/
INTERNATIONALJOURNALOFCLIMATOLOGYInt.J.Climatol.:1 INTERNATIONALJOURNALOFCLIMATOLOGYInt.J.Climatol.:1

INTERNATIONALJOURNALOFCLIMATOLOGYInt.J.Climatol.:1 - PDF document

lindy-dunigan
lindy-dunigan . @lindy-dunigan
Follow
434 views
Uploaded On 2016-11-14

INTERNATIONALJOURNALOFCLIMATOLOGYInt.J.Climatol.:1 - PPT Presentation

CorrespondencetoAJohnArneldDepartmentofGeographyTheOhioStateUniversity154NorthOvalMallColumbusOH432101361USAemailjohnarneldosuedu2003RoyalMeteorologicalSociety AJARNFIELDdrivenprog ID: 488834

*Correspondenceto:A.JohnArneld DepartmentofGeography TheOhioStateUniversity 154NorthOvalMall Columbus OH43210-1361 USA;e-mail:john.arneld@osu.edu2003RoyalMeteorologicalSociety A.J.ARNFIELDdrivenprog

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "INTERNATIONALJOURNALOFCLIMATOLOGYInt.J.C..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

INTERNATIONALJOURNALOFCLIMATOLOGYInt.J.Climatol.:1–26(2003)PublishedonlineinWileyInterScience(www.interscience.wiley.com).DOI:10.1002/joc.859TWODECADESOFURBANCLIMATERESEARCH:AREVIEWOFTURBULENCE,EXCHANGESOFENERGYANDWATER,ANDTHEURBANHEATISLANDA.JOHNARNFIELD*DepartmentofGeography&AtmosphericSciencesProgr *Correspondenceto:A.JohnArneld,DepartmentofGeography,TheOhioStateUniversity,154NorthOvalMall,Columbus,OH43210-1361,USA;e-mail:john.arneld@osu.edu2003RoyalMeteorologicalSociety A.J.ARNFIELDdrivenprogressinotherareasofurbanclimateresearch.Third,itwillbeconnedtoscienticliteraturepublishedintheEnglishlanguage.Thetopicalfocusofthisreviewistwofold.First,itwillassessadvancesinthestudyofselectedurbanclimaticprocessesrelatingtourbanatmosphericturbulence(includingsurfaceroughness)andexchangeprocessesforenergyandwater.Specically,thiswillbedoneforcharacteristicscalesofconsiderationfromabout10to10m,correspondingtoindividualfacetsoftheurbanenvironment,throughstreetsandcityblockstoneighbourhoods.Understandingtheseprocessesiscriticaltotheexplanationoftheclimaticcharacteristicsofurbanlandscapesatthis‘humanscale’,andourdeepeningknowledgeintheseareashasfurtheredanddrivenadvancesinotherareasofurbanclimatology.Second,thisreviewwilldescribeandevaluatewhathasbeenlearnedaboutthetemperatureeldsofcities,includingtheurbanheatislandwhichisoftenregardedasthemostwelldocumentedexampleofanthropogenicclimatemodication.Adoptionofthisparticularperspectivewillmeanthatmanyotherareasofurbanclimatologymustbeneglected.TableIprovidesreferencestosourcesofinformationonotherurbanclimatetopicsthathaveappearedshortlybeforeorduringthereviewperiod.Furthermore,thisreviewwilllargelyignoreofurbanclimatology,despitetheirsignicanceandfar-reachingscope:TableIIprovidessomerepresentativeandillustrativeexamplesfromtheseareas.2.CONCEPTUALADVANCESANDURBANCLIMATOLOGYTheperiodaddressedbythisreviewhasseentheinitiationorconsolidationofseveralconceptualadvancesrelevanttourbanclimatology.Someofthesearespecictotheurbanatmosphericenvironment,whileothersareofmoregeneralapplicabilitywithinboundary-layerclimatologybuttheyaddressissuescrucialtotheunderstandingofthecityatmosphere.Thissectionwillreviewsomeoftheseadvancesingeneralterms;manyofthesewillariseagaininsubsequenttreatmentsofparticularempiricalstudies.2.1.Scale,spatialheterogeneityandurbanclimateTheconceptofscaleisfundamentaltounderstandingthewaysinwhichelementsoftheurban‘surface’interactwithadjacentatmosphericlayers.Anindividualbuilding,forexample,consistsofwallsandrooffacets,eachwithadifferingtime-varyingexposuretosolarradiation,netlongwaveradiationexchangeandventilation(e.g.Arneld,1984,2000b;PatersonandApelt,1989;VerseghyandMunro,1989a,1989b).Horizontalground-levelsurfacesareapatchworkofelements,suchasirrigatedgardensandlawns(Oke,1979a;Suckling,1980),non-irrigatedgreenspace,andpavedareas(Dolletal.,1985;Asaedaetal.,1996;Anandakumar,1999)withcontrastingradiative,thermal,aerodynamicandmoistureproperties,frequentlyincludingtrees(Oke,1989;Grimmondetal.,1996;KjelgrenandMontague,1998).Thesedifferentsurfaceelementspossessdiverseenergybudgetsthatgeneratecontrastsinsurfacecharacteristics(e.g.‘skin’temperature),andleadtomutualinteractionsbyradiativeexchangeandsmall-scaleadvection.Thesefundamentalmorphologicalunitsmaybeaggregatedhierarchically.Buildingwallsandtheelementslyingbetweenbuildings,forexample,denetheurbancanyon(UC).UCsandtheroofsofadjacentbuildingsdenecityblocks,whichinturnscaleuptoneighbourhoods,land-usezonesand,ultimately,theentirecity.Ateachscale,unitswillpossessdistinctiveenergybalancesthat,ingeneral,representmorethanthearea-weightedaverageofthebudgetsofindividualelementsbutalsoincorporatethedistinctiveinteractionsamongtheirconstituentunits.Moreover,eachunitinteractswithadjacentonesinthesamescalecategorybyadvectionetal.,1983).Asspatialscaleincreases,spatialvariabilityislikelytobereduced;thatis,thereisprobablylessdifferenceamongtwoland-usezonesinacitythanbetweenthenorth-andsouth-facingwallsofanindividualbuildingwithinoneofthem(SchmidandOke,1992).Urbanclimatologyisrequiredtocometotermswiththisheterogeneityandcomplexity,eitherexplicitly,intermsofdetailedmappingofurbanmorphology(Ellefsen,1990–91;GrimmondandSouch,1994;CioncoandEllefsen,1998),orininterpretingobservationsataggregatescales.Linkagesamongscalesareexplicit,forexample,inparameterizationsofthestorageheatuxusingtheobjectivehysteresismodel(OHM)ofGrimmondetal.(1991),whichaggregatestheheatstorageresponsesCopyright2003RoyalMeteorologicalSocietyInt.J.Climatol.:1–26(2003) URBANCLIMATETableI.Reviews,bibliographiesandsummariesonurbanclimatologypublishedduringthereviewperiod ReferenceTopic Oke(1979b)Reviewofurbanclimatology,1973–76Changnon(1980)TheLaPorteprecipitationanomalyOke(1980)Bibliographyofurbanclimateliterature,1977–80Landsberg(1981a)MultipletopicsinurbanclimatologyChangnon(1981)AreviewandsummaryoftheMETROMEXprojectLandsburg(1981b)MultipletopicsinurbanclimatologyOke(1982)UrbanenergybalanceDouglas(1983)UrbanphysicalenvironmentingeneralwithonechapteronurbanclimateLockerby(1983)BibliographyontheclimateofcitiesLee(1984)MultipletopicsinurbanclimatologyOke(1986)UrbanclimatologywithspecialemphasisontropicalOke(1988b)UrbanenergybalanceSmithson(1989)Progressreport(includes‘urbanclimates’)Oke(1989)TreesincitiesSmithson(1990a)Progressreport(includes‘urbanclimates’)Smithson(1990b)Progressreport(includes‘urbanclimates’)Yoshino(1990–91)EmphasisonJapaneseurbanclimateworketal.(1990–91)TRUCE(TropicalUrbanClimateExperiment)etal.(1991)IncludessectiononurbanclimatologyChangnon(1992)InadvertentclimatechangeinurbanareasandlessonsforglobalclimateworkSteyn(1992)Integratedstudiesofairpollutionmeteorologyetal.(1995)WindclimatesincitiesGoldreich(1995)ReviewofIsraeliurbanclimateworkArneld(1998a)Reviewofurbanclimateworkpublishedin1996Arneld(1998b)Reviewofurbanclimateworkpublishedin1997Sturman(1998)Urbanclimateprocesses,mitigationofurbanclimateeffectsandimplicationsforurbandesignLowry(1998)UrbaneffectsonprecipitationamountincludingacritiqueofexperimentaldesignArneld(2000a)Reviewofurbanclimateworkpublishedin1998Roth(2000)AtmosphericturbulenceinurbanenvironmentsArneld(2001a)Reviewofurbanclimatework(‘urbancanyonstudies’and‘urbanclimatesoutsidethemid-latitudes’)publishedin1999Arneld(2001b)Reviewofurbanclimateworkpublishedin2000 ofdiversesurfacetypestonetradiationforcingaccordingtothespatialextentofeach.Likewise,UCenergybudgetmodels(TerjungandO’Rourke,1980a,b;Mills,1993;Arneld,2000b)generatecanyonsystemenergybudgetsbycombiningthebudgetsoftheconstituentfacets,whichincorporatemutualinteractions.Fundamentaltotheissueofscaleisthedistinctionbetweentheurbancanopylayer(UCL)andurbanboundarylayer(UBL).Thisdistinction,originallyappliedtoUHIsbyOke(1976),hasbeenaguidingprincipleinurbanclimateresearchofalltypes.IntheUCL(roughlyfromgroundtorooflevel),processesofairowandenergyexchangearecontrolledbymicroscale,site-speciccharacteristicsandprocesses.TheUBL,aboverooflevel,incontrast,isthatpartoftheplanetarybound-arylayerwhosecharacteristicsareaffectedbythepresenceoftheurbansurface(oritsland-usezones)belowandisalocal-tomeso-scalephenomenoncontrolledbyprocessesoperatingatlargerspatialandCopyright2003RoyalMeteorologicalSocietyInt.J.Climatol.:1–26(2003) A.J.ARNFIELDtemporalscales.Thedistinctiongoesbeyondmerescale,therefore:itreectsdifferentassemblagesofprocessesThepatchyandheterogeneousnatureoftheurbansurfacehassignicantimplicationsintheinterpretationofmeasuredenergybudgetsandinthedesignoftower-baseduxstudies.Fewideashavehadsuchaprofoundimpactonurbanclimatologyduringthereviewperiodthantherealizationthatturbulencecharacteristics(includinguxes)measuredatheightoveracomplexurbanlandscapemaynotbeinequilibriumwiththesurfacebelow,butmayinsteadreectthecharacteristicsofthesurfaceupwind,thesizeandlocationofwhichwilldependonwindspeedanddirection,roughnessandatmosphericstability(SchmidandOke,1990;Schmid,1994).Thesource-areamodelofSchmidandOke(1990)hasfoundapplicabilityinthesuburbanenergybalancemeasurementsofOkeetal.(1989),Schmidetal.(1991)andGrimmond(1992).2.2.TheroughnesssublayerSeveralexperimentalstudies(e.g.Thometal.,1975,Garratt,1978,1980)inagriculturalandforestmeteorologyhavedemonstratedthat,intheairlayersabovehorizontallyuniformsurfacetypeswithtallroughnesselements,conventionalux–prolerelationshipsandMonin–Obukhovsimilaritytheoryarelikelytobeinvalid.Inthislayer,termedtheroughnesssublayer(Raupach,1979),owconsistsoftheinteractingwakesandplumes(ofheat,humidityandpollutants)introducedbyindividualroughnesselements.Atsomeheightabovethecanopy,theblendingeffectofturbulentmixingwillerasethesignicanceofindividualroughnesselementsandcreatealayer(theinertialsublayersurfacelayerconstant-ßuxlayerTennekes,1973;Roth,2000)inwhichturbulentuxesareconstantwithheight,permittingmeasurementoflandscape-scaleenergybalanceuxesandReynoldsstress.TheroughnessandoverlyingsurfacelayerconstitutethelowestportionoftheUBLdenedintheprevioussection(Rothetal.,1989b).Thenatureoftheurbansurface,withitsrigidbuildingsofdifferentheightsandphysicalcharacteristics,separatedbytrees,canyonsandopenspaces,makesitparticularlysusceptibletothedevelopmentofaroughnesssublayerofsignicantdepth,perhapsseveraltimestheaveragebuildingheight(Raupachetal.,1980,1991;Roth,2000).Withintheroughnesssublayer,characteristicsdependonahorizontaldistancescaledeterminedbyinter-elementspacing,ratherthanheightandverticaltemperaturegradient,asinthesurfacelayer.Flowandturbulenteldsaredifferentfromthoseintheinertialsublayer(Hetal.,1982;Rotach,1993a,b;Roth,1993;RothandOke,1993;OikawaandMeng,1995).Strongverticalshear,largeturbulenceintensities,wakediffusion,formdrag,diversityandspatialseparationofsourcesandsinksofmomentumandscalars,andlocaladvectionstemmingfromextremeheterogeneityarethenormwithinthislayer(Roth,2000).Rothetal.(1989b)provideevidencethatmeasurementsofuxesandturbulentspectramadeclosetotheinterfacebetweenthesurfaceandroughnesslayersareingoodagreementwiththosefromsmoothersurfaces,andmakerecommendationsregardingimplicationsformeasurementsofeddyuxesfromtowersoversuburbanterrain.ProlesofturbulencestatisticsacrossaroughnesssublayerarepresentedbyRotach(1995),andthecaseforexplicitrecognitionoftheroughnesssublayerinoperationalmodelsforpollutiondispersionhasbeenmadebyRotach(1999)anddeHaanetal.(2001)andcanbeexpectedinurbanclimatesimulationmodelsforthesamereasons.2.3.ThediversityofUHIsTheUHIremainsacompellingfocusofclimateresearchinbuilt-upareas.However,acharacteristicfeatureofworkduringtheperiodofthisreviewistheemergenceoftheideathattherearemanyUHIs,displayingdifferentcharacteristicsandcontrolledbydifferentassemblagesofenergyexchangeprocesses.Oke’s(1976)originaldistinctionbetweentheUHIintheUBLandthatintheUCLhasbeendiscussedbrieyinSection2.1.Thoughthesepossessdifferentscalemanifestationsandarethoughttoresultfromdifferentprocesses(Table2inOke(1982)),bothhavehistoricallyfoundexpressioninantemperatureexcessoverthatintheruralenvirons.Ground-basedthermalremotesensing(andaircraft-basedthermographyatalowenoughelevationtoresolvestreets,roofsandwalls)permitsdenitionofyetanotherUHI,namelythatforthegroundsurface.Copyright2003RoyalMeteorologicalSocietyInt.J.Climatol.:1–26(2003) URBANCLIMATETableII.Examplesofresearchpublicationsinapplicationsofurbanclimatology UrbanclimateapplicationExamplesofresearch Meteorologicalandclimaticcharacteristicsattheindividualbuildingscaleetal.(1999);Hoyanoetal.(1999);MurakamiandMochida(1989):Smithetal.(2001)UrbanairpollutiondispersionGrantandWong(1999);HannaandChang(1992);KotakeandSano(1981);Taha(1997)UrbandesignandplanningdeSchillerandEvans(1996);Oke(1984,1988a);etal.(1999)Biometeorologyandhumancomfortintownsetal.(1982);deAssisandFrota(1999);Pearlmutteretal.(1999)RoadclimatologyintownsShaoandLister(1995);Shaoetal.(1994)EnergyconservationissuesBretzetal.(1998);Rosenfeldetal.(1995);Sailor(1998);SimpsonandMcPherson(1998)HistoricandculturalCamuffoetal.(1999)GlobalwarmingresearchEppersonetal.(1995);Hansenetal.(2001);Jonesetal.(1989);Kuklaetal.(1986) Thoughsurfacetemperaturesshowsomesimilarspatialandtemporalpatternstothoseforairtemperatures,thiscorrespondenceisnotexact.Inparticular,undercalm,clear,nocturnalconditions,theygenerallydisplayamuchstrongerdependenceonmicroscalesitecharacteristics,especiallyskyviewfactorreductionbroughtaboutbystreetgeometry,thandosimultaneouslyevaluatedairtemperatures(Betal.,1985;Eliasson,1990–91,1996a).Theseresultssuggestthatstreettemperaturepossessesasimplercausalitythanairtemperature,whichiscoupledtothethermalstateoftheadjacentsurfacesbutisalsosubjecttoadvectiveinuences(Betal.,1985;StollandBrazel,1992).ItisperhapsthissimplicitythathaspermittedsuccessfulhardwareandnumericalsimulationmodellingofthestreetsurfaceUHIundercalm,night-timeconditions,whensolarshadingisabsentandturbulentinteractionsbetweenstreetandairandadvectiveuxesareminimal(Oke,1981;Arneld,1990b;Johnsonetal.,1991;Okeetal.,1991;Swaid,1993a).Thermalremotesensingfromsatelliteandhigh-altitudeaircraftplatforms(Carlsonetal.,1981;Vukovich,1983;KidderandWu,1987;Rothetal.,1989a;Lee,1993;Nichol,1996)raisesadditionalissues.Whilesomestudieshavereportedsimilaritiesbetweenspatialpatternsofairtemperatureandremotelysensedsurfacetemperature(Henryetal.,1989;Nichol1994),mostsuggestsignicantdifferences,includingthetimeofdayandseasonofmaximumUHIdevelopmentandtherelationshipbetweenlanduseandUHIintensity(Rothetal.,1989a).Inparticular,remotelysensedUHIsareusuallystrongerandexhibitgreatestspatialvariabilitybyday,theoppositetoairtemperatureUHIs.Rothetal.(1989a)suggestthatthesedifferenceshavetheiroriginsinthenatureoftheurbansurface‘seen’byasatellitesensor,especiallyoneatahighelevationangle,givingabird’seyeorplanviewofthecity.Inthiscase,roofs,treetops,roadsandopenhorizontalareasareoversampledandverticalsurfacesandareasbelowtreecrownsareneglected.Thesesensorssamplepoorlythetrue‘activesurface’withinthecity,andthosetypesoffacetsthatarewellrepresentedinthethermalimagetendtohavequitedifferentphysicalpropertiesandradiativeandturbulentenvironmentsfromthosethatareundersampled.ThisissueisaddressedbyVoogtandOke(1997,1998a,b),whouseradiativethermometrytodenea‘completeurbansurfacetemperature’.Theyshowthatthistemperaturecanexhibitsignicantdeviationsfromairborneestimatesofsurfacetemperatureatnadirandoff-nadirviewinganglesandthattheurbansurfaceexhibitsastrong‘effectiveanisotropy’duetodifferentialpatternsofirradiatedandshadedsurfaceswithinasensoreldofview.Shoshanyetal.(1994)presentanimageprocessingtechniquetoeliminaterooftopsignalsfromthermalimagerytoapproximateground-levelsurfacetemperaturesmoreclosely,althoughthismethodstillprovidesnoinformationonwallfacetsfornadirviewingdirections.Copyright2003RoyalMeteorologicalSocietyInt.J.Climatol.:1–26(2003) A.J.ARNFIELDInsummary,developmentsoverthepasttwodecadeshaveunderlinedthatUHIsaremorediversethanoriginallysuspected.Wemaydeneavarietyofsuchfeaturesbasedonthemediumsensed(air,surface,evensubsurface)andthesensingsystememployed.Eachwillpossessitsownclimatologyandwillbesubjecttovaryingcausalinuences,butitisessentialthatthenatureofthemeasurementsusedtodenetheheatislandbepresentedinreportingresultsinamannerthatisinterpretabletotheurbanclimatecommunity.Likewise,greatcaremustbeexercisedincomparingUHIsifthemediumsensedandthemethodsemployedinsensingitdiffer.3.SELECTEDSMALL-SCALEURBANCLIMATEPROCESSES:ATMOSPHERICTURBULENCEANDEXCHANGESOFENERGYANDWATER3.1.UrbanroughnessparametersTheaerodynamicroughnessofcities,asexpressedintheroughnesslengthandzero-planedisplacement,exceedsthatofessentiallyallothertypesoflandscapeelement.Theseparametersareessentialinunderstandingtheprocessesoccurringwithinurbanairlayers(surfacedrag,shearingstress,windproleformsandturbulencecharacteristics),aswellassuchurbanclimaticphenomenaaswindshearovercities,inducedverticalmotions,thedepthoftheUBLandpollutantdispersionaboveurbancanopies.Rooney(2001)providesanexampleoftheexperimentaldeterminationoftheseparametersforBirmingham,UK.Grimmondetal.(1998)reviewanemometry-basedmethodsforevaluatingtheseparametersforfoursuburbanareasinNorthAmericancities.Theparticularproblemsassociatedwithmeasurementsintheurbanenvironmentcreatedifcultiesformanyconventionalmethods,andnoconclusioncouldbereachedonthebestone.Techniqueshavebeenproposedtoestimatethesecriticalparametersfrommeasuresofthegeometricformofbuildingarrays(e.g.Bottema,1997;Duijm,1999).Acomprehensivereview(GrimmondandOke,1999a)ndsthatmostmorphometricmethodsyieldplausiblevaluesofbutthatmost‘observed’valuesareofinsufcientqualitytodecidetrulybetweencompetingtechniques.Statisticalagreementbetweenthoseempiricalvaluesjudgedbestandmorphometricestimatesisnotimpressive.Theimplicationsofthesetwostudiesaresobering.Thoughmorehigh-qualityestimatesofwouldseemtobedesirable,uncertaintiesanderrorsinthecurrentmethodsofobtainingsuchdataarenotencouraging.GiventhecentralityoftheseparametersinmodellingpollutiondispersionandUBLclimates,however,GrimmondandOke(1999a)suggestpracticesforchoosingthemostplausiblevalues.3.2.TurbulenceintheurbanatmosphereJustpriortothebeginningofthisreviewperiod,Oke(1979b)remarkedthat‘evidenceofthestructureofturbulenceovercitiesislimited’.Theavailabilityofturbulencemeasurementsinurbanenvironmentshasimproveddramaticallysincethattime,however.Duringthe1980s,resultswerereportedbyMellingandList(1980),Hetal.(1982),Steyn(1982),HildebrandandAckerman(1984),Ching(1985),Fujitani(1986),YerselandGoble(1986),Unoetal.(1988)andRothetal.(1989b).Inthefollowingdecade,attentionwasdirectedmoretoturbulenceprocessesinandclosetotheUCL,althoughthisfocuswasnotuniversal(Rotach,1993a,b,1995,1999;Roth,1993;RothandOke,1993,1995;KalogirosandHelmis,1995;OikawaandMeng,1995;Yadavetal.,1996;Xuetal.,1997;Feigenwinteretal.,1999).Zhangetal.(2001)compareturbulencespectraforsuburbanandurbanareaswiththoseforruralsurfaces.AcomprehensiveandperceptivereviewofturbulenceintheurbanatmosphereisprovidedbyRoth(2000).Someimplicationsofthiswork,generallynotconsideredtobeconventionally‘climate’,dohaveprofoundimplicationsforclimate-orientedwork.Forexample,RothandOke(1995)suggestthatinequalitiesintransferefcienciesforheat,massandmomentummayinvalidateturbulentuxevaluationsoverurbansurfacesusingconventionalprolemethods.3.3.StorageandanthropogenicheatßuxesintheurbanenergybalanceNounderstandingofurbanenergybalancecanavoidwrestlingwiththeimplicationsofscale(Section2.1)andtheissueoftheprecisedenitionofthe‘surface’towhichthebalancerefers.TheseareinterrelatedCopyright2003RoyalMeteorologicalSocietyInt.J.Climatol.:1–26(2003) URBANCLIMATEmatters:whileitisgenerallyuncontestedwhatconstitutesthe‘surface’towhichtheenergybalanceofabuildingwall,suburbanlawnorwarehouseroofapplies,thisbecomesincreasinglyuncertainaswescaleupthroughindividuallandscapeunits,likeUCs,toland-usezonesandevenwholecities.Theenergybalanceforasimpleplanefacetmaybewrittenasisnetradiation,aretheturbulentuxesofsensibleandlatentheatrespectively,andisthe(primarily)conductiveheatuxintooroutofthematerialthatconstitutesthesurface.BehaviourforsimplefacetshasbeendescribedbyDolletal.(1985)andAnandakumar(1999)andcannormallybeevaluatedusingheatuxplatesorbymeasuringtimeratesoftemperaturechangeiftheheatcapacityofthesubstrateisknown.Oke(1988b)suggeststhat,atlargerscales,forurbanlandscapes,ausefulapproachistoevaluatetheequivalentenergyuxesthroughthetopofanimaginaryvolume,extendingfromadepthinthesubstratebelowwhichenergyexchangesarenegligibleatthetimescaleofconsiderationtoalevelroughlyatrooflevel,attheuppermarginsoftheUCL.Theenergybudgetforthisvolumecanbewrittenasrepresentsanthropogenicenergyreleaseswithinthevolume,isnetadvectionthroughthesidesofthevolume,andisthestorageheatuxandrepresentsallenergystoragemechanismswithinthevolume,inair,trees,buildingfabric,soil,etc.Inpractice,byvirtueofthesizesofheatcapacitiesforairandsolidfabric,cannormallybeequatedtotheaggregateforallair–solidinterfaceswithinthevolume.Itisgenerallybelievedthatislarge(asafractionof)forurbanlandscapes,butdirectmeasurementofthistermbyaggregatingheatuxplatedeterminationsforarepresentativesampleofurbanfacetsisnotfeasible.Accordingly,methodshavebeensoughttoparameterizethestorageheatuxforuseintotalenergybalancestudiesofurbanlandscapes.NunezandOke(1980)andOkeetal.(1981)proposesimpleregressionrelationshipsbetweenfordifferentsurfacetypes,weightedbytheareaoccupiedbyeach.ThisschemewasusedinevaluatingsuburbanenergybalancesbyOkeandMcCaughey(1983)andCleughandOke(1986).OkeandCleugh(1987)notethatheatstoragedisplaysahysteresisloopwhenplottedagainstnetradiationandthatabetterparameterizationwouldinvolvebothandthetimederivativeof.TheOHMofGrimmondetal.(1991)makesuseofthisconceptandemploysurbanlandcoverdatatoscaleupindividualhysteresisrelationshipsfordifferentsurfacetypestothetotalsuburbanlandscape,anapproachthatisvalidatedbyRothandOke(1994)andGrimmondandOke(1999b).ArneldandGrimmond(1998)useanumericalsimulationapproachtoattempttoidentifythemainsourcesofhysteresisforcanyons,oneofthesurfacetypesdenedintheOHM,andconcludethatsubstratethermaladmittanceandcanyongeometryareofmostimportance.TheOHMwasusedbyTaha(1999)inamesoscalemeteorologicalmodelofurbanenergybalance.Itisalsoincorporatedinneighbourhood-scaleenergybudgetevaluationsbySchmidetal.(1991),Okeetal(1992)andGrimmond(1992),usingahighlydetaileddatabaseofthree-dimensionalsurfacetypesforthelocale,whichissampleddynamicallytoprovideappropriatecoefcientweightsfortheturbulentuxsourcearea(Section2.1).ThestateofknowledgeonanthropogenicheatuxiswellsummarizedbyOke(1988b).Table3inthatsourcelistswhatwasknownofthisuxdensityatthattime,primarilyshownforwholecities.Incorporationofanthropogenicheatuxinsimulationmodelsofurbanclimateisrelativelystraightforward,involvingtheadditionofa(usuallyconstant)terminthesurfaceenergybudgetequation.SwaidandHoffman(1990–91)andSwaid(1993b)assesstheroleof(55and11Wminthesetwostudies)onairtemperatureinasimulationofUCforms,whileKimuraandTakahashi(1991)incorporatealarge-scaleanthropogenicheatuxinasimulationoftemperatureeldsinTokyo.Steinecke(1999)foundacity-averagedabout35WmforReykjavik,andIchinoseetal.(1999)providehighlydetailed,spatiallyandtemporallyCopyright2003RoyalMeteorologicalSocietyInt.J.Climatol.:1–26(2003) A.J.ARNFIELDdifferentiatedestimatesofthistermforTokyo,suggestinganaverageofabout30Wmforresidentialareasinthesummer,whiletypicalvaluesforthecentralcityreach400Wmbydayandanastounding1590Wminwinter.Evaluationsofatlocalscales,forincorporationintoenergybalancesforsuburbanterrain,aregivenbyGrimmondandOke(1991)andSchmidetal.(1991).Theycomputethistermaswheretheindividualcomponentsaretheheatreleasedbyvehicles,stationarysourcessuchashousefurnacesandmetabolism,requiringinputssuchasvehiclenumbersbyroadtype,lengthofroadinthecontributingarea,numberofelectricityandgasconsumersbyclass(house,school,etc.)andthenumberofpeopleandanimals.UseofthistechniquebyGrimmond(1992)gaveatotalof7–14Wm,withstationarysourcesdominatingandthemetaboliccontributionbeingnegligible.Itshouldbenotedthat,insomecases,isincluded.Forexample,theTerjungandLouie(1974),Mills(1993)andArneld(2000b)energybudgetsimulationmodelsincorporateconstantinternalbuildingtemperatures,whichreecttheinvestmentofanthropogenicenergyinheatingandcoolinglivingspaces.Thoughnotappearingasanexplicititemintheurbansurfaceenergybudget,suchschemesinuenceexternalclimateviaconductiveheatuxesthroughbuildingwallsandroofs.Theydonot,ofcourse,incorporateenergyreleasestotheexternalenvironment,likemotorvehiclewasteheat,uegasesorair-conditionerheatoutput.3.4.UrbanradiationbalanceAtthebeginningofthereviewperiod(Oke,1979b,1982),additionalattenuationbyurbanboundary-layerpollutantswasbelievedtoreducesolarirradianceatthetopoftheUCLby0–10%ingeneral(butupto20%insomecases:seeTable1inOke(1988b)).Morerecentexperimentshave,forthemostpart,substantiatedthesegeneralconclusionsforfull-spectrumirradiances.PetersonandStoffel(1980)found3%urbandepletionforcentralStLouis,withlargeramountsinthewinterthaninthesummer,andsmallerreductionsatsuburbansites.Asimilar-sizedurbaneffectwasreportedforToulousebyEstourneletal.(1983)andforVancouverbyHay(1984).SomewhatlargerattenuationsaregivenforStLouis(7%:MethodandCarlson,1982)andHangzhou(9%:WangandLiu,1982).However,somemorerecentinvestigationshavefoundextremelylargeexcessattenuationsincitieswithsignicantindustrialaerosolorphotochemicalsmog.StanhillandKalma(1995)detecteda33%decreaseininHongKongovera35yearperiodthatcannotbeascribedtoachangeincloud-coverfrequencyandtowhichtheyattributethevirtuallyabsenturbanwarmingofthatcity.CentralMexicoCity,notoriousforitspoorairquality,showsanaverage22%smaller,withlargerdepletionduringperiodsofweakwindsandhighrelativehumidity(JaureguiandLuyando,1999).ThetemporalvariabilityofabsorptionbyurbanaerosolsisemphasizedbyHetal.(1990)forFrankfurt.Cerveny(1989)usesaradiativetransfermodeltoshowthat‘shadowing’ofneighbourhoodsdistantfromapollutantcloudmayproducelargepercentageattenuationsatlowsolarelevations,butthatthiseffecttendstobelostindailytotalsbecauseofthesmallirradiancesatthosetimes.Recentyearshavebroughtanincreaseininterestinurbaneffectsonthespectrumofsolarradiation,frequentlybecauseofthepotentialbiologicalimplicationsofsuchchanges.Lorenteetal.(1994)measuredspectraldistributionsfordifferentturbidityconditionsinBarcelona.Hugechangesinthebeamultraviolet(UV)portionofthespectrumarenoted(25%),withcompensatingincreasesindiffuseUV.Jacovidesetal(1998)andRepapisetal.(1998)foundsimilarresultsforAthens,Greece,andnotethatUV-BismorestronglyattenuatedthanthelongerwavelengthUV-A.Photosyntheticallyactiveradiationisalsosignicantlydepletedunderverypollutedatmosphericconditions:Jacovidesetal.(1997)foundreductionsintheglobalirradianceofthisquantityofmorethan18%insomecircumstances.Incominglongwaveradiationisgenerallybelievedtobeincreasedbyurbanareas,eitherduetotheincreasedwarmthoftheurbanatmosphere(UHI)orenhancedatmosphericemissivitybroughtaboutbythepresenceofparticulateandgaseouspollutants(Oke,1979b,1982).Suckling(1981)foundconsistentlylargerinBrandon,Manitoba,comparedwiththeruralenvirons(average10%increase,maximum20%).SlightlysmallerpercentagechangesfoundbyEstourneletal.(1983)forToulousewereshowntobelargelyaresultofincreasedurbanatmospherictemperaturesratherthanpollution.Incontrast,Tapper(1984)attributestheCopyright2003RoyalMeteorologicalSocietyInt.J.Climatol.:1–26(2003) URBANCLIMATEinabilityofestimationequationstoreproducemeasuredtoaneglectoftheemissivityexcessinducedbypollutants.RadiativeprocessestheUCLhavebeenamajorfocusofactivityduringthepasttwodecades.Buildingsandotherroughnesselementsintownsinterceptthedirectsolarandreducediffusesolarandsky-derivedlongwaveuxdensities,yetmayalsoenhanceirradiancebyreectionofsolaroremissionoflongwaveradiation.MeasurementsoftheseeffectsortheirconsequencesarepresentedbyAdebayo(1990),forIbadan,andMills(1997),forascalemodelofanidealizedurbancanopy.ModelsforcomputingradiationloadsonthefacetsofarbitrarybuildinggroupsincludethoseofArneld(1984)andVerseghyandMunro(1989a,b).ComputationoftheradiationexchangesamongtheinclinedandobstructedfacetsofUCs,andbetweenthemandexternalradiationsources,isarelativelystraightforwardgeometricalexerciserequiringcomputationofskylineobstructions(e.g.Franketal.,1981a,b;Arneld,1982a,1984)andviewfactorrelationshipsamongthefacetsofthecanyonform(Steyn,1980;JohnsonandWatson,1984,1985;SteynandLyons,1985;Steynetal.,1986;WatsonandJohnson,1987;Chapmanetal.,2001;Grimmondetal.,2001).Perhapsasaresult,anumberofcanyonradiationsimulationmodelsexist.TheUCradiationmodelofArneld(1976)seekstoprovideageneralmethodofcomputingsolarandlongwaveirradiancesoncanyonfacets,usingviewfactorgeometryandaschemeforrepresentingmultiplereections,basedbothoncanyongeometryanddistributionsofsurfacematerials.Thismodelwasemployedtoevaluatecanyonalbedo,emissivityandradiationbudgetsfordifferentland-usezoneswithinColumbus,Ohio,byArneld(1982b)andtoassesstheroleofcanyongeometryonsolarradiationaccesstoUCsbyArneld(1990a).ThismodelsuccessfullysimulatedtheurbansurfacetopalbedosobtainedinscalemodelexperimentsbyAida(1982)(Arneld,1988)andwasvalidatedfornocturnallongwaveuxesbyVoogtandOke(1991).AidaandGotoh(1982)andKondoetal.(2001)offermethodsforsimulatingcanyontopalbedos,asafunctionofaspectsofUCgeometry.TerjungandLouie(1973,1974),BruhlandZdunkowski(1983)andZdunkowskiandBruhl(1983)employtheprinciplesofradiationgeometrytoevaluatethesolarand/orlongwaveradiationbalancesofcanyonfacets.SieversandZdunkowski(1985)employtheBruhlandZdunkowski(1983)schemetosimulatethealbedoofstreetcanyons,againusingtheAida(1982)scalemodelmeasurementsasvalidation.UrbanalbedomeasurementsfromsatelliteplatformsarepresentedbyBrest(1987),KidderandWu(1987),SolerandRuiz(1994)andVukovich(1983).ThelargespatialvariabilityinalbedofoundbyKidderandWu(1987)forurban–ruralareaswithasnowcoverisconsistentwiththesimulationresultsofArneld(1982b).Althougheachoftheradiationstreams(incomingandoutgoingsolarandlongwaveradiation)ismodiedbyurbanization,thereappearstobelittlereasoninmostcircumstancestochallengethenotion,rstofferedbyOke(1974),thatisunlikelytovarybyalargeamountbetweenurbanandruralareas.Decreasedwithinacityispartiallycompensatedforbythegenerallyloweralbedoscharacteristicofbuiltlandscapes(Arneld,1982b).IncreasedduetoenhancedurbanatmosphericemissivityandtheUBLUHIwilltendtobeoffsetbytheeffectofthesurfacetemperatureUHIonlongwaveemittance.Arneld(1982b)simulatedrural–centralcitydifferencesandconcludedthattypicalpollutionandheatislandeffectsontheincominglongwaveandsolaruxesaresuchthatthedifferencecouldbepositiveornegativebut,intheabsenceofasnowcover,willtendtobesmall.ThisgeneralizationhasbeenshowntobevalidtoafewpercentbythemeasurementsofOkeandMcCaughey(1983),KerschgensandHacker(1985)andCleughandOke(1986),hasalsobeenshowntobeconservativewithinparticularland-useclasses(e.g.Schmidetal.,1991).Therearesomeinterestingexceptionstothisgeneralization,however:Grimmondetal.(1996)measured19%foraLosAngelessuburbwith30%treeandshrubcoverthanforanearbyneighbourhoodwith10%cover.3.5.UrbanfacetenergybalanceVirtuallyallobservationalandmodelledestimatesofthecomponentsoftheenergybalanceofurbansurfaceshavepostdatedtheyear1970andsothepreponderanceofourknowledgeonthismostfundamentalareaofurbanclimatologyhasbeenaccumulatedduringthereviewperiod.Thisdiscussionwillstartwiththeenergybalancesoffairlydistinct,planefacets,basedonEquation(1),andwillmovetolargerspatialscalesinsubsequentsections,includingbothobservationalandmodellingapproaches.Copyright2003RoyalMeteorologicalSocietyInt.J.Climatol.:1–26(2003) A.J.ARNFIELDAsaedaandCa(1993)developandvalidateanumericalmodeltoinvestigatetheroleofheatandmoisturetransportwithinbothexposedsoilandsoilcoveredbyasphaltandconcrete.‘Waterproong’ofthesoilbytheimperviouslayerreducestheevaporativesink,leadingtohighsurfacetemperaturesandanupward-,evenatnight.Increasingthedepthofthelayerincreasesduringthedayandproducesmorewithdrawalofheatatnight.Anandakumar(1999)measuredonanannualbasisforadryasphaltsurface,withbothuxesexhibitinganout-of-phaserelationshipwith.IrrigatedlawnvegetationwasfoundbyOke(1979a)toexhibitveryhigh,inexcessof,supportedbymicroscaleadvectionfromcontiguousdryimpermeablesurfaces,suchasdriveways,roadsandbuildingfacets.Incontrast,Suckling(1980)foundforasuburbanlawn,similartomoistruralsurfaces,foranenvironmentinwhichadvectionwaslesslikely.Contrastsintheenergybalancesofrooftoplawnsandaconventionaltar–gravelroofwerefoundbyJonesandSuckling(1983)tosuppresssurfaceheatinggreatly.KjelgrenandMontague(1998)usedatwo-layercanopymodeltoevaluatetheroleofthegroundsurfacetype(asphaltorturfgrass)incontrollingfortrees.Nosimpleconclusionwasreached,asthehighersurfacetemperaturesoftheasphaltbothincreasethelongwaveuxtothecanopy,henceincreasingtranspiration,andleadtohigherleaftemperatures,whichcausedstomatalclosure.Atslightlylargerscales,urbanparkenergybudgetshaveattractedtheattentionofSpronken-SmithandOke(1999).Nocturnalcoolingofascalemodelparkwasshowntodependontheinteractionofskyviewfactor,controllingnetlongwaveradiation,andthermaladmittance,whichdetermines.Latentheatlossesplaylittleroleatnight,buttheymayhavebeeninstrumentalinestablishingtherelativecoolnessoftheparkatsunset.Theroleofadvectioninmaintaininghighfromanirrigatedpark,withadownward-directedsensibleheatux,wasdemonstratedbySpronken-Smithetal.(2000).3.6.UCenergybalanceWithintheUCL,energybudgetsaregovernedbymicroscaleprocessesmediatedbythesiteconditionsoftheimmediatesurroundings.Theseconditions,consistingofthespecicsofsurfacethree-dimensionalgeometry,substratematerialsandwetness,windexposure,shadingandthelike,aresubjecttomyriadvariationswithinrealcities.Asameansofdistillingwhatiscommontomanyurbanlandscapesfromwhatisuniquetotheparticulararchitectural,cultural,andgeographicalmilieu,muchurbanclimateworkhasadoptedtheconstructoftheUC.TheUCconsistsofthespacebetweenadjacentbuildings,comprisingthesolidsurfacesonthefacesofthosebuildingsandthestreet,theenclosedairvolume,theopen‘top’atrooflevelandthe‘ends’ofthecanyonatstreetintersections,throughwhichmassandenergyuxesmayoccurhorizontally.Thecanyonaspectratio(AR),theratioofwallheighttobuildingseparation,hasbeensuggestedbymanyasamajorcontrolonowwithintheUC,onturbulentintensities,onradiativeenvironmentsand,hence,onthetotalenergybudget.Theliteratureofurbanclimatologyyieldsveryfewempiricalenergybudgetstudiesinanexplicitframework.NunezandOke’s(1977)pioneeringinvestigationofanorth–southUCinVancouver,Canada,showedthatthetimingandmagnitudeoftheenergyexchangesonthedifferentfacetsdifferedconsiderably,inresponsetopatternsofradiationreceiptandloss,butthattheenergybalanceforthesystemasawholewasrelativelysmoothandsymmetric.Byday,canyontopnetradiationismainlydissipatedinthesensibleheatuxtotheUBLabove,withatnoonandthemajorityoftheremaindergoingtothesubstrateheatux.Alatentheatuxfromthecanyonooranddown-canyonadvectionwereothersecondarycomponentsofthebudget.Bynight,andthenetlongwaveirradiancebalancedeachother.Incontrast,theYoshidaetal.(1990–91)experimentalcanyon(Kyoto,Japan)wasdry,orientedeast–west,withanAR94.Byday,attheUCtop,withtheremainderbeingstoredwithintheurbanfabric.Nomeasurementsorestimatesofhorizontaluxeswithinthecanyonweremade.Theseauthorspointoutthatthecanyontopactedasaweakerheatsourcethantheadjacentroofareas,whichtheyattributetotheextensiveshadingofcanyonsurfacesandthelowwindspeedsthere.Bynight,theenergybudgetofthecanyonasawholewassimilartothatofNunezandOke(1977).ArneldandMills(1994b)studiedamarkedlyasymmetricdry,east–westUC.Diurnalpatternsresembledthoseintheprevioustwostudies,butmeasurementsshowednotablecontrasts.Byday,Copyright2003RoyalMeteorologicalSocietyInt.J.Climatol.:1–26(2003) URBANCLIMATEboththeturbulentandcirculation-drivencomponentsofthisuxweresmallinabsolutemagnitude,subjecttoirregulaructuationsanduncorrelatedwith.Bynight,theturbulentuxwasweaklyupward-directed.Severalhypotheseswereofferedtoaccountforthesecharacteristics,includingthelackofaclearlydenedvortexcirculation,theadvectionofwarmairoverthecanyontopfromadjacentroofsandtheshading/shelterargumentadvancedbyYoshidaetal.(1990–91).Indirectlinesofevidenceareofferedthatmayaccountforthebulkoftheenergybudgetresidualbynight,suggestingasimilarbalancetothatfortheVancouverandKyotocanyonsByday,however,analysissuggestsaremainingresidualofupto200Wm,which,itisargued,isdissipatedbydown-canyonadvectionand,toalesserextent,bybulkowthroughthecanyontop,evenwithperpendicularwinds.TheseresultssuggesttheintriguingpossibilitythatthedaytimepartitioningofnetradiantenergywithindrycanyonsmayperhapsbeafunctionoftheARofthecanyon,withsensibleheatproductionthroughthecanyontopdecreasingasaspectratioincreases.Unfortunately,thesethreestudiesdonotrepresentawell-structuredexperimentalinvestigationofthishypothesisbecausetheARwasnottheonlydifferencebetweenthesestudies—weatherconditions,canyonorientation,canyonasymmetryandotherfactorswerenotheldconstant,andsomayhaveinterferedinanypossiblerelationshipbetweenARandcanyonNumericalsimulationusinganappropriatelyvalidatedcanyonenergybudgetmodelisafarmoreeffectivemethodofassessingthedependenceofUCenergybudgetquantitiesonsynopticconditionsandcanyoncharacteristics.That,andperhapstheassumedgeometricalsimplicityoftheUCform,havemadesimulationthemethodologyofchoiceinmostUCenergybudgetinvestigations.AmajorlimitationinmodellingtheenergybalancesofthefacetswithinUCsisthelackofwell-foundedtheoryfortheturbulentuxeswithinthecanyonairspace,asisavailableforthehorizontal,uniformsurfacesmorecharacteristicofruralsites.NunezandOke(1980)provideamodelofthedaytimeUCenergybudget,buttheprocedureistheoreticallyrigorousonlyinitscalculationsoftheabsorbedsolarradiation.Computationand,hence,(asaresidual)ishighlyparameterized,basedontheempiricaldataofNunezandOke(1977).Suchaprocedureiscontextspecicandcannotbeexpectedtoyieldgoodestimatesofenergybudgetsforcanyonsandconditionsmuchdifferentfromtheoneusedtocreatetheparameterizations.TheURBAN3modelofTerjungandLouie(1974)hasbeenusedextensivelyininvestigatingtheclimaticenvironmentsofcities,asthesedependoncitysurfacestructureandweatherconditions,andhascontributedsignicantlytothecausalexplanationofnear-surfacecityclimates.URBAN3isnotstrictlyaasitsimulatesenergybudgetsforthetotalurbansurfacesystem,includingroofs.ItsvalidationconsistedofacomparisonwithsurfacetemperaturedataforLosAngelescitysurfacesduringclear,relativelycalmconditions,anevaluationthatisprobablynotasrigorousasvalidatingwithuxdata.Theradiationuxesarehandledtheoretically,usingradiationgeometryandviewfactorconcepts,andtheturbulentuxesemployan‘exchangecoefcient’approach(e.g.ColeandSturrock,1977),basedonwindspeed.TerjungandO’Rourke(1980a)concludethattwoprimarycausalfactorsintheUHI,sensibleheatuxandoutgoinglongwaveradiation,showconsiderablespatialvariabilitywithinamodelcityoftypicalNorthAmericanstructureandcastdoubtonthevalidityoftheenergeticlowerboundaryconditionsinmanymesoscalemodels.TerjungandO’Rourke(1980b)showthatmanyaspectsofurbanfacetenergybudgetsincityzonesofdifferingphysicalstructureexhibitcounterintuitivecharacteristics.ThisversatilemodelwasusedbyTerjungandO’Rourke(1981a)toanalyseenergybudgetsastheyvarywithcitystructureandwascombinedwithaplantcanopymodel(TerjungandO’Rourke,1980c)toelucidatethephotosyntheticandevaporativeroleofstreet-levelvegetationbyTerjungandO’Rourke(1981b)andO’RourkeandTerjung(1981a,b).ThemodelwasdrivenwithcharacteristicweatherconditionsforseveralsynopticweathertypesbyTodhunter(1989)andTodhunterandTerjung(1990)torevealthedependenceofthemagnitudeanddirectionofenergybudgetcomponentsonsynoptic-scalecontrols.Todhunter(1990)investigatedtheroleofcanyonorientationandasymmetryoncanyonenergybudget,emphasizingtheroleofthediurnalpatternofsolarirradiationonthetotalenergybudget.AnotherUCenergybudgetmodelthatwasdescribedearlyinthereviewperiodisthatofSieversandZdunkowski(1986).Thiscombinestheirgeneralizedstream-function–vorticitymethodwindmodelwiththeradiationmodelsofBruhlandZdunkowski(1983)andZdunkowskiandBruhl(1983)tosimulatetheCopyright2003RoyalMeteorologicalSocietyInt.J.Climatol.:1–26(2003) A.J.ARNFIELDtemperaturedistributionoverthecross-sectionofacanyonundermid-latitudesummerconditions,withandwithoutacentralvegetatedstriponthecanyonoor.Theresultingdistributionsoftemperatureshowsomepromisingcorrespondenceswithobservedtemperaturepatterns(e.g.NakamuraandOke,1988),althoughtheauthorsadmittothesomewhatarbitrarynatureofmanyoftheinputparameters,whichwerechosentodemonstratethecapabilitiesofthemodel.Theschemeisatwo-dimensionaloneanddoesnotincorporateadvectioneffects.GiventhecomplexityoftheUCsystem,severalworkershavesoughttorestrictconsiderationtoconditionsunderwhichsimplicationsintheenergybalancecanbeintroducedwithoutunduelossofrealism.Inparticular,undernocturnalconditions,withcalmwinds,solarradiationandtheturbulentuxesofheatandwatervapourmaybeneglected,leadingtoasimpliedenergybudgetinwhichsubstrateheatlossisdissipatedinthenetlongwaveirradiance.Suchabudgethassomeempiricaljustication(e.g.NunezandOke,1977).Simulationsofnight-timesurfacecoolingunderthesesimpliedconditionshavebeentheobjectiveofmodellingexercisesbyArneld(1990b),Okeetal.(1991),Johnsonetal.(1991)andSwaid(1993a),allofwhichhavedemonstratedtheimportanceofbothcanyongeometryandmaterialsingivingrisetotheurbansurfacetemperatureexcessovertheruralenvirons.TheSTTCmodelofSwaidandHoffman(1989)employstheconceptoftheUCtoadjustbackgroundmeteorologicalstationtemperaturedataforuseinbuildingenergy-usemodels.ItwasextendedbySwaidandHoffman(1990–91)andSwaid(1993b)toincorporatetheeffectsofanthropogenicheatsourcesandarticialshadingofcitystreetsfortemperaturecontrolpurposes.Themodelissubjecttoanumberofphysicalassumptionsandconstraints(ElnahasandWilliamson,1997),however,whichlimititsgeneralapplicabilitytoaparticularcanyonandmeteorologicalsituation.ElnahasandWilliamson(1997)haveproposedmeansofavoidingtheselimitations,butthishasbeenachievedbyemployinganumberofparameterizations(e.g.exchangecoefcients,anevapotranspirationmodel,windvelocitymultipliers)thatmaylimitthemodel’sgenerality.TheschemeofMills(1993)combinesthewindmodelofNicholson(1975),theArneld(1976,1982b)canyonradiationbudgetmodelandanovelprocedureforevaluatingtemperaturechangeintheairasitcirculateswithintheUC.Themodelwasfoundtopredictsatisfactorilythecanyonfacetsurfacetemperaturesandnetradiation(MillsandArneld,1993),andtocharacterizetheofthecanyontopsensibleheatuxtotheUBL.However,themechanismresponsibleforthisheatexchange(thevortexcirculation)wasnotapparentinthedatasetusedtovalidatethescheme(ArneldandMills,1994a,b);theobservationsalsosuggestedtheimportanceofdown-canyonadvectiveuxesandbulkowthroughthecanyontop,neitherofwhichispresentintheMillsmodel.ArneldandGrimmond(1998)employthesameradiationschemeasMills(1993),butasimpliedwithin-canyonwindmodel(applicationofaconstant‘shelterfactor’toabove-canyonwinds)toinvestigatethephaserelationshipsbetweencanyonsystemsubstrateheatuxandnetradiation.ThemodelreproducedthecanyonsystemenergybudgetofNunezandOke(1977)reasonablywell,butitshowedsomeerrorfortheindividualfacetbalances.Virtuallyidenticalschemesforhandlingtheradiationbudgetandsubstrateheatow,butwithdifferentapproachestoturbulentexchangewithinthecanyonairspace,havebeenpresentedbyHerbertetal.(1997,1998),Arneldetal.(1998)andArneld(2000b).Theworkreportedin1997and1998usesacomputationaluiddynamicalapproachtoairowaroundandwithinthecanyonwithaturbulencesub-model,basedonPatersonandApelt(1989),coupledwiththescalardispersionmodelofJohnsonandHunter(1995).ThismodelisabletoreproducemanyobservedaspectsofUCairow,thermalbehaviourandenergyexchange,butithasnotyetbeenformallyvalidated.Arneld(2000b)replacesthewindanddispersionmodelwithaparameterizedschemeinwhichthewindatrooflevelisresolvedintoacross-anddown-canyoncomponents.TheformerdrivesthecanyonvortexmodelofHotchkissandHarlow(1973)andthelatterdenesalogarithmicproleofwindvelocityforthedown-canyonow.Thesecomponentsofthewindarecombinedwithinthecanyonandareusedinanexchangecoefcientparameterizationtoevaluatesensibleheatux.ThemodeliscomputationallyeconomicalandreplicatestheNunezandOke(1977)canyonfacetandsystemenergyuxeswithexcellentveracity.Sakakibara(1996)alsopresentsacanyonmodelandusesittocontrastthecanyonenergybudgetwiththatofanopenparkinglotsite.Copyright2003RoyalMeteorologicalSocietyInt.J.Climatol.:1–26(2003) URBANCLIMATE3.7.UrbanneighbourhoodenergybalanceFewareasinurbanclimatologyhaveundergonesucharadicaltransformationasourunderstandingofenergybudgetsatthelocalscale,correspondingtodistinctiveneighbourhoodswithinacity.Inparticular,verylittlewasknownabouttheenergybalanceoflandusespriortothereviewperiod,despitethefactthatthistypeoflandscapeoccupiesthemajorityoftheareaofmostcitiesinNorthAmerica.Thisisparticularlycritical,sincethesesuburbanareasoftenpossesslargegreenspacefractions,areoftenirrigated,andpotentiallydeviatemarkedlyfromtheviewofthecityasa‘desert’thatfrequentlyprevailedpriorto1980.Theseareasofferparticulardifcultiesintermsoftemporalandspatialsamplingandtheapplicabilityofconventionalboundary-layertheory.Inparticular,theenergybalanceframeworkadoptedatthisscaleisthatofEquation(2),withtheuppersurfaceofthevolumewellabovethebuildingroofstoavoidthecomplexityoftheroughnesssublayer.Thisenhancesthedangerofradiativeandturbulentuxdivergenceovertheatmosphericlayerbetweenmeasurementheightandtheroughnesselements(Funk,1960;FuggleandOke,1976)andnecessitatesconsiderationofthegeometryoftheuxsourceareaupwindofthemeasurementpoint(Section2.1).Okeetal.(1989)suggestthatthedifcultiesofmeasurementinsuchlandscapescanbeovercomewithcarefulsiteselection,considerationgiventotheheightofmeasurementandappropriatetemporalsamplingprocedures.etal.(1980)madepioneeringBowenratio–energybudgetdeterminationsofenergyexchangeforasuburbanareainVancouver.wasalwayssignicantandBowenratiosweremostlyintherange0.5–1.0.Abruptday-to-daychangesinenergypartitioningbetweenthetwoturbulentuxeswerefoundthatwereunrelatedtoprecipitationevents.Itisspeculatedthatthisfeaturereectsirrigationpracticesbyhomeownersinresponsetodryingcycles.Ratesoflatentheatlossoftenequalledorexceededthe‘equilibrium’rate,whichetal.(1980)attributetoenhancedratesofevapotranspirationfromirrigatedlawns,fedbythecity’spipedwatersupplyanddrivenbymicroscaleadvection(Oke,1979a).OkeandMcCaughey(1983)presentsimultaneouslymeasuredenergybudgetsforasuburbanandruralsurfaceformostlyclearconditionsafteraperiodofhighprecipitation,withmoistsoil.Unexpectedly,suburbanevaporationratesweregreaterthantheruralrates,averagingabout80%of.Theauthorssuggestthatmicroscaleadvectionfrommoistgardensandlawns,especiallyunderhighradiationconditionswhenimpermeablesurfacesaredryandhot,isresponsibleforthisphenomenon,sincesuburbanwaterlosswassmallerthantheruralwaterlossundercloudierconditionswhensuchadvectionislikelytobeweaker.ThesamesiteswereusedbyCleughandOke(1986),but,inthiscase,thedispositionofenergybetweentheturbulentuxeswasasexpected.was4%largerandwasabout50%largerinthesuburbanarea,leadingtoBowenratiosofabout0.5fortheruralsiteand1.3forthecity.Largeday-to-dayvariationsinuxpartitioningatthesuburbansitewereobservedandareinterpretedintermsoftheMcNaughtonandJarvisparameter,whichindexestherelativedependenceofevaporationonradiativeandadvectiveforcing.Theaerodynamicroughnessinthesuburbanenvironmentcouplesthesurfacecloselytothemixedlayer,thecharacteristicsofwhichvarywithsynopticconditions.CleughandOke(1986)alsosuggestthatthismaybetheexplanationforthedifferencebetweentheirresultsandthoseofOkeandMcCaughey(1983).Spatialvariabilityinenergybalancesoveranapparently‘homogeneous’suburbanareainVancouverwasfoundbySchmidetal.(1991)tobefargreaterthanexpected.Thoughwasrelativelyconservativespatially(attributedtothesurfacealbedo–surfacetemperaturefeedback),turbulentenergyuxdensitieswerefoundtovaryby25–40%athorizontalscalesof10–10m,asaresultoftheshiftingovertimeofthesourceareawithwindspeedandstability(Section2.1).Storageandanthropogenicheatuxesalsoexhibitedsignicantspatialvariabilitybasedonthemorphologyoftheurbansurface.Hence,variabilityinmeasuredturbulentuxesisamanifestationofvariabilityinsurfacecovertypesatthemicroscaleastheyaresensedbytheturbulentuxinstrumentationonthemeasurementtower.Grimmond(1992)describestherstspringandwinterenergybalancemeasurementsforsuburbanterrain.Forspringtime,therelativesizesofthedifferentuxesweresimilartothesummercasesdescribedabove,butwintertimedatashowedanenhancedrelativemagnitudeforlatentheatux,whichwasthelargestuseofthenetradiationunderthemoistwintermaritimeWestCoastclimate.Notunexpectedly,anthropogenicheatuxplayedamoresignicantroleinwinter.Copyright2003RoyalMeteorologicalSocietyInt.J.Climatol.:1–26(2003) A.J.ARNFIELDSummertimeenergybudgetsforfourNorthAmericancities(Tucson,Sacramento,Chicago,LosAngeles)withdifferentmorphologiesandprevailingclimateswerecomparedbyGrimmondandOke(1995).Thoughtheabsolutemagnitudesoftheensembleaverageenergyuxesvaried,asexpected,thediurnaltrendsinuxpartitioningwerequitesimilar.Theresultssuggestthat,forcitieswhereirrigationispractised,atypicalvaluefortheBowenratiois1.5butthatthisissomewhatlower(0.8–1.0)forlocationswithfrequentnaturalwaterinputsviaprecipitation.Typicalpartitioningofwas40%,30%and30%,respectively.ThedaytimeaverageBowenratiowasalsofoundtobeinverselyrelatedtotheareairrigated.etal.(1996)exploredtheroleoftreesinthesuburbanenergybudgetandfoundthat,inabsolutevalue,alluxes,including,wereincreasedatasitewithgreatertreecover,asaresultofincreasedbroughtaboutbyreducedalbedoandlowerradiativetemperature.However,asafractionofwereincreasedandwasreduced.MexicoCityhasbeenthesiteofthreeenergybudgetstudiesatasimilarspatialscaletothosedescribedaboveforNorthAmericancities.Okeetal.(1992)measuredatasitewithinamixedresidential,commercialandindustrialarea,usedtheOHMofGrimmondetal.(1991)toparameterizeandobtained(summedwith)astheresidual.DerivedBowenratiosfortheensembleaverageenergybudgetwerenotdissimilartothosefortemperatecities(around1.1onadailybasis),aremarkablysmallvalueforacityinwhichonly21%oftheplanareaand8%ofthethree-dimensionalsurfaceisvegetated,afactattributedtotrees(excludedfromthesurfaceanalysis),anduseandleakageofpipedwater.Thetermswereofsimilarmagnitude,whichimpliesamuchlargerroleforthelatterthanistypicaloftemperateurbanareas.Therstenergybalanceforadry,denselybuilt,city-centresite(forMexicoCity)isdescribedbyOkeetal.(1999).Asexpected,evaporationwassmallandtheBowenratiowaslarge(abouteight).Surprisingly,duringtheday,thefractionofthatwaschannelledintostoragewithintheurbanfabricwasremarkablylarge(58%of,evenlargerthaninOkeetal.(1992)),sothatwassmallerthanexpectedforsuchasite.Atnight,withdrawalofthisheatbalancedthenetlongwavelossor,insomecases,exceededit,leadingtoan(implyinganegativepotentialtemperaturegradient).Incontrasttothisstudy,Barradasetal.(1999)measuredtheenergybalanceatavegetatedsuburbansiteinMexicoCityduringthedryandwetseasons.Budgettermswereverysimilartothoseexpectedforruralsitesunderconditionsofsoilwateravailabilityandmoisturestress,withaverageBowenratiosof1.9andnearzeroforthedryandwetseasons3.8.TheurbanneighbourhoodwaterbalanceTheurbanwaterbudgetforavolumeextendingfromaboutroofleveltothedepthinthesubstratewherenonetexchangeofwatertakesplaceduringthetimeperiodrelevanttotheprocessunderinvestigationcanbewrittenasS((GrimmondandOke,1991)whereisprecipitation,isthepipedwatersupplyofthecity,isthewatervapourreleasedduetoanthropogenicactivities,suchascombustion,isevapotranspiration,isrunoff,isthenetadvectionofmoistureforthevolumeandisthechangeinwaterstorageduringthetimeperiod.Thewaterbalanceislinkedtotheenergybalancethrough,whichisvirtuallyproportionaltoThetermsinthisequationmaybeexpressedasmassesordepthsperunittime.Whentheformerunitsare,whereisthelatentheatofvaporizationofwater.etal.(1986)employthisbalanceequation,withsettozero,toconstructamodelforthecomponentsoftheurbanwaterbalance,intendedtobedrivenbystandardclimatedataandemployingsimplesite-specicparameters.Theschemeincludesanevaporationmodelofthecombinationtype(PriestleyandTaylor,1972)andperformscalculationsforsuburbanareasbasedonthreedistinctsurfacetypes:impervious,perviousirrigatedandperviousunirrigated.ThismodelisappliedtoaVancouversuburbancatchmentbyGrimmondandOke(1986)forperiodsrangingfromadaytoayear.Aparticularfocusistheroleofirrigation(mainlygardensprinklingbyhomeowners)inthewaterbalance.PipedwateruseisCopyright2003RoyalMeteorologicalSocietyInt.J.Climatol.:1–26(2003) URBANCLIMATErelatedtoprevailingweatherconditions,butinamannerthatiscomplexandinvolvesafeedbacksystemthatinvolveshumanperceptionanddecisionmakingaswellasbiophysicalcontrols.Inparticular,followingdeclinesaswaterstoresaredepletedandpipedwateruseremainslow(below)forseveraldays,afterwhichincreasestoroughlyequal,whichreboundsinresponsetotheavailabilityofirrigationwater.Theauthorsspeculatethathighratesofevaporationaremaintainedbymicroscaleadvectionofwarm,dryairfromimpervioustovegetatedsurfacesandbytheentrainmentofdryairintotheUBLbypenetrativeconvectionenhancedbytheroughnessofthecitysurfaceandanunstableatmosphere.etal.(1980),OkeandMcCaughey(1983),Okeetal.(1992)andGrimmond(1992)allreportunexpectedlyhighevaporationratesfromcitysites;theGrimmondetal.(1986)modelprovidesatheoreticalframeworkwithinwhichtoanalysesuchoccurrences,astheserelatetotheparticularcharacteristicsofurbanareasandtheprovisionofpipedwatertotheexternalenvironmentthroughirrigation,streetwashingandthelike.AmodeltopermitcalculationofevapotranspirationfromandinterceptionbyurbanandsuburbanareasisgivenbyGrimmondandOke(1991).Itadaptsthewell-establishedPenman–Monteith–Rutter–Shuttleworthevapotranspiration–interceptionmodel(Penman,1948;Monteith,1965;Rutteretal.,1971:Shuttleworth,1978),originallydevelopedforforests,tosuburbanuse,andemploystheSchmidandOke(1990)sourceareamodelandtheOHMforetal.,1991).Anthropogenicheatuxisincludedandsurfacewateravailabilityisdescribedusingasurfaceresistanceconcept.Themodelprovidesrealistichourlyanddailyestimatesofurbanevapotranspirationandsurfacewaterstate.4.THEURBANHEATISLAND4.1.ObservationalstudiesofheatislandsThestateofknowledgeontheintensity,spatialandverticalstructure,dynamicsanddeterminantsoftheUHIatthebeginningofthereviewperiodissummarizedbyOke(1982).Hisreviewrelatestotemperaturepatternsderivedfromnear-surface(approximatelystandardscreen-level)airtemperatureobservations.ThemethodsusedtodescribeUHIsduringthepasttwodecadesdonotdiffersignicantlyfromthoseemployedpreviously,andallpossessthelimitationsoutlinedbyLowry(1977)fortheunequivocalidenticationof‘urbaneffects’.Examplesofthesemethodsaretimetrendsatasingleurbanstation(e.g.TarletonandKatz,1995;Montetal.,2000;TereshchenkoandFilonov,2001),comparativetimetrendsatoneormoreurbanstationsandoneormoreruralones(e.g.Schmidlin,1989;Mageeetal.,1999;Philandrasetal.,1999),statisticsonurban–ruraldifferencesbasedonpairsofstationsorgroupsofstations(e.g.Ackerman,1985;etal.,1990;Moreno-Garcia,1994),networksofxedstationswithinandaroundacity(e.g.Hsu,1984;Kuttleretal.,1996;Morrisetal.,2001),transectsacrossanurbanarea(e.g.Yamashitaetal.,1986;Westendorfetal.,1989;GohandChang,1999;Kumaretal.,2001;Ungeretal.,2001)andweekday–weekenddifferences(FiguerolaandMazzeo,1998).Winkleretal.(1981)showedtheimportanceofcorrectingforobservationtimeandsitelocationincorrectlydeningthemagnitudeoftheUHIandTarletonandKatz(1995)stresstheimportanceofincorporatingtrendsintemperature,aswellasin,inexplainingchangesinextremeUHItemperatureevents.Oke’s(1982)observationthat‘[w]hilstthereisarelativeabundanceofresearchonthenatureofheatislandsintemperateclimates,thereisadearthregardingthoseofequatorial,tropical,sub-polarandpolarsettlements’isprobablylessvalidtoday.Heatislandstudiesreportedinthepasttwodecadesincludethosefrom:(a)equatorialwetclimates—Singapore(Tso,1996;GohandChang,1999),KualaLumpur(Tso,1996)andIbadan(Adebayo,1987);(b)tropicalwet–dryandmonsoonalclimates—Guadalajara(TereshchenkoandFilonov,2001)andMumbaietal.,2001);(c)tropicalhighlandclimates—MexicoCity(Jauregui,1997);(d)tropicaldeserts—KuwaitCity(Nasrallahetal.,1990),Phoenix(Hsu,1984;TarletonandKatz,1995);(e)subtropicalclimates—Johannesburg(Goldreich,1992);Copyright2003RoyalMeteorologicalSocietyInt.J.Climatol.:1–26(2003) A.J.ARNFIELD(f)high-latitudelocations—Goteborg(EliassonandHolmer,1990;Eliasson,1996b;HolmerandEliasson,1999),Fairbanks(Mageeetal.,1999)andReykjavik(Steinecke,1999).Mediterraneanclimatesseemtohavebeenparticularlywellservedbyheatislandstudiesduringtheperiod;resultshavebeenreportedforAthens,Greece(Philandrasetal.,1999),thethreeSpanishcitiesofBarcelona(Moreno-Garcia,1994),Madrid(Yagetal.,1991)andGranada(Montetal.,2000)andvariouslocationsinIsrael(Goldreich,1995).TheverticalstructureoftheUHIisexploredbyTapper(1990)andShahgedanovaetal.(1997).Thefor-merfoundevidenceof‘crossover’(i.e.urbantemperaturesthanruralonesaloft)inChristchurch,NewZealand,aboveabout290m(DuckworthandSandberg,1954;Bornstein,1968).ThelatterfoundanunexpectedlyhighfrequencyofsurfaceinversionsforasiteinMoscowduringthesummer,whichwasattributedtotheopenstructureoftheareaandthelackofanthropogenicenergyreleaseinthatseason.4.2.DeterminantsofheatislandmagnitudeandstructureThoughtheUHIstudiespublishedinthelast20yearshavebroadenedthegeographicscopeofthephenomenon,thegeneralizationsofferedbyOke(1982)largelyremainunchanged(TableIII).MuchofthisTableIII.ConrmationofUHIgeneralizationsfromOke(1982)inempiricalworkfromthereviewperiod EmpiricalgeneralizationReference UHIintensitydecreaseswithincreasingwindspeedAckerman(1985);Park(1986);Travisetal.(1987);KidderandEssenwanger(1995);Eliasson(1996b);etal.(1996);FiguerolaandMazzeo(1998);etal.(1999);Morrisetal.(2001);UngeretalUHIintensitydecreaseswithincreasingcloudcoverAckerman(1985);Travisetal.(1987);KidderandEssenwanger(1995);Eliasson(1996b);Ripleyetal(1996);FiguerolaandMazzeo(1998);Mageeetal(1999);Morrisetal.(2001);Ungeretal.(2001)UHIintensityisgreatestduringanticyclonicconditionsUnwin(1980);Unger(1996);Shahgedanovaetal(1997);Tumanovetal.(1999);MorrisandSimmondsUHIintensityisbestdevelopedinthesummerorwarmhalfoftheyearSchmidlin(1989);KysikandFortuniak(1999);etal.(1999);Morrisetal.(2001)UHIintensitytendstoincreasewithincreasingcitysizeand/orPark(1986);Yamashitaetal.(1986);HoganandFerrickUHIintensityisgreatestatUnwin(1980);Adebayo(1987);Schmidlin(1989);Djen(1992);Ripleyetal.(1996);Jauregui(1997);Mageeetal.(1999);Montetal.(2000);TereshchenkoandFilonov(2001)UHImaydisappearbydayorthecitymaybecoolerthantheruralenvironsUnwin(1980);Tapper(1990);Steinecke(1999)RatesofheatingandcoolingaregreaterinthecountrysidethanthecityJohnson(1985) Copyright2003RoyalMeteorologicalSocietyInt.J.Climatol.:1–26(2003) URBANCLIMATEworkis,hence,conrmatoryinnature.Thisisnottosuggest,however,thatnewinsightshavenotbeenforthcoming.Nasrallahetal.(1990)foundthattheUHIforKuwaitCitywaspoorlydeveloped,unlikethatforPhoenix,Arizona,inasimilarclimate,andexplainthisdifferenceintermsofcityformandlocationontheArabianGulf.Ripleyetal.(1996)foundmaximumUHIintensitiesforsunnyinSaskatoonunderclear,calmconditions.UnusualseasonalpatternsofUHIdevelopmentwerereportedbyUnwin(1980),whodetectedthegreatesturban–ruraldifferenceinspringandautumn(Birmingham,UK),andbyMageeetal.(1999)andKumaretal.(2001),whofoundthisinwinter(forFairbanks,Alaska,andMumbai,India,respectively).Reykjavik,Iceland,showsatendencyfornegativeheatislandintensities(ruralareawarmerthanurbanarea)insummerandonlyweakdevelopmentatothertimesoftheyear(Steinecke,1999).BrandBudikova(1999)detectedalargerrateofgrowthofPrague’sUHIsincethe1920sinwinterandspringthaninsummer.Intropicalregions,winter–summerdifferenceshaveproventobelesssignicantthanwet–dryseasoncontrasts.BothAdebayo(1987),forIbadan,andJauregui(1997),forMexicoCity,foundalargerheatislandeffectinthedryseasonthanthewetseason,aconclusionconsistentwithlargerthermaladmittanceintheruralenvironsduringtimesofmoistsoils.Indeed,TereshchenkoandFilonov(2001),forGuadalajara,Mexico,foundnegativeheatislandintensitiesintherainymonths.ThehardwarescalemodelsimulationofUCcoolingofOke(1981)presentsthehypothesisthat,forclearskies,calmairandanabsenceofsignicantanthropogenicheating,maximumUHIintensitycanberelatedtothe‘openness’oftheurbanstructure,representedbycanyonARorskyviewfactor,sincethiscontrolstherateofurbancoolingbylimitingnetlongwavelossatstreetlevel.Okewasabletoshowthatthisconceptwascapableofdescribingtheheatislandintensitiesforsettlementsfrommanygeographicalregionswithgreatprecision.Hecautioned,however,thatsucharelationshipmaynotbeexpectedtodescribespatialpatternsoftemperatureaparticularcity,evenforclear,calmconditions,becauseoftheinterferingeffectofthermaladmittance,anthropogenicheatreleaseandotherdifferences.Nevertheless,severalempiricalstudieshaveshownthatairtemperaturesandratesoftemperaturechangewithtimewithincitiesdoshowarelationshipwithmeasuresofurbangeometry;examplesincludeBetal.(1985),Johnson(1985),Yamashitaetal.(1986),Westendorfetal.(1989),Eliasson(1990–91,1992,1994),GohandChang(1999),andMontetal.(2000).TheapplicationofthisconceptinsuccessfullysimulatingthedependenceofUHIintensityonurbangeometryandthermaladmittance(aswellasanthropogenicheatinputsandcloudcover)hasalreadybeendiscussed(Arneld,1990b;Okeetal.,1991;Johnsonetal.,1991;Swaid,1993a).TheroleofallofthehypothesizedcausesoftheUCLheatislandwasexploredintensivelybyOkeetal.(1991),whoconcludethatgeometryandthermaladmittancedifferencesmaybeofapproximatelyequalsignicance.Thereleaseofanthropogenicheatfromwithinbuildingsisalsopotentiallyimportant,butitdependsontheroleofbuildinginsulation.Averyimportantconclusionofthisstudywastheroleofthermaladmittanceingeneratingaheatisland.Moistsoilspossessthermaladmittancevaluesthatarenotdissimilarfromthosefortypicaldenseurbanbuildingmaterials,whichmayexplainthesmall(andnegative)UHIintensitiesfoundforthemoisttropicallocationsabove.Otherfactorsthathavebeendemonstratedtocontroltheform,magnitudeanddynamicsoftheUHIincludesitefactors(e.g.Ackerman,1985;Goldreich,1992;Kuttleretal.,1996),interactionwithurban–ruralhumiditydifferences(HolmerandEliasson,1999)andadvectioncausedbythecirculationgeneratedbytherural–urbantemperaturegradient(Haeger-EugenssonandHolmer,1999).Recently,RunnallsandOke(2000)describedanempiricalmodelintendedtodisentanglethemultiplecontrolsonVancouverUHIintensity,includingtimeoftheday,windspeed,cloudcoverandruralthermaladmittance.4.3.Large-scaleheatislandobservationsandsimulationsItisbeyondthescopeofthisreviewtosummarizemodellingeffortsatscalesinwhichcitiesarerepresentedbysurfaceparametersthatareuniformorapplytolarge-scaleland-usezonesandtheplentifulremotelysensedheatislandstudiesatsimilarscales.Thefollowingisasampleofsuchwork.(a)Scalemodels:Noto(1996),Poreh(1996)andLuetal.(1997).Copyright2003RoyalMeteorologicalSocietyInt.J.Climatol.:1–26(2003) A.J.ARNFIELD(b)Numericalmodels:Baik(1992),BaikandChun(1997),Baiketal.(2001),KimuraandTakahashi(1991),RichiardoneandBrusasca(1989)andTapperetal.(1981).(c)Remotelysensedheatislands:BallingandBrazel(1988),Galloetal.(1993a,b),HafnerandKidder(1999)(alsoincludesmodelling),Kim(1992),Rothetal.(1989a)andVukovich(1983).5.CONCLUDINGREMARKSThisreviewhasattemptedtocharacterizesignicantadvancesin,andthecurrentstatusof,twoareaswithinthebroadereldofurbanclimatologyfortheperiodoftwodecadessincetheestablishmentoftheJournalofClimatology.Therstoftheseisaselectedsetofsmall-scaleclimaticprocessesencompassingatmosphericturbulenceandexchangesofenergyandwater.ThesecondistheUHI.Themajorndingsandrecommendationsofthisexercisemaybesummarizedasfollows.1.Urbanclimatologyhasbenetedprofoundlyfromconceptualdevelopmentsinboundary-layerclimatology,broadlydened.Inparticular,recentenhancementsinourunderstandingoftheroughnesssublayerandoftheimplicationsofheterogeneityanduxsourceareashasfoundextensiveapplicationinboththeinterpretationofurbanenergybalancesandtheirmeasurement.2.Simulationexperimentsinparticular,andothermethodologicalapproachesingeneral,wouldbenetfromstudiesthatcontributetoourdatabaseofthefundamentalphysicalparameterswhichdeterminethedistinctiveclimatesofurbanareas,orthatprovideestimationalgorithmsbywhichtheseparametersmightbeestimatedwithadequateprecisionfrommorereadilyobservableentities.Exampleswouldbemethodsofcharacterizingtheradiativeeffectsofurbanpollutantson,methodsoffromurbanform,thermalandradiativepropertiesofbuildingmaterialsandothercommonsurfacetypesincities,waysofassigningsurfaceresistancevaluesandwaterstoragecapacitiesforpermeableurbanelementsandsimilarparametersusefulinthenumericalmodellingandinterpretationofurbanclimaticsystems.3.ThoughinformationontheformanddynamicsoftheUHIisnowavailableforclimaticzonesoutsidethetemperateregions,itwouldnowbeadvantageoustoextendenergybalanceevaluationsbeyondthoseareas,asexempliedbythepioneeringeldprogramsofOkeetal.(1992,1999)forMexicoCity.ThisisconsistentwiththeobjectivesoftheTRUCEinitiative(Okeetal.,1990–91)andcancontributetothegeneralityofurbanclimatology’sknowledgebase.4.Inaddition,energybalancemeasurementsofthetypenowemployedroutinelyforsuburbanlocationsarerequiredforcentralcitysites.Thesampling,measurementheightandotherobservationalrequirementsforsuchprogramswill,however,provedifculttomeetforcitycentreswithhigh-risebuildings.5.Completewaterbudgetsforurbanareasofdifferenttypesshouldbeconstructed,includingallcomponents(naturalandanthropogenic).Suchstudiesareneededtoelucidatetheroleofevapotranspi-rationinurbanareas,especiallyitsinteractionwithboundary-layergrowth,surfacewateravailability,thepipedwatersupplyandmicroscaleadvection.6.Additionalempiricalobservationsandmethodsofestimationarerequiredforthetwoanthropogenic.Theseareessentiallyuniquetourbanenvironmentsandareparticularlyfascinatinginthattheyintroducephasecharacteristicsintourbanenergyandwaterbalancesthatareindependentofthesolarcycle,beingdeterminedbyhumanperceptionanddecision-makingimperatives.Explorationsofwaysinwhichtrafccounts,populationdata,homeownerquestionnaires,utilityrecords,beincorporatedintoclimaticresearchaturbanscalesshouldcontinuetobepursued.7.Oke(1982)statedthaturbanheatislandswere‘welldescribedbutratherpoorlyunderstood’.Twodecadeslater,thisstatementcouldnotbemadewithasmuchcondence.Nevertheless,simplemethodsarestillneededtoestimateUHIintensityurbanareas,asafunctionoftime,weatherconditionsandstructuralattributes,forpracticalapplicationssuchasroadclimatology,phenology,energyconservation,andweatherforecasting.Copyright2003RoyalMeteorologicalSocietyInt.J.Climatol.:1–26(2003) URBANCLIMATE8.Methodsarerequiredtolinksmall-scaleandmesoscaleurbanclimatework.Suchlinkagesaretroublesomeandchallengingbutnotimpossible.Forexample,VoogtandGrimmond(2000)explorethelinksbetweenremotelysensedsurfacetemperatures,completesurfacetemperaturesandcalculationsofsensibleheatuxusingabulktransferapproachandMasson(2000)employsconceptsofcanyongeometrytocalculateurbansurfaceenergybudgetsinmesoscalemodels.9.Numericalsimulation,amethodologyperfectlysuitedtodealingwiththecomplexitiesandnon-linearitiesofurbanclimatesystems,continuestogrowinpopularity.Validationofmodels,unfortunately,lagsbehindtheircreationand,whenperformed,isoftenweak,relyingmoreonplau-sibilityofoutputsthandirectcomparisonwithprocessvariables.Thisisnotsurprising,becausethedifcultyofmeasuringsuchvariablesisaprimereasonthatnumericalsimulationissopopular.Closercollaborationbetweenmodellersandeldclimatologistsisencouragedtoclosethemethodologicalgap.10.Urbanclimatologycontinuestomigratemethodologicallyfromdescriptiveandinductive‘blackbox’approachestoprocessstudiesandprocess-response(simulation)modelling.Thismigrationisapositiveaspectoftheeld’srecenthistory(Terjung,1976;Oke,1982),becauseitenhancestheexplanatorypowerurbanclimatologistshaveattheirdisposal.Thistrendshouldcontinue.AckermanB.1985.TemporalmarchoftheChicagoheatisland.JournalofClimateandAppliedMeteorology:547–554.AdebayoYR.1987.AnoteontheeffectofurbanizationontemperatureinIbadan.JournalofClimatology:185–192.AdebayoYR.1990.AspectsofthevariationinsomecharacteristicsofradiationbudgetwithintheurbancanopyofIbadan.AtmosphericEnvironmentB:9–17.AidaM.1982.Urbanalbedoasafunctionoftheurbanstructure—amodelexperiment(partI).Boundary-LayerMeteorology405–413.AidaM,GotohK.1982.Urbanalbedoasafunctionoftheurbanstructure—atwo-dimensionalnumericalsimulation(partII).Boundary-LayerMeteorology:415–424.AnandakumarK.1999.Astudyonthepartitionofnetradiationintoheatuxesonadryasphaltsurface.AtmosphericEnvironment3911–3918.ArneldAJ.1976.Numericalmodellingofurbansurfaceradiativeparameters.InPapersinClimatology:TheCamAllenMemorialVolume,DaviesJA(ed.).DiscussionPaperNo.7.DepartmentofGeography,McMasterUniversity.ArneldAJ.1982a.Estimationofdiffuseirradianceonsloping,obstructedsurfaces:anerroranalysis.ArchivesforMeteorology,Geophysics,andBioclimatologyB:303–320.ArneldAJ.1982b.Anapproachtotheestimationofthesurfaceradiativepropertiesandradiationbudgetsofcities.PhysicalGeography:97–122.ArneldAJ.1984.Simulatingradiativeenergybudgetswithintheurbancanopylayer.ModelingandSimulation:227–233.ArneldAJ.1988.Validationofanestimationmodelforurbansurfacealbedo.PhysicalGeography:361–372.ArneldAJ.1990a.Streetdesignandurbancanyonsolaraccess.EnergyandBuildings:117–131.ArneldAJ.1990b.Canyongeometry,theurbanfabricandnocturnalcooling:asimulationapproach.PhysicalGeography:220–239.ArneldAJ.1998a.Micro-andmesoclimatology.ProgressinPhysicalGeography:103–113.ArneldAJ.1998b.Micro-andmesoclimatology.ProgressinPhysicalGeography:533–544.ArneldAJ.2000a.Micro-andmesoclimatology.ProgressinPhysicalGeography:261–271.ArneldAJ.2000b.Asimplemodelofurbancanyonenergybudgetanditsvalidation.PhysicalGeography:305–326.ArneldAJ.2001a.Micro-andmesoclimatology.ProgressinPhysicalGeography:123–133.ArneldAJ.2001b.Micro-andmesoclimatology.ProgressinPhysicalGeography:560–569.ArneldAJ,GrimmondCSB.1998.Anurbancanyonenergybudgetmodelanditsapplicationtourbanstorageheatuxmodeling.EnergyandBuildings:61–68.ArneldAJ,MillsGM.1994a.Ananalysisofthecirculationcharacteristicsandenergybudgetofadry,asymmetric,east–westurbancanyon.I.Circulationcharacteristics.InternationalJournalofClimatology:119–134.ArneldAJ,MillsGM.1994b.Ananalysisofthecirculationcharacteristicsandenergybudgetofadry,asymmetric,east–westurbancanyon.II.Energybudget.InternationalJournalofClimatology:239–261.ArneldAJ,HerbertJM,JohnsonGT.1998.Anumericalsimulationinvestigationofurbancanyonenergybudgetvariations.InPreprintVolume,AmericanMeteorologicalSocietySecondUrbanEnvironmentSymposiumand13thConferenceonBiometeorologyandAerobiology,2–6November,Albuquerque,NM;2–5.AsaedaT,CaVT.1993.Thesubsurfacetransportofheatandmoistureanditseffectontheenvironment:anumericalmodel.Boundary-LayerMeteorology:159–179.AsaedaT,CaVT,WakeA.1996.Heatstorageofpavementanditseffectontheloweratmosphere.AtmosphericEnvironment413–427.BaikJ-J.1992.Responseofastablystratiedatmospheretolow-levelheating—anapplicationtotheheatislandproblem.JournalofAppliedMeteorology:291–303.BaikJ-J,ChunH-Y.1997.Adynamicalmodelforurbanheatislands.Boundary-LayerMeteorology:463–477.BaikJ-J,KimY-H,ChunH-Y.2001.Dryandmoistconvectionforcedbyanurbanheatisland.JournalofAppliedMeteorology1462–1475.Copyright2003RoyalMeteorologicalSocietyInt.J.Climatol.:1–26(2003) A.J.ARNFIELDBallingRC,BrazelSW.1988.High-resolutionsurfacetemperaturepatternsinacomplexurbanterrain.PhotogrammetricEngineeringandRemoteSensing:1289–1293.BarradasVL,Tejeda-MartinezA,JaureguiE.1999.EnergybalancemeasurementsinasuburbanvegetatedareainMexicoCity.AtmosphericEnvironment:4109–4113.arringL,MattssonJO,LindqvistS.1985.Canyongeometry,streettemperaturesandurbanheatislandinMalmo,Sweden.Journalof:433–444.BornsteinRD.1968.ObservationsoftheurbanheatislandeffectinNewYorkCity.JournalofAppliedMeteorology:575–582.BottemaM.1997.Urbanroughnessmodellinginrelationtopollutantdispersion.AtmosphericEnvironment:3059–3075.azdilR,BudikovaM.1999.AnurbanbiasinairtemperatureuctuationsattheKlementinum,Prague,theCzechRepublic.AtmosphericEnvironment:4211–4217.BrazelAJ,ArneldAJ,GreenlandDE,WillmottCJ.1991.Physicalandboundary-layerclimatology.PhysicalGeography:189–206.BrestCL.1987.Seasonalalbedoofanurban/rurallandscapefromsatelliteobservations.JournalofClimateandAppliedMeteorology:1169–1187.BretzS,AkbariH,RosenfeldA.1998.Practicalissuesforusingsolar-reectivematerialstomitigateurbanheatislands.AtmosphericEnvironment:95–101.uhlC,ZdunkowskiW.1983.Anapproximatecalculationmethodforparallelanddiffusesolarirradiancesoninclinedsurfacesinthepresenceofobstructingmountainsorbuildings.Archivf¬urMeteorologie,GeophysikundBioklimatologieB:111–129.BurtJE,O’RourkePA,TerjungWH.1982.View-factorsleadingtothesimulationofhumanheatstressandradiantexchange:analgorithm.ArchivesforMeteorology,Geophysics,andBioclimatologyB:321–331.CamuffoD,SturaroG,ValentinoA.1999.UrbanclimatologyappliedtothedeteriorationofthePisaLeaningTower,Italy.TheoreticalandAppliedClimatology:223–231.CarlsonTN,DoddJK,BenjaminSG,CooperJN.1981.Satelliteestimationofthesurfaceenergybalance,moistureavailabilityandthermalinertia.JournalofAppliedMeteorology:67–87.CermakJE,SavenportAG,PlateEJ,ViegasDX(eds).1995.WindClimateinCities.Kluwer:Dordrecht.CervenyRS.1989.Shadowingofnonpollutedlocationsbyurbanpollution.AnnalsoftheAssociationofAmericanGeographers242–256.ChangnonSA.1980.MoreontheLaPorteanomaly:areview.BulletinoftheAmericanMeteorologicalSociety:702–711.ChangnonSA.1981.METROMEX:areviewandsummary.MeteorologicalMonographs18,number40.AmericanMeteorologicalSociety:Boston.ChangnonSA.1992.Inadvertentweathermodicationinurbanareas:lessonsforglobalclimatechange.BulletinoftheAmericanMeteorologicalSociety:619–627.ChapmanL,ThornesJE,BradleyAV.2001.Rapiddeterminationofcanyongeometryparametersforuseinsurfaceradiationbudgets.TheoreticalandAppliedClimatology:81–89.ChingJKS.1985.Urban-scalevariationsofturbulenceparametersanduxes.Boundary-LayerMeteorology:335–361.ChingJKS,ClarkeJF,GodowitchJM.1983.Modulationofheatuxbydifferentscalesofadvectioninanurbanenvironment.Boundary-LayerMeteorology:171–191.CioncoRM,EllefsenR.1998.Highresolutionurbanmorphologydataforurbanwindowmodeling.AtmosphericEnvironment7–17.CleughHA,OkeTR.1986.Suburban–ruralenergybalancecomparisonsinsummerforVancouver,B.C.Boundary-LayerMeteorology:351–369.ColeRJ,SturrockNS.1977.Theconvectiveheatexchangeattheexternalsurfaceofbuildings.BuildingandEnvironment:207–214.deAssisES,FrotaAB.1999.Urbanbioclimaticdesignstrategiesforatropicalcity.AtmosphericEnvironment:4135–4142.deHaanP,RotachMW,WerfeliM.2001.Modicationofanoperationaldispersionmodelforurbanapplications.JournalofAppliedMeteorology:864–879.deSchillerS,EvansJM.1996.Trainingarchitectsandplannerstodesignwithurbanmicroclimates.AtmosphericEnvironment449–454.DjenCS.1992.TheurbanclimateofShanghai.AtmosphericEnvironmentB:9–15.DollD,ChingJKS,KaneshiroJ.1985.Parameterizationofsubsurfaceheatingforsoilandconcreteusingnetradiationdata.Boundary-LayerMeteorology:351–372.DouglasI.1983.TheUrbanEnvironment.EdwardArnold:London.DuckworthFS,SandbergJS.1954.Theeffectofcitiesuponhorizontalandverticaltemperaturegradients.BulletinoftheAmericanMeteorologicalSociety:198–207.DuijmNJ.1999.Estimatesofroughnessparametersforarraysofobstacles.Boundary-LayerMeteorology:1–22.EliassonI.1990–91.Urbangeometry,surfacetemperatureandairtemperature.EnergyandBuildings15–16:141–145.EliassonI.1992.Infraredthermographyandurbantemperaturepatterns.InternationalJournalofRemoteSensing:869–879.EliassonI.1994.Urban–suburban–ruralairtemperaturedifferencesrelatedtostreetgeometry.PhysicalGeography:1–22.EliassonI.1996a.Urbannocturnaltemperatures,streetgeometryandlanduse.AtmosphericEnvironment:379–392.EliassonI.1996b.Intra-urbannocturnaltemperaturedifferences:amultivariateapproach.ClimateResearch:21–30.EliassonI,HolmerB.1990.UrbanheatislandcirculationinGoteborg,Sweden.TheoreticalandAppliedClimatology:187–196.EllefsenR.1990–91.MappingandmeasuringbuildingsinthecanopyboundarylayerintenU.S.cities.EnergyandBuildings15–161025–1049.ElnahasMM,WilliamsonTJ.1997.AnimprovementoftheCTTCmodelforpredictingurbanairtemperatures.EnergyandBuildings:41–49.EppersonDL,DavisJM,BloomeldP,KarlTR,McNabAL,GalloKP.1995.Estimatingtheurbanbiasofsurfacesheltertemperaturesusingupper-airandsatellitedata.PartII:estimationoftheurbanbias.JournalofAppliedMeteorology:358–370.EstournelC,VehilR,GuedaliaD,FontanJ,DruilhetA.1983.Observationsandmodelingofdownwardradiativeuxes(solarandinfrared)inurban/ruralareas.JournalofClimateandAppliedMeteorology:134–142.Copyright2003RoyalMeteorologicalSocietyInt.J.Climatol.:1–26(2003) URBANCLIMATEFeigenwinterC,VogtR,ParlowE.1999.Verticalstructureofselectedturbulencecharacteristicsaboveanurbancanopy.TheoreticalandAppliedClimatology:51–63.FiguerolaPI,MazzeoNA.1998.Urban–ruraltemperaturedifferencesinBuenosAires.InternationalJournalofClimatology1709–1723.FrankRS,GerdingRB,O’RourkePA,TerjungWH.1981a.Simulatingurbanobstructions.:83–92.FrankRS,GerdingRB,O’RourkePA,TerjungWH.1981b.Anurbanradiationobstructionmodel.Boundary-LayerMeteorology259–264.FuggleRF,OkeTR.1976.Long-waveradiativeuxdivergenceandnocturnalcoolingoftheurbanatmosphere.I:aboveroof-level.Boundary-LayerMeteorology:113–120.FujitaniT.1986.Seasonalvariationofthestructureoftheatmosphericboundarylayeroverasuburbanarea.AtmosphericEnvironment:1867–1876.FunkJP.1960.Measuredradiativeuxdivergencenearthegroundatnight.QuarterlyJournaloftheRoyalMeteorologicalSociety382–389.GalloKP,McNabAL,KarlTR,BrownJF,HoodJJ,TarpleyJD.1993a.TheuseofNOAAAVHRRdataforassessmentoftheurbanheatislandeffect.JournalofAppliedMeteorology:899–908.GalloKP,McNabAL,KarlTR,BrownJF,HoodJJ,TarpleyJD.1993b.Theuseofavegetationindexforassessmentoftheurbanheatislandeffect.InternationalJournalofRemoteSensing:2223–2230.GarrattJR.1978.Transfercharacteristicsforaheterogeneoussurfaceoflargeaerodynamicroughness.QuarterlyJournaloftheRoyalMeteorologicalSociety:491–502.GarrattJR.1980.Surfaceinuenceuponverticalprolesintheatmosphericnear-surfacelayer.QuarterlyJournaloftheRoyalMeteorologicalSociety:803–819.GohKC,ChangCH.1999.Therelationshipbetweenheighttowidthratiosandtheheatislandintensityat22:00hforSingapore.InternationalJournalofClimatology:1011–1023.GoldreichY.1992.UrbanclimatestudiesinJohannesburg,asub-tropicalcitylocatedonaridge—areview.AtmosphericEnvironment:407–420.GoldreichY.1995.UrbanclimatestudiesinIsrael—areview.AtmosphericEnvironment:467–478.GrantRH,WongK-L.1999.Ozoneprolesoverasuburbanneighborhood.AtmosphericEnvironment:51–63.GrimmondCSB.1992.Thesuburbanenergybalance:methodologicalconsiderationsandresultsforamid-latitudewestcoastcityunderwinterandspringconditions.InternationalJournalofClimatology:481–497.GrimmondCSB,OkeTR.1986.Urbanwaterbalance.2.ResultsfromasuburbofVancouver,BritishColumbia.WaterResourcesResearch:1404–1412.GrimmondCSB,OkeTR.1991.Anevapotranspiration–interceptionmodelforurbanareas.WaterResourcesResearch:1739–1755.GrimmondCSB,OkeTR.1995.ComparisonofheatuxesfromsummertimeobservationsinthesuburbsoffourNorthAmericanJournalofAppliedMeteorology:873–889.GrimmondCSB,OkeTR.1999a.Aerodynamicpropertiesofurbanareasderivedfromanalysisofsurfaceform.JournalofAppliedMeteorology:1262–1292.GrimmondCSB,OkeTR.1999b.Heatstorageinurbanareas:local-scaleobservationsandevaluationofasimplemodel.JournalofAppliedMeteorology:922–940.GrimmondCSB,OkeTR,SteynDG.1986.Urbanwaterbalance.1.Amodelfordailytotals.WaterResourcesResearch:1397–1403.GrimmondCSB,CleughHA,OkeTR.1991.Anobjectiveurbanheatstoragemodelanditscomparisonwithotherschemes.AtmosphericEnvironmentB:311–326.GrimmondCSB,SouchC,HubbleMD.1996.Inuenceoftreecoveronsummertimesurfaceenergybalanceuxes,SanGabrielValley,LosAngeles.ClimateResearch:45–57.GrimmondCSB,KingTS,RothM,OkeTR.1998.Aerodynamicroughnessofurbanareasderivedfromwindobservations.Boundary-LayerMeteorology:1–24.GrimmondCSB,PotterSK,ZutterHN,SouchC.2001.Rapidmethodstoestimatesky-viewfactorsappliedtourbanareas.InternationalJournalofClimatology:903–913.GrimmondCSB,SouchC.1994.Surfacedescriptionforurbanclimatestudies:aGISbasedmethodology.GeocartoInternational47–59.Haeger-EugenssonM,HolmerB.1999.Advectioncausedbytheurbanheatislandcirculationasaregulatingfactoronthenocturnalurbanheatisland.InternationalJournalofClimatology:975–988.HafnerJ,KidderSQ.1999.Urbanheatislandmodelinginconjunctionwithsatellite-derivedsurface/soilparameters.JournalofAppliedMeteorology:448–465.HallDJ,WalkerS,SpantonAM.1999.Dispersionfromcourtyardsandotherenclosedspaces.AtmosphericEnvironment:1187–1203.anelG,WeidertD,BusenR.1990.Absorptionofsolarradiationinanurbanatmosphere.AtmosphericEnvironmentB:283–292.HannaSR,ChangJC.1992.Boundary-layerparameterizationsforapplieddispersionmodelingoverurbanareas.Boundary-LayerMeteorology:229–259.HansenJ,RuedyR,SatoM,ImhoffM,LawrenceW,EasterlingD,PetersonT,KarlT.2001.AcloserlookatUnitedStatesandglobalsurfacetemperaturechange.JournalofGeophysicalResearch:23947–23963.HayJE.1984.AnassessmentofthemesoscalevariabilityofsolarradiationattheEarth’ssurface.SolarEnergy:425–434.HenryJA,DicksSE,WetterqvistOF,RoguskiSJ.1989.Comparisonofsatellite,ground-based,andmodelingtechniquesforanalyzingtheurbanheatisland.PhotogrammetricEngineeringandRemoteSensing:69–76.HerbertJM,JohnsonGT,ArneldAJ.1997.Couplingofascalardispersionandanurbancanyonenergybudgetmodel.andComputersinSimulation:277–283.HerbertJM,JohnsonGT,ArneldAJ.1998.Modellingthethermalclimateincitycanyons.EnvironmentalModellingandSoftware267–277.HildebrandPH,AckermanB.1984.Urbaneffectsontheconvectiveboundarylayer.JournaloftheAtmosphericSciences:76–91.HoganAW,FerrickMG.1998.Observationsinnonurbanheatislands.JournalofAppliedMeteorology:232–236.Copyright2003RoyalMeteorologicalSocietyInt.J.Climatol.:1–26(2003) A.J.ARNFIELDomU,BergstromH,AlexanderssonH.1982.Turbulencecharacteristicsinanearneutrallystratiedurbanatmosphere.Boundary-LayerMeteorology:449–472.HolmerB,EliassonI.1999.Urban–ruralvapourpressuredifferencesandtheirroleinthedevelopmentofurbanheatislands.InternationalJournalofClimatology:989–1009.HotchkissRS,HarlowFH.1973.Airpollutiontransportinstreetcanyons.UnpublishedreportbyLosAlamosScienticLaboratoryforUSEPA,EPA-R4-73-029,NTISPB-233252.HoyanoA,AsanoK,KanamaruT.1999.Analysisofthesensibleheatuxfromtheexteriorsurfaceofbuildingsusingtimesequentialthermography.AtmosphericEnvironment:3941–3951.HsuS-I.1984.VariationofanurbanheatislandinPhoenix.ProfessionalGeographer:196–200.IchinoseT,ShimodozonoK,HanakiK.1999.ImpactofanthropogenicheatonurbanclimateinTokyo.AtmosphericEnvironment3897–3909.JacovidesCP,TimbiosF,AsimakopoulosDN,StevenMD.1997.Urbanaerosolandclearskiesspectraforglobalanddiffusephotosyntheticallyactiveradiation.AgriculturalandForestMeteorology:91–104.JacovidesCP,GianourakosGP,AsimakopoulosDN,StevenMD.1998.MeasuredspectraofsolarultravioletirradiancesatAthensbasin,Greece.TheoreticalandAppliedClimatology:107–119.JaureguiE.1997.HeatislanddevelopmentinMexicoCity.AtmosphericEnvironment:3821–3831.aureguiE,LuyandoE.1999.GlobalradiationattenuationbyairpollutionanditseffectsonthethermalclimateinMexicoCity.InternationalJournalofClimatology:683–694.JohnsonDB.1985.UrbanmodicationofdiurnaltemperaturecyclesinBirmingham,U.K.JournalofClimatology:221–225.JohnsonGT,HunterLJ.1995.Anumericalstudyofdispersionofpassivescalarsincitycanyons.Boundary-LayerMeteorology209–234.JohnsonGT,WatsonID.1984.Thedeterminationofview-factorsinurbancanyons.JournalofClimateandAppliedMeteorology329–335.JohnsonGT,WatsonID.1985.Reply.JournalofClimateandAppliedMeteorology:386.JohnsonGT,OkeTR,LyonsTJ,SteynDG,WatsonID,VoogtJA.1991.Simulationofsurfaceurbanheatislandsunder‘ideal’conditionsatnight.Part1:theoryandtestsagainstelddata.Boundary-LayerMeteorology:275–294.JonesCA,SucklingPW.1983.Comparisonoftheradiationbalanceofarooftoplawnwiththatofaconventionalrooftopsurface.ArchivesforMeteorology,GeophysicsandBioclimatologyB:77–87.JonesPD,KellyPM,GoodessCM.1989.TheeffectofurbanwarmingontheNorthernHemispheretemperatureaverage.Journalof:285–290.KalandaBD,OkeTR,SpittlehouseDL.1980.SuburbanenergybalanceestimatesforVancouver,B.C.,usingtheBowenratio–energybalanceapproach.JournalofAppliedMeteorology:791–802.KalogirosJA,HelmisCG.1995.Second-orderspectrallocalisotropyofthehumidityandtemperatureeldsinanurbanarea.JournaloftheRoyalMeteorologicalSociety:545–567.KerschgensMJ,HackerJM.1985.Ontheenergybudgetoftheconvectiveboundarylayeroveranurbanandruralenvironment.Beitr¬zurPhysikderAtmosph¬are:171–185.KidderSQ,EssenwangerOM.1995.TheeffectofcloudsandwindonthedifferenceinnocturnalcoolingratesbetweenurbanandruralJournalofAppliedMeteorology:2440–2448.KidderSQ,WuH-T.1987.AmultispectralstudyoftheSt.Louisareaundersnow-coveredconditionsusingNOAA-7AVHRRdata.RemoteSensingofEnvironment:159–172.KimHH.1992.Urbanheatisland.InternationalJournalofRemoteSensing:2319–2336.KimuraF,TakahashiS.1991.Theeffectsofland-useandanthropogenicheatingonthesurfacetemperatureintheTokyometropolitanarea:anumericalexperiment.AtmosphericEnvironmentB:155–164.KjelgrenR,MontagueT.1998.Urbantreetranspirationoverturfandasphaltsurfaces.AtmosphericEnvironment:35–41.KysikK,FortuniakK.1999.Temporalandspatialcharacteristicsoftheurbanheatislandofz,Poland.AtmosphericEnvironment:3885–3895.KondoA,UenoM,KagaA,TamaguchiK.2001.Theinuenceofurbancanopycongurationonurbanalbedo.Boundary-LayerMeteorology:225–242.KotakeS,SanoT.1981.Simulationmodelofairpollutionincomplexterrainsincludingstreetsandbuildings.AtmosphericEnvironment:1001–1009.KuklaG,GavinJ,KarlTR.1986.Urbanwarming.JournalofAppliedMeteorology:1265–1270.KumarS,PrasadT,SashidharanNV,NairSK.2001.HeatislandintensitiesoverBrihanMumbaionacoldwinterandhotsummer:703–708.KuttlerW,BarlagA-B,RoßmannF.1996.Studyofthethermalstructureofatowninanarrowvalley.AtmosphericEnvironment365–378.LandsbergHE.1981a.Cityclimate.InGeneralClimatology,3,LandsbergHE(ed.).ElsevierScientic:NewYork.LandsbergHE.1981b.TheUrbanClimate.AcademicPress:NewYork.LeeDO.1984.Urbanclimates.ProgressinPhysicalGeography:1–31.LeeH-Y.1993.AnapplicationofNOAAAVHRRthermaldatatothestudyofurbanheatislands.AtmosphericEnvironmentB1–13.LockerbyRW.1983.TheClimateofCities.PublicAdministrationSeriesBibliographyP-1168.VanceBibliographies:Monticello,IL.LorenteJ,RedanoA,deCaboX.1994.Inuenceofurbanaerosolonspectralsolarirradiance.JournalofAppliedMeteorology406–415.LowryWP.1977.Empiricalestimationofurbaneffectsonclimate:aproblemanalysis.JournalofAppliedMeteorology:129–135.LowryWP.1998.Urbaneffectsonprecipitationamount.ProgressinPhysicalGeography:477–520.LuJ,AryaSP,SnyderWH,LawsonRE.1997.Alaboratorystudyoftheurbanheatislandinacalmandstablystratiedenvironment.PartI:temperatureeld.JournalofAppliedMeteorology:1377–1391.MageeN,CurtisJ,WendlerG.1999.TheurbanheatislandeffectatFairbanks,Alaska.TheoreticalandAppliedClimatology:39–47.Copyright2003RoyalMeteorologicalSocietyInt.J.Climatol.:1–26(2003) URBANCLIMATEMassonV.2000.Aphysically-basedschemefortheurbanenergybudgetinatmosphericmodels.Boundary-LayerMeteorology357–397.McNaughtonKG,JarvisPG.1983.Predictingeffectsofvegetationchangesontranspirationandevaporation.InWaterDeÞcitsandPlantGrowth,vol.VII,KozlowskiTT(ed.).AcademicPress:NewYork;1–47.MellingH,ListR.1980.Characteristicsofverticalvelocityuctuationsinaconvectiveurbanboundarylayer.JournalofAppliedMeteorology:1184–1195.MethodTJ,CarlsonTN.1982.RadiativeheatingratesandsomeopticalpropertiesoftheSt.Louisaerosol,asinferredfromaircraftAtmosphericEnvironment:53–66.MillsG.1997.Theradiativeeffectsofbuildinggroupsonsinglestructures.EnergyandBuildings:51–61.MillsGM.1993.Simulationoftheenergybudgetofanurbancanyon—I.Modelstructureandsensitivitytest.AtmosphericEnvironment:157–170.MillsGM,ArneldAJ.1993.Simulationoftheenergybudgetofanurbancanyon—II.ComparisonofmodelresultswithAtmosphericEnvironmentB:171–181.MontavezJP,RodriguezA,JimenezJI.2000.AstudyoftheurbanheatislandofGranada.InternationalJournalofClimatology899–911.MonteithJL.1965.Evaporationandenvironment.SymposiumoftheSocietyforExperimentalBiology:205–224.Moreno-GarciaMC.1994.IntensityandformoftheurbanheatislandinBarcelona.InternationalJournalofClimatology:705–710.MorrisCJG,SimmondsI.2000.AssociationsbetweenvaryingmagnitudesoftheurbanheatislandandthesynopticclimatologyinMelbourne,Australia.InternationalJournalofClimatology:1931–1954.MorrisCJG,SimmondsI,PlummerN.2001.Quanticationoftheinuencesofwindandcloudonthenocturnalurbanheatislandofalargecity.JournalofAppliedMeteorology:169–182.MurakamiS,MochidaA.1989.Three-dimensionalnumericalsimulationofturbulentowaroundbuildingsusingthemodel.BuildingandEnvironment:51–64.NakamuraY,OkeTR.1988.Wind,temperatureandstabilityconditionsinaneast–westorientedurbancanyon.AtmosphericEnvironment:2691–2700.NasrallahHA,BrazelAJ,BallingRC.1990.AnalysisoftheKuwaitCityurbanheatisland.InternationalJournalofClimatology401–405.NicholJE.1994.AGIS-basedapproachtomicroclimatemonitoringinSingapore’shigh-risehousingestates.PhotogrammetricEngineeringandRemoteSensing:1225–1232.NicholJE.1996.High-resolutionsurfacetemperaturepatternsrelatedtourbanmorphologyinatropicalcity:asatellite-basedstudy.JournalofAppliedMeteorology:135–146.NicholsonSE.1975.Apollutionmodelforstreet-levelair.AtmosphericEnvironment:19–31.NotoK.1996.Dependenceofheatislandphenomenaonstablestraticationandheatquantityinacalmenvironment.AtmosphericEnvironment:475–485.NunezM,OkeTR.1977.Theenergybalanceofanurbancanyon.JournalofAppliedMeteorology:11–19.NunezM,OkeTR.1980.Modelingthedaytimeurbansurfaceenergybalance.GeographicalAnalysis:371–386.OikawaS,MengY.1995.Turbulencecharacteristicsandorganizedmotioninasuburbanroughnesssublayer.Boundary-LayerMeteorology:289–312.OkeTR.1974.ReviewofUrbanClimatology,1968Ð1973.WMOTechnicalNoteNo.134,WMONo.383.WorldMeteorologicalOrganization:Geneva.OkeTR.1976.Thedistinctionbetweencanopyandboundary-layerheatislands.Atmosphere:268–277.OkeTR.1979a.Advectively-assistedevapotranspirationfromirrigatedurbanvegetation.Boundary-LayerMeteorology:167–173.OkeTR.1979b.ReviewofUrbanClimatology,1973Ð1976.WMOTechnicalNoteNo.169,WMoNo.539.WorldMeteorologicalOrganization:Geneva.OkeTR.1980.BibliographyofUrbanClimate,1977Ð1980.WorldClimateProgramPublication45.WorldMeteorologicalOrganization:OkeTR.1981.Canyongeometryandthenocturnalheatisland:comparisonofscalemodelandeldobservations.JournalofClimatology:237–254.OkeTR.1982.Theenergeticbasisoftheurbanheatisland.QuarterlyJournaloftheRoyalMeteorologicalSociety:1–24.OkeTR.1984.Towardsaprescriptionforthegreateruseofclimaticprinciplesinsettlementplanning.EnergyandBuildings:1–10.OkeTR(ed.).1986.UrbanClimatologyanditsApplicationswithSpecialRegardtoTropicalAreas.ProceedingsoftheTechnicalConference,MexicoCity,Mexico,26–30November1984.WorldMeteorologicalOrganization:Geneva.OkeTR.1988a.Streetdesignandurbancanopylayerclimate.EnergyandBuildings:103–113.OkeTR.1988b.Theurbanenergybalance.ProgressinPhysicalGeography:471–508.OkeTR.1989.Themicrometeorologyoftheurbanforest.PhilosophicalTransactionsoftheRoyalSocietyofLondon,SeriesB335–349.OkeTR.CleughHA.1987.Urbanheatstoragederivedasenergybalanceresiduals.Boundary-LayerMeteorology:233–245.OkeTR,McCaugheyJH.1983.Suburban–ruralenergybalancecomparisonsforVancouver,B.C.:anextremecase?Boundary-LayerMeteorology:337–354.OkeTR,KalandaBD,SteynDG.1981.Parameterizationofheatstorageinurbanareas.UrbanEcology:45–54.OkeTR.CleughHA,GrimmondS,SchmidHP,RothM.1989.Evaluationofspatially-averageduxesofheat,massandmomentumintheurbanboundarylayer.WeatherandClimate:14–21.OkeTR,TaeslerR,OlssonLE.1990–91.TheTropicalUrbanClimateExperiment(TRUCE).EnergyandBuildings15–16:67–73.OkeTR,JohnsonGT,SteynDG,WatsonID.1991.Simulationofsurfaceurbanheatislandsunder‘ideal’conditionsatnight.Part2:diagnosisofcausation.Boundary-LayerMeteorology:339–358.OkeTR,ZeunerG,JaureguiE.1992.ThesurfaceenergybalanceinMexicoCity.AtmosphericEnvironmentB:433–444.OkeTR,Spronken-SmithRA,JaureguiE,GrimmondCSB.1999.TheenergybalanceofcentralMexicoCityduringthedryseason.AtmosphericEnvironment:3919–3930.Copyright2003RoyalMeteorologicalSocietyInt.J.Climatol.:1–26(2003) A.J.ARNFIELDO’RourkePA,TerjungWH.1981a.Urbanparks,energybudgets,andsurfacetemperatures.ArchivesforMeteorology,Geophysics,andBioclimatologyB:327–344.O’RourkePA,TerjungWH.1981b.Relativeinuenceofcitystructureoncanopyphotosynthesis.InternationalJournalofBiometeorology:1–19.ParkH-S.1986.FeaturesoftheheatislandinSeoulanditssurroundingcities.AtmosphericEnvironment:1859–1866.PatersonDA,ApeltCJ.1989.Simulationofwindowaroundthree-dimensionalbuildings.BuildingandEnvironment:39–50.PearlmutterD,BitanA,BerlinerP.1999.Microclimaticanalysisof“compact”urbancanyonsinanaridzone.AtmosphericEnvironment:4143–4150.PenmanHL.1948.Naturalevaporationfromopenwater,baresoilandgrass.ProceedingsoftheRoyalSocietyofLondon,SeriesA120–145.PetersonJT,StoffelTL.1980.Analysisofurban–ruralsolarradiationdatafromSt.Louis,Missouri.JournalofAppliedMeteorology:275–283.PhilandrasCM,MetaxasDA,NastosPT.1999.ClimatevariabilityandurbanizationinAthens.TheoreticalandAppliedClimatology:65–72.PopulationReferenceBureau.2001a.2000WorldPopulationDataSheet.PopulationReferenceBureau.URL:http://www.prb.org/pubs/ Available-GovtViewBirthrate.html,accessed1July2001.PopulationReferenceBureau.2001b.WorldPopulationWriterÕsForum,QuickFacts.PopulationReferenceBureau.URL:http://www.prb.org/wf/quickfacts urbanization.html,accessed2July2001.PorehM.1996.Investigationofheatislandsusingsmallscalemodels.AtmosphericEnvironment:467–474.PriestleyCHB,TaylorRJ.1972.Ontheassessmentofsurfaceheatuxandevaporationusinglarge-scaleparameters.MonthlyWeather:81–92.RaupachMR.1979.Anomaliesinux–gradientrelationshipsoverforest.Boundary-LayerMeteorology:467–486.RaupachMR,ThomAS,EdwardsI.1980.Awind-tunnelstudyofturbulentowclosetoregularlyarrayedroughsurfaces.Boundary-LayerMeteorology:373–397.RaupachMR,AntoniaRA,RajagopalanS.1991.Rough-wallturbulentboundarylayers.AppliedMechanicsReviews:1–25.RepapisCC,MantisHT,PaliatsosAG,PhilandrasCM,BaisAF,MeletiC.1998.CasestudyofUV-Bmodicationduringepisodesofurbanairpollution.AtmosphericEnvironment:2203–2208.RichiardoneR,BrusascaG.1989.Numericalexperimentsonurbanheatislandintensity.QuarterlyJournaloftheRoyalMeteorological:983–995.RipleyEA,ArchiboldOW,BretellDL.1996.TemporalandspatialtemperaturepatternsinSaskatoon.Weather:398–405.RooneyGG.2001.Comparisonofupwindlanduseandroughnesslengthmeasuredintheurbanboundarylayer.Boundary-LayerMeteorology:469–486.RosenfeldAH,AkbariH,BretzS,FishmanBL,KurnDM,SailorD,TahaH.1995.Mitigationofurbanheatislands:materials,utilityprograms,updates.EnergyandBuildings:255–265.RotachMW.1993a.Turbulenceclosetoaroughurbansurface.PartI:Reynold’sstress.Boundary-LayerMeteorology:1–28.RotachMW.1993b.Turbulenceclosetoaroughurbansurface.PartII:variancesandgradients.Boundary-LayerMeteorology75–92.RotachMW.1995.Prolesofturbulencestatisticsinandaboveanurbanstreetcanyon.AtmosphericEnvironment:1473–1486.RotachMW.1999.Ontheinuenceoftheurbanroughnesssublayeronturbulenceanddispersion.AtmosphericEnvironment4001–4008.RothM.1993.Turbulenttransferrelationshipsoveranurbansurface.II:integralstatistics.QuarterlyJournaloftheRoyalMeteorological:1105–1120.RothM.2000.Reviewofatmosphericturbulenceovercities.QuarterlyJournaloftheRoyalMeteorologicalSociety:941–990.RothM,OkeTR.1993.Turbulenttransferrelationshipsoveranurbansurface.I:spectralcharacteristics.QuarterlyJournaloftheRoyalMeteorologicalSociety:1071–1104.RothM,OkeTR.1994.Comparisonofmodelledand‘measured’heatstorageinsuburbanterrain.Beitr¬agezurPhysikderAtmosph¬are:149–156.RothM,OkeTR.1995.Relativeefcienciesofturbulenttransferofheat,mass,andmomentumoverapatchyurbansurface.oftheAtmosphericSciences:1863–1874.RothM,OkeTR,EmeryWJ.1989a.Satellite-derivedurbanheatislandsfromthreecoastalcitiesandtheutilizationofsuchdatainurbanclimatology.InternationalJournalofRemoteSensing:1699–1720.RothM,OkeTR,SteynDG.1989b.Velocityandtemperaturespectraandcospectrainanunstablesuburbanatmosphere.Boundary-LayerMeteorology:309–320.RunnalsKE,OkeTR.2000.Dynamicsandcontrolsofthenear-surfaceheatislandofVancouver,BritishColumbia.PhysicalGeography:283–304.RutterAJ,KershawKA,RobinsPC,MortonAJ.1971.Apredictivemodelofrainfallinterceptioninforests.II.DerivationofthemodelfromobservationsinaplantationofCorsicanpine.AgriculturalMeteorology:367–384.SailorDJ.1998.Simulationsofannualdegreedayimpactsofurbanvegetativeaugmentation.AtmosphericEnvironment:43–52.SakakibaraY.1996.Anumericalstudyoftheeffectofurbangeometryuponthesurfaceenergybudget.AtmosphericEnvironment487–496.SchererD,FehrenbachU,BehaH-D,ParlowE.1999.Improvedconceptsandmethodsinanalysisandevaluationoftheurbanclimateforoptimizingurbanplanningprocesses.AtmosphericEnvironment:4185–4193.SchmidHP.1994.Sourceareasforscalarsandscalaruxes.Boundary-LayerMeteorology:293–318.SchmidHP,OkeTR.1990.AmodeltoestimatethesourceareacontributingtoturbulentexchangeinthesurfacelayeroverpatchyQuarterlyJournaloftheRoyalMeteorologicalSociety:965–988.SchmidHP,OkeTR.1992.ScalingNorthAmericanurbanclimatesbylines,lanes,androws.InGeographicalSnapshotsofNorth,JanelleDG(ed.).TheGuildfordPress:NewYork.Copyright2003RoyalMeteorologicalSocietyInt.J.Climatol.:1–26(2003) URBANCLIMATESchmidHP,CleughHA,GrimmondCSB,OkeTR.1991.Spatialvariabilityofenergyuxesinsuburbanterrain.Boundary-LayerMeteorology:249–276.SchmidlinTW.1989.TheurbanheatislandatToledo,Ohio.OhioJournalofScience:38–41.ShahgedanovaM,BurtTP,DaviesTD.1997.Someaspectsofthethree-dimensionalheatislandinMoscow.InternationalJournalof:1451–1465.ShaoJ,ListerPJ.1995.Thepredictionofroadsurfacestateandsimulationoftheshadingeffect.Boundary-LayerMeteorology411–419.ShaoJ,ListerPJ,FairmanerWD.1994.Numericalsimulationsofshadingeffectandroad-surfacestate.MeteorologicalApplications209–213.ShoshanyM,AminovR,GoldreichY.1994.TheextractionofrooftopsfromthermalimageryforanalyzingtheurbanheatislandGeocartoInternational:61–69.ShuttleworthWJ.1978.Asimpliedone-dimensionaltheoreticaldescriptionofthevegetation–atmosphereinteraction.Boundary-LayerMeteorology:3–27.SieversU,ZdunkowskiW.1985.Anumericalsimulationschemeforthealbedoofcitystreetcanyons.Boundary-LayerMeteorology:245–257.SieversU,ZdunkowskiWG.1986.Amicroscaleurbanclimatemodel.Beitr¬agezurPhysikderAtmosph¬are:13–40.SimpsonJR,McPhersonEG.1998.SimulationoftreeshadeimpactsonresidentialenergyuseforspaceconditioninginSacramento.AtmosphericEnvironment:69–74.SmithWS,ReisnerJM,KaoC-YJ.2001.Simulationsofowaroundacubicalbuilding:comparisonwithtowing-tankdataandassessmentofradiativelyinducedthermaleffects.AtmosphericEnvironment:3811–3821.SmithsonPA.1989.Micro-andmesoclimatology.ProgressinPhysicalGeography:103–114.SmithsonPA.1990a.Micro-andmesoclimatology.ProgressinPhysicalGeography:537–547.SmithsonPA.1990b.Micro-andmesoclimatology.ProgressinPhysicalGeography:97–108.SolerMR,RuizC.1994.UrbanalbedoderivedfromdirectmeasurementsandLandsat4TMsatellitedata.InternationalJournalof:925–931.Spronken-SmithRA,OkeTR.1999.Scalemodellingofnocturnalcoolinginurbanparks.Boundary-LayerMeteorology:287–312.Spronken-SmithRA,OkeTR,LowryWP.2000.Advectionandthesurfaceenergybalanceacrossanirrigatedurbanpark.InternationalJournalofClimatology:1033–1047.StanhillG,KalmaJD.1995.SolardimmingandurbanheatingatHongKong.InternationalJournalofClimatology:933–941.SteineckeK.1999.UrbanclimatologicalstudiesintheReykjaviksubarcticenvironment,Iceland.AtmosphericEnvironment4157–4162.SteynDG.1980.Thecalculationofviewfactorsfromsheye-lensphotographs.AtmosphereÐOcean:254–258.SteynDG.1982.Turbulenceinanunstablesurfacelayeroversuburbanterrain.Boundary-LayerMeteorology:183–191.SteynDG,LyonsTJ.1985.Commentson“Thedeterminationofview-factorsinurbancanyons”.JournalofClimateandAppliedMeteorology:383–385.SteynDG.1992.Micro-andmesoclimatology.ProgressinPhysicalGeography:101–105.SteynDG,HayJE,WatsonID,JohnsonGT.1986.Thedeterminationofskyview-factorsinurbanenvironmentsusingvideoimagery.JournalofAtmosphericandOceanicTechnology:759–764.StollMJ,BrazelAJ.1992.Surface–airtemperaturerelationshipsintheurbanenvironmentofPhoenix,Arizona.PhysicalGeography:160–179.SturmanAP.1998.Appliedclimatology.ProgressinPhysicalGeography:558–565.SucklingPW.1980.Theenergybalancemicroclimateofasuburbanlawn.JournalofAppliedMeteorology:606–608.SucklingPW.1981.NocturnalobservationsofincominglongwaveradiationandtheurbanheatislandforasmallPrairiecity.ArchivesforMeteorology,GeophysicsandBioclimatologyB:23–27.SwaidH.1993a.Numericalinvestigationintotheinuenceofgeometryandconstructionmaterialsonurbanstreetclimate.Physical:342–358.SwaidH.1993b.Urbanclimateeffectsofarticialheatsourcesandgroundshadowingbybuildings.InternationalJournalofClimatology:797–812.SwaidH,HoffmanME.1989.ThepredictionofimperviousgroundsurfacetemperaturebytheSurfaceThermalTimeConstant(STTC)model.EnergyandBuildings:149–157.SwaidH,HoffmanME.1990–91.Thermaleffectsofarticialheatsourcesandshadedgroundareasintheurbancanopylayer.EnergyandBuildings15–16:253–261.TahaH.1997.Modelingtheimpactsoflarge-scalealbedochangesonozoneairqualityintheSouthCoastAirBasin.AtmosphericEnvironment:1667–1676.TahaH.1999.Modifyingamesoscalemeteorologicalmodeltobetterincorporateurbanheatstorage:abulk-parameterizationapproach.JournalofAppliedMeteorology:466–473.TapperNJ.1984.Predictionofthedownwarduxofatmosphericradiationinapollutedurbanenvironment.AustralianMeteorological:83–93.TapperNJ.1990.Urbaninuencesonboundarylayertemperatureandhumidity:resultsfromChristchurch,NewZealand.AtmosphericEnvironmentB:19–27.TapperNJ,TysonPD,OwensIF,HastieWJ.1981.ModelingthewinterurbanheatislandoverChristchurch,NewZealand.JournalofAppliedMeteorology:365–376.TarletonLF,KatzRW.1995.StatisticalexplanationfortrendsinextremesummertemperaturesatPhoenix,Arizona.JournalofClimate:1704–1708.TennekesH.1973.Thelogarithmicwindprole.JournaloftheAtmosphericSciences:234–238.TereshchenkoIE,FilonovAE.2001.AirtemperatureuctuationsinGuadalajara,Mexico,from1926to1994inrelationtourbangrowth.InternationalJournalofClimatology:483–494.TerjungWH.1976.Climatologyforgeographers.AnnalsoftheAssociationofAmericanGeographers:199–222.Copyright2003RoyalMeteorologicalSocietyInt.J.Climatol.:1–26(2003) A.J.ARNFIELDTerjungWH,LouieSS-F.1973.Solarradiationandurbanheatislands.AnnalsoftheAssociationofAmericanGeographers:181–207.TerjungWH,LouieSS-F.1974.Aclimaticmodelofurbanenergybudgets.GeographicalAnalysis:341–367.TerjungWH,O’RourkePA.1980a.Simulatingthecausalelementsofurbanheatislands.Boundary-LayerMeteorology:93–118.TerjungWH,O’RourkePA.1980b.Inuencesofphysicalstructuresonurbanenergybudgets.Boundary-LayerMeteorology421–439.TerjungWH,O’RourkePA.1980c.Aneconomicalcanopymodelforuseinurbanclimatology.InternationalJournalofBiometeorology:281–291.TerjungWH,O’RourkePA.1981a.Energyinputandresultantsurfacetemperaturesforindividualurbaninterfaces,selectedlatitudesandseasons.ArchivesforMeteorology,Geophysics,andBioclimatologyB:1–22.TerjungWH,O’RourkePA.1981b.Relativeinuenceofvegetationonurbanenergybudgetsandsurfacetemperatures.Boundary-LayerMeteorology:255–263.ThomAS,StewartJB,OliverHR,GashJHC.1975.Comparisonofaerodynamicandenergybudgetestimatesofuxesoverapineforest.QuarterlyJournaloftheRoyalMeteorologicalSociety:93–105.TodhunterPE.1989.Anapproachtothevariabilityofurbansurfaceenergybudgetsunderstratiedsynopticweathertypes.InternationalJournalofClimatology:191–201.TodhunterPE.1990.Microclimaticvariationsattributabletourban-canyonasymmetryandorientation.PhysicalGeography:131–141.TodhunterPE,TerjungWH.1990.Theresponseofurbancanyonenergybudgetstovariablesynopticweathertypes—asimulationapproach.AtmosphericEnvironmentB:35–42.TravisDJ,MeentemeyerV,SucklingPW.1987.Inuenceofmeteorologicalconditionsonurban/ruraltemperatureandhumiditydifferencesforasmallcity.SoutheasternGeographer:90–100.TsoCP.1996.Asurveyofurbanheatislandstudiesintwotropicalcities.AtmosphericEnvironment:507–519.TumanovS,Stan-SionA,LupuA,SociC,OpreaC.1999.InuencesofthecityofBucharestonweatherandclimateparameters.AtmosphericEnvironment:4173–4183.UngerJ.1996.Heatislandintensitywithdifferentmeteorologicalconditionsinamedium-sizedtown:Szeged,Hungary.TheoreticalandAppliedClimatology:147–151.UngerJ,SumeghyZ,ZobokiJ.2001.Temperaturecross-sectionfeaturesinanurbanarea.AtmosphericResearch:117–127.UnitedNations.2001.IndicatorsonHumanSettlements.UnitedNationsStatisticsDivision.URL:http://www.un.org/Depts/unsd/social/hum-set.htm,accessed1July2001.UnoI,WakamatsuS,UedaH,NakamuraA.1988.Anobservationalstudyofthestructureofthenocturnalurbanboundarylayer.Boundary-LayerMeteorology:59–82.UnwinDJ.1980.ThesynopticclimatologyofBirmingham’sheatisland.Weather:43–50.VerseghyDL,MunroDS.1989a.Sensitivitystudiesonthecalculationoftheradiationbalanceofurbansurfaces:I.Shortwaveradiation.Boundary-LayerMeteorology:309–331.VerseghyDL,MunroDS.1989b.Sensitivitystudiesonthecalculationoftheradiationbalanceofurbansurfaces:II.Longwaveradiation.Boundary-LayerMeteorology:1–18.VoogtJA,GrimmondCSB.2000.Modelingsurfacesensibleheatuxusingsurfaceradiativetemperaturesinasimpleurbanarea.JournalofAppliedMeteorology:1679–1699.VoogtJA,OkeTR.1991.Validationofanurbancanyonradiationmodelfornocturnallong-waveuxes.Boundary-LayerMeteorology:347–361.VoogtJA,OkeTR.1997.Completeurbansurfacetemperatures.JournalofAppliedMeteorology:1117–1132.VoogtJA,OkeTR.1998a.Radiometrictemperaturesofurbancanyonwallsobtainedfromvehicletraverses.TheoreticalandApplied:199–217.VoogtJA,OkeTR.1998b.Effectsofurbansurfacegeometryonremotely-sensedsurfacetemperature.InternationalJournalofRemote:895–920.VukovichFM.1983.AnanalysisofthegroundtemperatureandreectivitypatternaboutSt.Louis,Missouri,usingHCMMsatelliteJournalofClimateandAppliedMeteorology:560–571.WangC,LiuJ.1982.TheclimateoftheCityofHangzhou.ActaGeographicaSinica:164–173.WatsonID,JohnsonGT.1987.Graphicalestimationofskyview-factorsinurbanenvironments.JournalofClimatology:193–197.WestendorfKL,LeuthartCA,HowarthDA.1989.ApreliminaryassessmentoftheLouisvilleurbanheatisland.TransactionsoftheKentuckyAcademyofScience:86–93.WinklerJA,SkaggsRH,BakerDG.1981.EffectsoftemperatureadjustmentsontheMinneapolis–St.Paulurbanheatisland.ofAppliedMeteorology:1295–1300.XuY,ZhouC,LiZ,WeiW.1997.TurbulencestructureandlocalsimilarityinthetowerlayerovertheNanjingarea.Boundary-LayerMeteorology:1–21.YadavAK,RamanS,SharanM.1996.Surfacelayerturbulencespectraanddissipationratesduringlowwindsintropics.Boundary-LayerMeteorology:205–223.YagueC,ZuritaE,MartinezA.1991.StatisticalanalysisoftheMadridurbanheatisland.AtmosphericEnvironmentB:327–332.YamashitaS,SekineK,ShodaM,YamashitaK,HaraY.1986.OnrelationshipsbetweenheatislandandskyviewfactorinthecitiesofTamaRiverbasin,Japan.AtmosphericEnvironment:681–686.YerselM,GobleR.1986.Roughnesseffectsonurbanturbulenceparameters.Boundary-LayerMeteorology:271–284.YoshidaA,TominagaK,WatataniS.1990–91.Fieldmeasurementsonenergybalanceofanurbancanyoninthesummerseason.EnergyandBuildings15–16:417–423.YoshinoM.1990–91.Developmentofurbanclimatologyandproblemstoday.EnergyandBuildings15–16:1–10.ZdunkowskiW,BruhlC.1983.Afastapproximatemethodforthecalculationoftheinfraredradiationbalancewithincitystreetcavities.ArchivesforMeteorology,GeophysicsundBioclimatologyB:237–241.ZhangH,ChenJ,ParkS-U.2001.Turbulencestructureinunstableconditionsovervarioussurfaces.Boundary-LayerMeteorology243–261.Copyright2003RoyalMeteorologicalSocietyInt.J.Climatol.:1–26(2003)