/
Path Integrals in Quantum Mechanics Dennis V Path Integrals in Quantum Mechanics Dennis V

Path Integrals in Quantum Mechanics Dennis V - PDF document

lindy-dunigan
lindy-dunigan . @lindy-dunigan
Follow
661 views
Uploaded On 2014-12-12

Path Integrals in Quantum Mechanics Dennis V - PPT Presentation

Perepelitsa MIT Department of Physics 70 Amherst Ave Cambridge MA 02142 Abstract We present the path integral formulation of quantum mechani cs and demon strate its equivalence to the Schr57512odinger picture We appl y the method to the free particl ID: 22613

Perepelitsa MIT Department

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Path Integrals in Quantum Mechanics Denn..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

PathIntegralsinQuantumMechanicsDennisV.PerepelitsaMITDepartmentofPhysics70AmherstAve.Cambridge,MA02142AbstractWepresentthepathintegralformulationofquantummechanicsanddemon-strateitsequivalencetotheSchrodingerpicture.Weapplythemethodtothefreeparticleandquantumharmonicoscillator,investigatetheEuclideanpathintegral,anddiscussotherapplications.1IntroductionAfundamentalquestioninquantummechanicsishowdoesthestateofaparticleevolvewithtime?Thatis,thedeterminationthetime-evolutionj (t)iofsomeinitialstatej (t0)i.Quantummechanicsisfullypredictive[3]inthesensethatinitialconditionsandknowledgeofthepotentialoccupiedbytheparticleisenoughtofullyspecifythestateoftheparticleforallfuturetimes.1Intheearlytwentiethcentury,ErwinSchrodingerderivedanequationspeci eshowtheinstantaneouschangeinthewavefunctiond dtj (t)idependsonthesysteminhabitedbythestateintheformoftheHamiltonian.Inthisformulation,theeigenstatesoftheHamiltonianplayanimportantrole,sincetheirtime-evolutioniseasytocalculate(i.e.theyarestationary).Awell-establishedmethodofsolution,aftertheentireeigenspectrumof^Hisknown,istodecomposetheinitialstateintothiseigenbasis,applytimeevolutiontoeachandthenreassembletheeigenstates.Thatis, 1Intheanalysisbelow,weconsideronlythepositionofaparticle,andnotanyotherquantumpropertysuchasspin. 2D.V.Perepelitsaj (t)i=n=1Xn=0exp[iEnt=~]hnj (t0)ijni(1)This(Hamiltonian)formulationworksinmanycases.Inclassicalmechanics,however,theLagrangianformulationisknowntobeequivalenttotheHamiltonianone.Thus,weseekananswertotheabovequestionthatreliesonsomeanalogueoftheLagrangianaction.In1920,P.A.M.Diracmadeamysteriouscommenttothise ect,whichlaterinspiredRichardFeynman.Consideratrajectoryx(t)betweenaninitialpoint(x0;t0)andpossiblefuturepoint(x0;t0).Letthetransitionprobabilityamplitudeh (x;t)j (x0;t0)ibetheinnerproductofthewavefunctionintheSchrodingerpictureoftheparticleevaluatedatthesetwopoints.Feynmanhintedatthe\equivalence"oftheprobabilityamplitudeandtheexponentoftheclassicalactionofthetrajectoryexp[iS[x(t)]=~],where\equivalence"isnotyetwell-de ned.Itwasnotuntil1948thatFeynman,asapost-doctoralstudentatPrinceton,formalizedthisconnection.Inhislandmarkpaper[4],Feynmanpresentedaformulationofquantummechanicsbasedonthisprinciple.Letagiventrajectoryx(t)beassociatedwithatransitionprobabilityamplitudewiththesameformasthatgivenbyDirac.Ofcourse,byquantummechanics,wecannotspeakoftheparticletakinganywell-de nedtrajectorybetweentwopoints(x0;t0)and(x0;t0).Instead,wecanonlyspeakoftheprobabilityof ndingtheparticleattheselocations,whichisrelatedtowavefunctionsj (x0;t0)iandj (x0;t0)i.Thatis,allthatcanbedeterminedistherelativeprobabilityoftheparticletakingonepathoranother.Feynman'sinsightwasthis-thetotaltransitionprobabilityamplitudecanbeobtainedbysummingtheamplitudesoftheparticlehavingtakenanyindividualpath.Ifthequantityh (x0;t0)j (x0;t0)icanbecalculatedinthemethodsuggestedbyFeynman,thetime-evolutionofthestatecanbedeterminedbyconsideringcon-tributionsfromallpossiblefuturestates,andtheproblemissolved.Below,theketsareeigenstatesofthepositionoperator,suchthatintegrationoverallxspanstheentirebasis.j (x;t0)i=Z11h (x0;t0)j (x0;t0)idx0j (x0;t0)i(2)Knownasthepathintegralformulationofquantummechanics,thismethodgivesthesameresultsasthosedictatedbytheSchrodingerpicture,butalsoilluminatessomeofthedeeperaspectsofquantummechanics.Inthispaper,wewillpresentthemethodusedbyFeynman.Thoughitispedagogicallybackward,wewillthendemonstrate PathIntegralsinQuantumMechanics3theuseofthemethodbeforeshowingitsequivalencetotheSchrodingerpicture.Wewilltheninvestigatethemethodasappliedtotheharmonicoscillator.Followingthis,wewillintroducetheconceptofEuclideanpathintegralsanddiscussfurtherusesofthepathintegralformulationinthe eldofstatisticalmechanics.2PathIntegralMethodDe nethepropagatorofaquantumsystembetweentwospacetimepoints(x0;t0)and(x0;t0)tobetheprobabilitytransitionamplitudebetweenthewavefunctionevaluatedatthosepoints.U(x0;t0;x0;t0)=h (x0;t0)j (x0;t0)i(3)IftheHamiltoniancarriesnoexplicittime-dependence,wecanrelabelthe rsttime-valuet0=0andworkonlywithelapsedtimet=t0t0.Wewilloftenwrite(3)asU(x0;t;x0)toillustratethis.Thepropagatorabove,alongwithaninitialstateket,fullydescribestheevolutionofasystemovertime.Itisalsocustomary,asisdoneinSakurai[2],touseherethesymbolKinsteadofUandrefertoasthe\kernel"or\Feynmankernel".Thepathintegralmethod,asweareabouttosee,isanexplicitwaytoconstructthispropagator.Weconsiderpossibletrajectoriesx(t)ofaparticlemovingthroughatime-independentpotentialV(x)withendpoints xedat(x0;t0)and(x0;t0).2Anin nitecontinuumofsuchtrajectoriesarepossible,eachwithclassicalactionS[x(t)].Feynman[4]positsthatthecontributiontothepropagatorfromaparticulartrajectoryisexp[iS[x(t)]=~].Thatis,everypossiblepathcontributeswithequalamplitudetothepropagator,butwithaphaserelatedtotheclassicalaction.Summingoverallpossibletrajectories,wearriveatthepropagator.ThenormalizationconstantA(t)isindependentofanyindividualpathandthereforedependsonlyontime.U(x0;t;x0)=A(t)Xalltrajectoriesexpi ~S[x(t)](4)Equation(4)istheheartofthepathintegralformulation.Howthissummation(whichhasyettobewell-de ned)istoarriveatthecorrectpropagatorisfarfrom 2Atthispoint,x(t)coulddescribeatrajectorythroughspacetimewithanynumberofdimensions.Forourpurposes,however,theparticlemovesalongonespatialdimension,thoughageneralizationtomoreisstraightforward. 4D.V.Perepelitsaobvious.Wenowdiscusssomesalientfeaturesof(4)anddiveintothetechnicaldetailsofasimpleexample.2.1TheClassicalActionHowcanitbethatthein nitesumabovedoesnotdiverge?Thedi erentphasesarethekeytothis.Fortrajectoriesbetweenwhichtheactiondi ersbyS~,thecorrespondingcontributionswillcancel.Contributionstothepropagatorfrompossibletrajectoriesthrougharegionfarawayfromtheclassicalpathwould,intheaggregate,cancel.Denotetheclassicaltrajectoryxcl(t)asthetrajectorywiththeminimumvalueoftheactionS[xcl],whichisstationaryto rstorderwithregardtodeviations.Onthemacroscopicsystem,thisisthetrajectoryobservedwithverylittleuncertainty.InvestigationofEquation(4)givesareasonforthis.Trajectoriesclosetotheclassicalonecauseno rst-orderdeviationintheaction,andcontributewithcoherentphasetotheintegral.Trajectorieswithaction~morethantheclassicalactionareoutofphase,andinterferedestructivelywitheachother.Integratingovermoreandmoresuchtrajectoriesshouldcausetheircontributiontoaverageouttozero.Inthisway,theclassicaltrajectoryisqualitativelyimportant.Ingeneral,theregionofcoherenceisrelatedtothe\classical"natureofthesystem.Onthe(macro-scopic)classicalscale,~isafrighteninglysmallamount,makingtheprincipalcon-tributingtrajectoriesthoseinanarrowbandaroundtheclassicalone.Onthequan-tumscale,however,theactionissmallenoughthat~isenoughtoallowsigni cantquantumdeviationsfromtheclassicaltrajectory.Intuitively,thiscorrespondstothefundamentaluncertaintyintheparticle'spositionatanygiventime.Shankar[3]brie\rygivesamorequantitativeargumentofthedi erencesinthetwocases.2.2FreeParticleForconcreteness,weusethemethodabovetodeterminethepropagatorforthesim-plestofsystems-aparticlemovinginfreespacealongonedimension.Inthiscase,wewillactuallyevaluatetheintegralgivenabove\overallpossiblepaths",although,asMacKenzie[5]notesafterasimilarderivation,oftenmuchofthestudyofthepathintegralformulationisconcernedwithhowtoavoidjustthis.Letx(t)describeapotentialtrajectoryfrom(xa;ta)to(xb;tb).Wediscretizethetrajectorybydividingitintochunksoftimet=(tbta) N,suchthattheintermediate PathIntegralsinQuantumMechanics5pointsare(x1;t1),:::,(xN1;tN1).WedothiswiththehopethatinthelimitasN!1,thismodelsacontinuouspath.3AsV(x)=0forafreeparticle,theactiondependsonlyonthevelocity,whichbetweenanytiandti+1=ti+tisaconstant.Wedenotetheactionbetweentiandti+1bySi=Zti+1tim 2_x(t)2dt=m 2xi+1xi ti+1ti2(ti+1ti)=m 2t(xi+1xi)2(5)Todescribeeverypathfrom(x0;t0)to(xN;tN),wesimplyvaryeachintermediatepointxiateachtiovertheentiredomain.Asthefxigeachtakeonacontinuumofvaluesfrom1to1,thesumofthecontributionsfromeverypathish (xN;tN)j (x0;t0)i=A(t)Z11Z11exp"i ~m 2ti=NXi=1(x2ix2i1)#dx1dxN1(6)HereA(t)isthenormalizationconstantthatdependsonlyontheelapsedtimetNt0.Wecanevaluate(6)byintegratingoveronevariableatatime.Forconvenience,letk=im 2~t.Integrationoverthe rstvariableyieldsZ11expk(x22x21)+k(x21x20))dx1(7)=Z11exp2kx21+kx1(2x22x0)+k(x22+x20)dx1(8)=p  p 2p kexpk 2(x2x0)2(9)Weignoretheconstantterm,sinceitisabsorbedintothenormalizationconstantA.Afterafewmoreintegrations,apatternemergeswhichFeynmanandHibbs[1]illustratemoreexplicitly:integratingoverthe rstnspacetimepointsleavesafactorofk n+1(xnx0)2intheexponentafterevaluation.WeevaluateN2moreintegrationsafterthe rstone,andusethefactthatNt=(tNt0)torewriteexpression(6)conciselyas 3Notethattheconstructedaccelerationisadiscontinuousimpulsetrainofinstantaneousjumpsinthevelocity.SincetheLagrangiandoesnotvaryexplicitlywithx,andthatinthelimitthisvalueiscontinuousanyway,weignorethis. 6D.V.PerepelitsaU(xN;tN;x0;t0)=A(tNt0)expk N(xNx0)2(10)U(x;t;x0)=A(t)expim 2t~(xx0)2(11)ThevalueforAisobtainedbynormalizing(11)overallxwhileholdingtconstant.The nalresultisU(x;t;x0)=r m 2i~texpim 2t~(xx0)2;(12)whichisinfactthepropagatorforafreeparticle.AfascinatingfeatureofthisresultisthatUiscomposedofthecontributionfromtheclassicalpathalone.Thisisnotalwaysthecase,andwewilldiscussthisphenomenoninSection3.2.3EquivalencetoSchrodingerPictureButisthisnewformulationreallyanequivalentpictureofnon-relativisticquantummechanics?Schrodinger'sequationindi erentialformde nesthetime-derivativeofagiveninitialstatej (x0;t0)i.i~d dtj (x0;t0)i=^Hj (x0;t0)i=~2 2md2 dx2+V(x0)j (x0;t0)i(13)Weattempttorecreatethisdi erentialequationusingthepathintegralformulation.Consideraninitialstatej (x0;t0)i.Somein nitesimaltime later4,andatsomein nitesimalposition\raway,thestatecanbedescribedasfollows.j (x;t0+ )i=Z11d\rj (x0+\r;t0+ )iU(x0+\r; ;x0)(14)TocalculatethepropagatorU=h (x0+\r;t0+ )j (x0;t0)i,weneedtodeterminetheaction.Foragivenpositioncoordinatex0+\rattime ,theparticle'svelocityandpositioncanbeapproximatedas1 (\r)andx+\r 2,respectively.Thepropagatoris 4Oureventualintentionistoallow !0torecreatetheinstantaneousderivative.Thus,wefeelnoqualmmakinganyjustifyingassumptionsthatareexactinthelimit. PathIntegralsinQuantumMechanics7U(x0+\r; ;x0)=A( )expi ~Z 0dtm 2_x(t)2V(x(t))(15)A( )expi ~m 2 \r2Vx0+\r 2 (16)Inthelimitas (andtherefore\r)becomezero,theapproximationabovebecomesexact.Therefore,weexpandseveralofthequantitiesin(16)inpowersof and\r.Theexponentialofthepotentialenergy,andthepotentialenergyitselfarei ~exphVx0+\r 2i=1i ~Vx0+\r 2+:::(17)Vx0+\r 2=V(x0)+\rd d\rV(x0)+:::(18)Wekeepthe rsttwotermsof(17)andonlythe rsttermof(18),whichhasthee ectofdiscardingalltermssecondorderin( ;\r)andhigher.Additionally,wecanexpandtheketintheintegrandj (x0+\r;tiaroundx0.The rstandthirdtermsaresigni cant,butthesecondtermresultsinanoddfunctionwithinthe(symmetric)integrand,sowediscarditasin[1].j (x0+\r;t0)i=j (x0;t0)i+\rdj (x0;t0)i dx+1 2\r2d2j (x0;t0)i dx2+:::(19)Theapproximateexpressionfor(14)becomesj (x;t0+ )i=A( )1i ~V(x0)Z11d\rj i+1 2\r2d2j i dx2expi ~m 2 \r2(20)ItisstraightforwardtoevaluatethisGaussian.Integrating,andkeepingthe rstordertermsinthein nitesimalsgivesj (x0;t0+ )i=A( )r 2~ im1i ~V(x0)+~ 2mid2 dx2j (x0;t0)i(21)Forsmall ,weseethatthe rsttermontherightmustequaltheexpressionontheleft,andthatthenormalizationconstantisnecessarilyA( )=p m 2~i .Torecoverthetimederivative,wecanrearrange(21)andtakethelimitas !0ofi[j (x;t0+ )ij (x;t0)i]=(~ ). 8D.V.Perepelitsai~d dtj (x;t0)i=V(x0)~2 2md2 dx2j (x0;t0)i(22)Thisisjust(13),thetime-dependentSchrodingerEquation,derivedfromapathintegralformulationofquantummechanics.Thereareotherwaystoshowthisequiv-alence.Forexample,MacKenzie[5]beginswiththeSchrodingerpictureandshowsthatitcanbemassagedintotheFeynmanformulation.Ourdirection,whichisthesameasthatofFeynmanandHibbs[1],istoshowthatthestandardquantumtheorycanbereconstructedfromthe\ rstprinciples"ofthepathintegralmethod.3HarmonicOscillatorNowlettheparticlebeinapotentialgivenbyV(x)=1 2m!2x2.Inprinciple,wecouldexplicitlycomputethepropagatorbyconsideringagenericinitialstateandapplyingtime-evolutiontoeachoftheeigenstates.Thiswayisalgebraicallybrutal,requiringthesummationofanin niteseriesofexpressionsinvolvingHermitepolynomials.Usingthetoolswehavedevelopedabove,wewillderivethepropagatorfortheone-dimensionalharmonicoscillatorwithasurprisinglackofintensecomputation,relyinginsteadonthetheoreticalbasisofthepathintegralformulation.3.1DerivationofthePropagatorWeapproachtheprobleminaslightlydi erentmanner.Letxcl(t)and_xcl(t)betheclassicalpathanditsvelocity,respectively.Wecanrepresentanyotherpathasadeviationfromthisone,xcl(t)+y(t)and_xcl(t)+_y(t),withthecorrectboundarycon-ditions(yand_yarezeroattheendpointsofthepath).Let'srewritetheLagrangianforagenericpathinawaythatisolatestheclassicalLagrangian.Werelaxthetimedependence,sinceitisimplicit.L(xcl+y;_xcl+_y)=1 2m(_xcl+_y)2+1 2m!2(xcl+y)2=1 2m_x2cl+1 2m!2x2cl+(m_xcl_y+m!xcly)+1 2m_y2+1 2m!2y2(23)The rsttermin(23)isjusttheLagrangianfortheclassicaltrajectory.ThesecondtermiszerobytheEuler-Lagrangeequations(sinceonastationarypathxcl,this PathIntegralsinQuantumMechanics9termmustbezeroforanywell-behaveddeviationy).Wewillreturntothislater.ThethirdtermistheLagrangianforthedeviation.Theactionisseparableinthesensethatthepropagatorhasthefollowingform:U=A(t)expi ~S[xcl]Zallpathsexpi ~Zt=tNt=t01 2m_y2+1 2m!2y2(24)Itcanbeshownthattheintegraloverallpathsdependsonlyonelapsedtimetandnotonx(t0)orx(tN).Shankar[3]arguesthatthismustbetruesinceeverydeviationhasnoknowledgeoftheendpointsofthetrajectory(sinceyand_yarezerothere).Wethereforeabsorbthistime-dependentfunctionintothenormalizationfactor,andareleftwithjusttheclassicalaction.5Normalizingthisexpressionisnottrivial.FeynmanandHibbs[1]considerthedecompositionofadeviationy(t)intoitsFourierserieswithperiodtNt0,andthenintegrateoverthecomponents.Weusetheirresult,thoughthereareothermethods.U=r m! 2i~sin!texpim! 2~sin!t(x2+x20)cos!t2xx0(25)Thisisthecorrectanswer.Later,whenweinvestigatetheconnectionbetweenthepathintegralformulationandstatisticalmechanics,wewillusethisresulttorecovertheenergyeigenvalues.3.2SeparableLagrangiansWehavediscoveredthatinsomecases,onlytheclassicaltrajectorycontributestothesummationin(4).Thereisastraightforwardreasonforthis.TheLagrangianforanygenericpathcanbeexpressedasatwo-dimensionalTaylorexpansionabouttheLagrangianoftheclassicalaction.L(xcl+y;_xcl+_y)=Lcl+1Xn=11 n!yd dx+_yd d_xnLcl=Lcl+ydLcl dx+ydLcl d_x+y2d2Lcl dx2+2y_yd dxdLcl d_x+_y2d2Lcl d_x2+:::(26) 5Thisisaknownresult,sowedonotderiveithere. 10D.V.PerepelitsaTheEuler-Lagrangeequationsontheclassical(stationary)trajectorydictatethatthen=1termiszero.Inanon-relativisticframework,thekineticenergytermintheLagrangiancontributesam 2_y2term.Additionally,inapotentialisquadraticinxand_x(asinthecaseoftheharmonicoscillatorandmanyotherelementarypotentials),theLagrangianseparatesexactly.Relation(26)showsthatinthesecases,thepropagatorissimplyrelatedtotheimaginaryexponentoftheclassicalactiondividedbythequantumofaction.UA(t)expi ~S[xcl](27)Thus,therearemanyproblemswhichcanbereducedtodeterminingtheclassicalaction,oncetherelationaboveisshowntobetrueforthesystem.Afterthis,thenormalizationofthepropagatorbecomestheonlychallengingtask.Although(27)isoftenagoodapproximation(andisevenexactinsomeimportantsystems),wemustbeawareofitslimitationsanduses.Thirdorhigherpowersofxor_xintheLagrangianwillannulit.However,itworksreadilyiftheLagrangiandependsonmorethanonetrajectory,andcanevenbesolvedinthecaseofatime-dependentinputintothesystemf(t).FeynmanandHibbs[1]provideamoreindepthdiscussionofthissolutionmethodandwhereitisapplicable.4EuclideanPathIntegralsOurapproachinthefollowingsectionispragmatic,focusingmoreonthefunctionalityofamethodthanonarigorousjusti cation.Inprevioussections,wehaverelatedthetransitionprobabilityamplitudeofthewavefunctionbetweentwopointsinspacetime.Thisnextsectionconcernsrevisingnotthemethodbutthesenseofspacetime.Farfromtheclassicaltrajectory,therapidlyoscillatingtermsin(2)cancausecon-vergenceissuesandaregenerallyunpleasanttodealwith.ObservethatinMinkowskispacetimewithonephysicalcoordinate,theproperdistance2goesasthenegativesquareofthetimet2.However,inEuclideanspacetime,thesignofthet2termispositive;theydi erbyaphasefactori.Considerwhatwouldhappenifweintroducedafactorofiintotheexponentials-theoscillatingtermswouldturnintodecayingexponentials,whichhaveanentirelydi erentphysicalmeaning.Withthisasourmotivation,letusanalyticallyextendthetimeparameterintothecomplexnumbersC.Inparticular,lettimehavenorealcomponent,andidentify PathIntegralsinQuantumMechanics11t=iwitharealparametercalledimaginarytime.ThisisformallyknownasaWickrotation,andrigorousjusti cationofthisstepisnottrivial.Thefruitofsuchagambitwillhopefullysoonbemadeclear.Nevertheless,letusexaminetheformpropagatoroverasmalltimeintervali.U(x0;i;x)Xallpathsexpi ~m 2(x0x)2 iiVx+x0 2(28)Weseethatthepotentialenergyhas\rippedsignrelativetothekineticenergyterm!Werede netheEuclideanactionSE[x()]ofatrajectoryinimaginarytimex()below.SE[x()]=Z21m 2_x2()+V(x())(29)TheEuclideanactionisavaluerelatedtothequantumtunnelingprocess.Wewillnotenterintomoredetailonthis;bothGrosche[6]andMacKenzie[5]giveamorein-depthtreatment.Withthis,wecande netheimaginarytimepropagatorU(x0;;x)aswell.U(x0;;x)=A()Zallpathsexp1 ~SE[x()](30)Thoughthephysicalmeaningbehindthisnewpropagatorisstillnotobvious,wecangainsomesenseofitsinterestingproperties.Whatsortofvaluecanthesumoverallpathsin(30)have?Nolongerdoestheclassicalactioncausethecontributiontothesummationtooscillate;eachpathisnowgivenanegativeexponentialweightbasedonitsEuclideanaction.Theclassicalpathhasthelargestcontribution,sincetheactionisaminimumthere.TrajectoriesfarawayfromtheclassicaloneseeanexponentiallydecreasedcontributionasSEgrows.AparticleobeyingtheEuclideanequationsofmotionexperiencesthepotentialintheotherdirection,whichisintuitivelycorrect-apaththrougharegionofhighpotentialdampensthecontributionofthatpaththroughthenegativeexponentialdependenceoftheaction.4.1StatisticalMechanicsWebrie\ryexploretheconnectionbetweentheEuclideanpathintegralandstatisticalmechanics.Consideranensemblesystematthermodynamicequilibriumwithordered 12D.V.PerepelitsaenergymicrostatesfEngforn=1;2;:::.ThepartitionfunctionZofstatisticalmechanicsencodesprobabilisticinformationaboutthesystem.Z=1Xn=1e En(31)Above, =1=kbTbetheinversetemperatureofthesystematagiventemperatureTwithBoltzmann'sconstantkb.Theformof(31)isreminiscentofthetime-evolutionconstructedfromenergyeigenstatesbackin(1),whichwehaveshownhasanequiv-alentexpressionastheintegraloverpropagatorstoallpossiblepointsin(2).Thenaturalquestioniswhetherwecanderivethepartitionfunctionfromapathintegralstandpoint.Itwouldseemthatreplacingthetimevariabletwiththequantityi wouldbeagood rststep.Aswehaveseenabove,thismovesusintotherealmofEuclideanpathintegrals.TheanalysisbelowisbasedonthatofGrosche[6]andFeynmanandHibbs[1].Consideraquantumsystemwiththediscreteenergyspectrumgivenabove.Werewritetheimaginarytimepropagatorbetweenx0andxbydecomposingthebraandketintoabasisofeigenstatesandapplyingtime-evolutiontoeachone.U(x0;;x)=Xnhx0jnieiEn(i)=~hnjxi=XnhnjxieiEn(i)=~hx0jni(32)Now,settingx0=xand= ~andintegratingoverallxyieldsZdxU(x; ~;x)=XnhnjZxdxe Enjxihxjni=Xne En=Z(33)Thisistherelationbetweentheimaginarytimepropagatorandthepartitionfunctionthatwearelookingfor.Asavividillustrationofthisequality,wereturntothecaseoftheharmonicoscillator,whosepropagatorwederivedinSection3:1.U(x; ~;x)=r m! 2~sinh ~!expmwx2 ~sinh ~!(cosh ~!1)(34)ThepartitionfunctionfortheharmonicoscillatorZistheintegralof(34)overallx,whichiseasytoevaluatesincethefunctionisaGaussian. PathIntegralsinQuantumMechanics13Z=ZdxU(x;i ;x)=r m! 2~sinh ~!Zdxexp24x2 ~sinh ~! m!(cosh ~!1)35(35)=r m! 2~sinh ~!p s ~sinh ~! m!(cosh ~!1)=1 p 2(cosh ~!1)(36)Expandingthishyperbolicfunctiongivesthedesiredresult.(p 2(cosh ~!1))1=(p e ~!2+e ~!)1=(e ~!=2e ~!=2)1(37)=e ~!=21 1e ~!=Xn=0exp n+1 2~!(38)Thisistheexpectedpartitionfunction,completewiththeenergyeigenvaluesoftheharmonicoscillator!5DiscussionThismanuscripthasbeenintendedasabriefintroduction;theliteratureisricherinapplication,scopeandrigor.FeynmanandHibbs'[1]textbookclassicintroducesallofquantumtheoryfromthisperspective.MacKenzie[5]notesthatapathintegralformulationnaturallyleadstoaninvestigationoftheAharanov-Bohme ectusingthesemethods,andgoesontopresentstationaryperturbationtheoryusingFeynmankernels.Shankar[3]delvesintopathintegralsthroughphasespaceandcoherentstatespace,andappliesthemtoanumberofsophisticatedtopicssuchastheBerryphase.Sakurai[2]writesmoregenerallyaboutGreen'sfunctions.Grosche[6]presentsapaperstartlinginitsrigorandthoroughnessonthetopic.Othersourcesevendemonstratetheuseofpathintegralsinquantum eldtheory.Still,wehavemanagedtocoverquiteabitofgroundonthetopicofpathintegralsinquantummechanics.Ourformulationofquantummechanicshasbeendrivenbytwokeyprinciples.Startingfromtheprinciplethataparticletakesnowell-de nedtrajectorybetweentwopointsatwhichitisobserved,wede nethetransitionprobabilityamplitudebetweentwopointsasasummationoverallpaths.ThiswasFeynman'sinsight.Then,weconnectthecontributiontotheamplitudefromanygivenpathwiththecorrespondingclassicalactionalongthepathinthemannersuggestedbyDirac. 14D.V.PerepelitsaWehavederivedthefreeparticlepropagatorinamannerthatfullydemonstratingthe\integrateoverallpossiblepaths"principle.WehaveshownequivalencetothestandardSchrodingerformulationofquantummechanics.Then,takingadvantageoftherestrictionsthattheclassicallyobservedLagrangianactionprovides,wehavederivedtheharmonicoscillatorpropagator,anddiscussedpotentialsforwhichthepropagatoriseasilysolvable.Afterthis,wehavede nedthepathintegralinEu-clideanspacetime,andshowedhowitisrelatedtothepartitionfunctioninstatisticalmechanics.Fromthis,wehaverecoveredtheenergyeigenvaluesoftheharmonicoscillator.ItissaidthatRichardFeynmancouldnotallowbelieveanyphysicshehadnotrederivedforhimself.Thoughouranalysishasbeenbrief,andwithlessemphasisonstraightforwardrigorthanonpragmatism,itisclearthatthescopeandsuccessofFeynman'smethodistrulyremarkable.AcknowledgmentsDVPwouldliketothankBrianPepperandEricFitzgeraldfortheiradviceandproofreadingduringthecreationofthismanuscript.References[1]R.P.FeynmanandA.R.Hibbs,QuantumMechanicsandPathIntegrals(McGraw-Hill,NewYork,1965)[2]J.J.Sakurai,ModernQuantumMechanics(Addison-Wesley,Reading,MA,1994)[3]R.Shankar,PrinciplesofQuantumMechanics,2ndEd.(PlenumPress,NewYork,NY,1994)[4]R.Feynman,Space-TimeApproachtoNon-RelativisticQuantumMechanics(1948)Rev.ModernPhysics.20[5]R.MacKenzie,PathIntegralMethodsandApplications(2000)arXiv:quant-ph/0004090v1[6]C.Grosche,AnIntroductionIntotheFeynmanPathIntegral(1993)arXiv:hep-th/9302097v1