and

100

kg

experiments

Slide14

SNO++ (

150

Nd)

EXO (

136Xe)Majorana (76Ge)

Cuoricino/CUORE (130Te)GERDA (76Ge)COBRA (116Cd)

CANDLES

(

48

Ca)KamLAND-ZEN (136Xe)MOON (100Mo)

bb(0n) : experiments and projects

Calorimeter

Source = detector

b

b

b

b

Tracko

-calo

Source

 detector

EXO gaz (

136

Xe)

DCBA (

150N

d)

NEMO3

/SuperNEMO (

82

Se, 150Nd, 48Ca)NEXT (136Xe)

Slide15

<m

n> <0.35-1.05 eV (90% CL)

T 1/2 >1.9 1025 yr (90% CL)

Eur. Phys. J., A 12 (2001) 147

35.5 k.yr

0.06 cts/keV/kg/yr

Heidelberg-Moscow (2001) ~11 kg of enriched 76Ge (86%)

8.9 kg.yr without PSA

4.6 kg.y with PSA

Phys. Rev. D65 (2002) 092007

IGEX (2002)~ 8.4 kg of enriched 76Ge (86%)

T 1/2 >1.57 1025 yr (90% CL)

<mn> <0.33-1.31 eV (90% CL)

bb(0n): Present situation

Ge diode

detectors

Slide16

Bolomètres: CUORICINO

214

Bi

(

238

U chain)

208

Tl(232Th chain)

60Copile up

5.3 kg.an

T

1/2 > 1. 1024 ans (90%)<mn> <0.5 – 2.4 eV

bb(0n)

Energy (keV)

Cuoricino

Heat sink

Thermometer

Double beta decay

Crystal absorber

Bolometers

of

TeO

2

D

E/E ~ 8

keV

at

2 527

keV

Located

in

Gran

Sasso

Laboratory

(

Italy

)

Stopped

in 2008

Slide17

Bolomètres: CUORICINO

Cuoricino results

Slide18

CUORE

Slide19

750 kg of TeO

2  203 kg of 130TeArray of 988 TeO2 5x5x5 cm3 crystals

Improvement of surface event rejection

Data taking foreseen in 2013

Nbckg=0.01 cts.keV-1.kg-1.yr-1T½ > 2.1 1026 yr <mn> < 0.03 – 0.17 eV

Goal :

N

bckg

=0.01 cts.keV

-1

.kg-1.yr-1

Expected sensitivity

(Italy, USA,Spain)

(Factor 20 compared to Cuoricino)

LUCIFER:R&D on scintillating bolometers like 82Se 116CdWO4

CUORE

Test of 1

tower

of CUORE in Cuoricino in 2011

Slide20

Vertex

bb

events

E

1

+E

2

= 2088 keV t= 0.22 ns(vertex) = 2.1 mm

E1

E2

e-

e-

NEMO 3

Tracko

-calo

detector

Drift

chamber

(6000

cells

)

Plastic

scintillator + PMT (2000)10 kg of isotopesDE/E (FWHM) : 8 % @ 3 MeVLocated in Modane Underground Lab (France)

Bckg: 0.025 cts/keV/kg/yr

Bckg



sources

thickness



mg/cm

2

)

82

Se (0,93 kg)



Multi-source detector

Slide21

NEMO 3 Results

100

Mo,

23.4 kg.yr 620 000 events

Bosonic

fraction of

neutrino

wave

function

Sin

c

< 0.6

Slide22

NEMO 3 Results

Slide23

NEMO

3 Results

Slide24

7

kg

100 kg

isotope mass M

15

%

~ 30 %

isotope

100Mo

82Se ,150Nd or 48Ca

T

1/2 (bb0n) > ln 2 

M  e  Tobs

N90

N

A

A

NEMO-3

SuperNEMO

internal contaminations

208

Tl and

214

Bi in the

bb foil

208Tl: < 20 mBq/kg214Bi: < 300 mBq/kg

208Tl < mBq/kgif 82Se: 214Bi < 10 mBq/kg

T

1/2

(

bb0n) > 2 x 1024 y<mn> < 0.3 – 1.3 eV

T1/2(bb0n) > 1026 y<mn> < 50 – 110 meV

energy resolution (FWHM)

8% @ 3MeV

4% @ 3 MeV

efficiency

From

NEMO

3 to SuperNEMO

Slide25

20 modules for 100 kg

Top view

Source (40 mg/cm

2

) 12m

2

Tracking

(~2-3000 Geiger

cells

).

Calorimeter

(500 channels)

5 m

1 m

Total:~ 40 000 – 60 000

geiger

cells

channels

~

10

000 PMT

SuperNEMO

conceptual

design

Slide26

SuperNEMO phase I : 2011 – 2014

Contruction demontrator module with 7 kg of 82Se (1 kg of 48Ca ?)Commissing @LSM 2013Sensitivity in 1 year: T1/2 < 5 1024 y <mn> < 0.2 – 0.6 eVSuperNEMO phase II : 2014 – 2019100 kg of 82Se (or 150Nd,or 48Ca)T1/2 > 1026 y <mn> < 0.05 – 0.14 eV

DE/E < 4% (FWHM) @ Qbb demonstrated (< 8% @ 1 MeV)

FWHM = 7,1 %

(7,6% before energy loss correction)

SuperNEMO @ LSM extension

Commissioning

of

wiring

robot

SuperNEMO

Slide27

Ge detector improvements

Strategies: Ge detectors in liquid nitrogen to remove materials Active shielding and segmentation of detectors to reject gamma-rays

e

-

detector

segments

e

-

Liquid argon

scintillation

crystal anti-coincidence

Detector segmentation

pulse shape analysis

R&D: liquid argon anti-coincidence

Slide28

GERDA

Removal of matter

Use of liquid nitrogen or argon for active shieldingSegmented detectors in futurImprovement of Pulse Shape Analysis

PHASE I: 17.9 kg of enriched 76Ge (from HM and IGEX) In 1 year of data if B=10-2 cts/keV/kg/yr (check of Klapdor’s claim) Start 2011 at Gran Sasso T1/2 > 3 1025 yr <mn> < 0.25 eV

PHASE II: 40 kg of enriched 76Ge (20 kg segmented) 2012 if B=10-3 cts/keV/kg/an T1/2 > 2 1026 yr in 3 years of data <mn> < 0.1 eV

Slide29

GERDA

Nov/Dec.’09

: Liquid argon fill Jan ’10: Commissioning of cryogenic system Apr/Mai ’10: emergency drainage tests of water tank Apr/Mai ’10: Installation c-lock May ’10: 1st deployment of FE&detector mock-up June ‘10: Commissioning with natGe detector string Soon: start Phase I physics data taking

Slide30

Majorana

Very

pure

material

(

Electroformed copper)SegmentationPSD improvement

R&D phase 30-60 kg of 86% enriched 76Ge crystalsSome of the crystals segmented

T1/2 > 1. 1026 yr <mn> < 0.14 eV (could confirm or refute Klapdor’s claim)

Bckg goal ~ 1 count/ROI/t-yr (after analysis cuts)30 kg of enriched Ge, running 3 yr. Data taking scheduled for 2011

Collaboration with Gerda for 1 ton detector

(USA, Russia, Japan)

Ge diodes

Slide31

EXO - 200

200 kg of 136Xe, no Ba ion taggingInstallation in WIPP underground labPossibility to measure bb(2n)

EXO-200 full of natural

Xe - Tuning on all systems - Engineering runs - Physics mode as soon as possible

Liquid

Xe TPC

Ionization + scintillation DE/E (FWHM)= 3.3 % @QbbPossibility of Baryum ion tagging byLaser florescence (136Xe  136Ba++ + 2 e

R&D in progress

Gazeous TPC R&D

(USA, Canada,

Switzerland

,

Russia

)

Slide32

SNO++

Scintillator

loaded with Nd.

only internal Th and

8B solar neutrino backgrounds are important

500 kg of 150Nd1 year<mn> = 150 meV

Test of light attenuationStudy of Nd purification (factor 1000per pass in Th and Ra)56 kg of 150Nd (0,1 % of natural Nd) 4 yr of data <mn> ~0.08 eV

500 kg of 150Nd

4yr

<m

n

>

~

0.03 eV

Slide33

KamLAND

-Zen

Slide34

CANDLES

CaF

2

(Pure)

Liquid Scintillator

(Veto Counter)

Buffer Oil

Large PMT

Pure CaF2

crystals

Wave

length

shifter

in LS

PSD to

reject

g

and

a

CANDLES III

10

3

cm

3

× 96 crystals

305 kg

Data taking in 2011 @

Kamioka

Expected BG: 0.14 event/yr (30

µ

Bq

/kg

)

<

m

n

> ~0.5

eV

CANDLES IV :

3 tons of CaF

2

(3

m

Bq/kg) 6 yr

<m

n

> ~0.1 eV

(Japan)

Slide35

DCBA

Drift

Chamber

beta-ray Analyser

Prototype with

207

Bi : 10% (FWHM) energy resolutionX position s= 0.5 mmY position s= 0.02 mmX position s= 6 mm

Slide36

4x4x4 detector array = 0.42 kg

CdZnTe Installed at LNGSTest of coincidence rejectionMeasure of 113Cd

COBRA

Array of 1cm3 CdZnTe detectors

(UK, Germany, Italy, poland, Slovaquia, Finland, USA)

Cd-113 beta decay

with half-life of about 1016 yrs

Slide37

TechniqueLocationMasskgstartBckgCts/keV/kg/yrT1/2(0n)<mee>meVEXOLiquid Xe136XeWIPP (USA)20020110.0026.4 1025< 109 – 135 (2yr)GERDADiode Ge76GeGan sasso (Italy)1840201120120.010.0013. 10253. 1026< 250– 380< 80 - 120CUORE-0CUOREBolometers 130TeGan sasso (Italy)13 200201120130.120.010.0018. 10252.1 10266.5 1026<100 - 200< 41 -82< 23- 47SN module0SuperNEMOTracko-calo82Se, 150NdModane (France)7100201320150.00010.00016. 10241026< 200 –600 (1yr)< 53 – 140SNO+Liq. Scint.150NdSNOLAB(Canada)442012< 100KamLANDLiq. Scinti136XeKamioka(Japan)4002011< ~ 60 (2 yr)

Sensitivities 2013 - 2018

Slide38

Summary

Present

10 kg

experiment

reach

a

sensitivity

<m

n

> < 0.3 – 1 eV

Background ~100 – 1000 cts/ton/

yr

1OO kg

experiments

will

reach

a

sensitivity

on <m

n

> < ~50 meV in the

next

5

yr

Background ~ 1 – 10 cts/ton/

yr

(

Remark

: to

win

a factor 10 on

bckg

it

takes

5 – 10

yrs

)

Step

by

step

approach

: GERDA, MAJORANA, CUORE, SuperNEMO

Agressive

approach

(

n

o 10 kg prototype): EXO, SNO++,

KamLAN

-Zen, NEXT

Possibility

to

enrich

150

Nd,

96

Zr or

48

Ca in the futur ?

100 kg

experiments

essential to

validate

technique and background

for 1 ton

experiments

Slide39

100 kg

experiments

CUORE

130

Te

bolometers

CUORE-0 39 kg of natTe13 kg of 130TeData taking 2011CUORE 200 kgData taking 2013(scintillating bolometres ?)

GERDA

Ge diode in LAr

2010: 18 kg of

76Ge(HM and IGEX crystals)1st results 20112012: 40 kg of 76Ge

MAJORANA

Ge

segmented Diode

2011: 20 kg of natGe2013 ? : 30 kg of 76Ge

SuperNEMO

tracko-calo

Module-0 7 kg of 82Se (150Nd)Data taking 201320 Module 100 kgData taking 2015

Step by step approach

Gran

Sasso laboratory

Gran Sasso laboratory

DUSEL laboratory

Modane laboratory

+ Energy resolution

+ Energy resolution+ Natural Te

+ Energy resolution

+ Background rejection

+ Multi-isotopes

Slide40

100 kg experiments

Agressive

approach (no 10 kg prototype)

SNO++

Nd

salt + liquid scintillator

2010: 740 kg of natNd(44 kg of 150Nd)Dissolved in scintillator

EXO liquid Xenon

2010: 200 kg of 136XeResults 2013Ba tagging R&D

2011: 400 kg of

136XeDissolved in liq. scintillator

NEXT Xe

high pressure TPC

2011: 1 kg of 136Xe2013 : 100 kg

KamLAND

-Zen

Xe + liq. scintillator

Kamioka

laboratory

Canfranc laboratory

SNOLAB laboratory

WIPPL laboratory

+ Large mass+ Possibility to tag daughter nucleus

+ Large mass+ low background detector

+ Large mass

+ Background rejection

Slide41

bb(0n)

signal ? HM claim

T

1/2 = (0.69 – 4.18) 1025 <mn> = 0.28-0.58 (90%)

2006: Improvement of PSA (6s)

+0.44

-0.31

<mn> = 0.32 ± 0.03 eV

2004 (4s)

T

1/2

=

2.23

10

25

yr

Slide42

arXiv

:1008.5260v2 :

Tomás R. Rodríguez, G. Martinez-Pinedo

From

F. Simkovic (neutrino 2010)

Nuclear

Matrix

Element