/
Chapter  Thermal Constriction Resistance It was seen that the contact interface consists Chapter  Thermal Constriction Resistance It was seen that the contact interface consists

Chapter Thermal Constriction Resistance It was seen that the contact interface consists - PDF document

lois-ondreau
lois-ondreau . @lois-ondreau
Follow
567 views
Uploaded On 2015-03-10

Chapter Thermal Constriction Resistance It was seen that the contact interface consists - PPT Presentation

These gaps may be evac uated or 64257lled with a conducting medium such as gas In the 64257rst case all of the heat is constrained to 64258ow through the actual contact spots If the gaps are 64257lled with a conducting medium however some of the hea ID: 43427

These gaps may

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Chapter Thermal Constriction Resistance..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Chapter2ThermalConstrictionResistanceItwasseenthatthecontactinterfaceconsistsofanumberofdiscreteandsmallactualcontactspotsseparatedbyrelativelylargegaps.Thesegapsmaybeevac- TT0ð2: a.Theconstrictionissmallcomparedtotheotherdimensionsofthemediumin whichheatßowoccurs. b.Theconstrictionofheatßowlinesisnotaffectedbythepresenceofother contactspots. c.Thereisnoconductionofheatthroughthegapsurroundingthecontactspot. TheproblemisillustratedinFig. 2.1 .Manysolutionstothisproblemare available(see,forexample,Llewellyn-Jones 1957 ;Holm 1957 ).Wewilldescribe here,insomedetail,themethodusedbyCarslawandJaeger( 1959 ).Itisbelieved thatsuchdetailisnecessaryinordertoappreciatefullythemathematicalcom- plexitiesinvolvedintheanalyticalsolutionsofeventhesimplestconÞgurations.In whatfollows,frequentreferenceismadetotheworkofGradshteynandRyzhik ( 1980 ).TheformulasofthisreferencewillbeindicatedbyG-Rfollowedbythe formulanumber. Theequationofheatconductionincylindricalco-ordinates,withnoheat generationis: o 2 T o r 2 þ 1 r o T o r þ o 2 T o z 2 ¼ 0 ð 2 : 2 Þ Usingthemethodofseparationofvariables,weseekasolutionoftheform: Tr ; z ðÞ¼ Rr ðÞ Zz ðÞð 2 : 3 Þ sothatEq.( 2.2 )maybewrittenas R 00 Z þ Z r  R 0 þ Z 00 R ¼ 0 DividingthroughbyRZandseparatingthevariables.Weget R 00 þ R 0 r  R ¼ Z 00 Z ¼ k 2 ThusEq.( 2.2 )isreducedtotwoordinarydifferentialequations: d 2 R dr 2 þ 1 r dR dr þ k 2 R ¼ 0 ð 2 : 4a Þ Fig.2.1 Discconstrictionin half-space 102ThermalConstrictionResistance and Equation()isaformofBesselÕsdifferentialequationoforderzeroandasolutionofthisisandasolutionofEq.()is.Therefore,Eq.()issatisÞedbyforany.Hencewillalsobeasolutionif)canbechosentosatisfytheboundaryconditionsat,thesolution()reducestoIntheproblembeingconsidered,at,thereisnoheatßowovertheregionregiona.Also,inthesameplane,theregioncouldbeatconstanttemperatureor,alternatively,atuniformheatßux.Thesetwocasesareconsideredbelow.1.ThecontactareaismaintainedatconstanttemperatureTover0AccordingtoG-R6.693.1, bxdx¼ arcsin baa¼ amsin ;aTakingthelimitas,(applyingLÕHopitalÕsRule),theseintegralsturnouttobe bab\aInt0¼ aHence,ifwetake babaInt0¼ a2.1CircularDiscinHalfSpace11 inEq.(),wegetforthetemperatureat 2TcpZ10J0kr kadk¼ arcsin kk¼ 2Tcp Sincethetemperatureisindependentofofa,thissatisÞestheotherboundarycondition,namely,noheatßowoverrestoftheplaneatSubstitutingfor)inEq.( 2TcpZ10ekzJ0kr weget,fromG-R6.752.1 2Tcparcsin Notethat,for oToz¼0¼ 2TcpZ10J0krkak¼ 2Tcp fromG-R6.671.7.Theheatßowoverthecircle oToz¼0rdrpk 2TcpZa0Z10kekzJ0kr kadk¼0rdr¼4kTcZa0Z10J0krkak¼4kTcZ10sinkaa0J0krk¼4kTcZ10 fromG-R.6.561.5.Therefore, fromG-R6.693.1.122ThermalConstrictionResistance TheconstrictionisÞnallygivenby: Tc0Q¼ 2.ThecontactareaissubjectedtouniformheatßuxInthiscase,theboundaryconditionsat for00a ð2:11Þwhereqistheheatßux.DifferentiatingEq.()withrespectto ApplyingtheÞrstofthetwoboundaryconditions(atz0)inEq.( oToz¼Z10kJ0krkk¼ Consideringtheintegral(G-R,6.512.3)0for 12aforr¼a¼ weseethatðÞ¼ k sothatthesolutionis qak10ekzJ0kr Theaveragetemperature, 1pa2Za0T2pr¼ 2qakZ10 2.1CircularDiscinHalfSpace13 FromG-R6.561.5 2qakZ10 J1kaa J1kakorTav¼ 2qkZ10 UsingtheresultfromG-R6.574.2fortheintegralintheaboveexpression, TheheatßowrateisHencetheconstrictionresistancefortheuniformheatßuxconditionis TavQ¼ 83p2ak¼ Thisisabout8%largerthantheconstrictionresistanceobtainedfortheuniformtemperaturecondition.2.2ResistanceofaConstrictionBoundedbyaSemi-inÞniteCylinderInarealjointtherewillbeseveralcontactspots.EachcontactspotofradiusmaybeimaginedtobefedbyacylinderoflargerradiusasshowninFig.Notethatthesumofareasofallofthecontactspotsisequaltotherealcontact,whilethesumofthecrosssectionalareasofallofthecylindersistakenasequaltothenominal(apparent)contactarea bra Idealized View of Contact PlaneConstriction Bounded by a Semi- Fig.2.2Modellingofasinglecontactspotinaclusterofspots142ThermalConstrictionResistance 2.2.1ContactAreaatUniformTemperatureItisfurtherassumedthatthereisnocrossßowofheatbetweentheadjacentcylinders.Thereisalsonoheatßowacrossthegapbetweenadjacentcontactspots;thatis,thecontactstissurroundedbyavacuuminthecontactplane.Thereareseveralsolutionsavailabletothisproblem.ThefollowinganalysisisbasedonthesolutiondescribedMikicandRohsenow()andCooperetal.TheboundaryconditionsdeÞnedbytheproblemare: oToz¼0;z¼0;r[að2:16bÞk oToz¼ !1ð oTor¼0;r¼bð2:16dÞk Tosatisfytheboundaryconditions()and(),thesolutiontoEq.(shouldbeintheform: ðÞþFromtheboundaryconditioninEq.(2.16d),wegetðÞ¼Hereb3.83171,7.01559,10.17347,etc.(AbramovitzandStegunAlsobyintegratingEq.()overthewholeoftheinterfacialarea(0andusingEq.(),weseethattheaveragetemperatureforthisareaisInEq.(),theÕsaretobedeterminedfromtheboundaryconditionsEqs.()and()at.However,theseboundaryconditionsaremixed.Toovercomethisproblem,theDirichletboundaryconditioninEq.()isreplacedbyaheatßuxdistributionforthecirculardiscinhalfspace[seeEq.( oToz¼ ThisapproximationwillleadtoanearlyconstanttemperaturedistributionovertheareaspeciÞedby0,especiallyforsmallvaluesof,where2.2ResistanceofaConstrictionBoundedbyaSemi-inÞniteCylinder15 However,fromEq.(),at oToz¼k From()and(),therefore Qpb2kþX1n¼1CnknJ0knr ToutilizetheorthogonalitypropertyoftheBesselfunctionbothsidesoftheaboveequationaremultipliedbyandintegratedovertheappropriaterangestoyield Qpb2kZb0rJ0knrþCnknZb0rJ20knr¼ Q2pakZa0 (seeG-R6.521.1).However ThisisequaltozerobyvirtueofEq.(Fromtheorthogonalityproperty(AbramovitzandStegun b22J20knbZa0  (seeG-R6.554.2).Therefore Qpka SubstitutingforinEq.( Qpb2kzþ Qpka1n¼1 Themeantemperatureovertheinterface()isthenobtainedby162ThermalConstrictionResistance Tm¼ 1pa2Za0 Qpka1n¼1 ekzsinkna0knrnbJ20knbprdrþ 1pb2Zb0T02prdr¼ Q4ka 8pa21n¼1 Thisresultsin Q4ka 8p a1n¼1 Thefactor1/(4ka)intheaboveexpressionrepresentsthediscconstrictionresistanceofEq.().Thethermalresistancebetween)isgivenby TmTz¼LQ¼ TmQþ Lpkb2 Hencetheresistanceduetoconstrictionis Lpkb2¼ SubstitutingforfromEq.( 14ka 8p a1n¼1 sinknb ab1knb abnbJ20knbRcd1F inwhich ab 8p a1n¼1 sinknb ab1knb iscalledtheconstrictionalleviationfactorYovanovich()obtainedexpressionsfortheconstrictionalleviationfactorforheatßuxfunctionsoftheform HidresultsforwereidenticaltothatofMikic,asexpected.OthersolutionstotheaboveproblemincludethoseofRoess(aspresentedbyWeillsandRyder(1949)),HunterandWilliams(),Gibson(),RosenfeldandTimsit()andNegusandYovanovich().ThealgebraicexpressionsderivedfortheconstrictionalleviationfactorbyRoess,Gibson,andNegusandYovanovicharesomewhatsimilar2.2ResistanceofaConstrictionBoundedbyaSemi-inÞniteCylinder17 4093aðÞþ2959a0524aþðGibson4092a/bðÞþ3380a/b0679a/bþð4098aðÞþ3441a0435aTheconstrictionalleviationfactorsobtainedbyEqs.()arecom-paredinTable.TheÞrst120termswereusedinevaluatingtheseriesinEq.(2.2.2ContactAreaSubjectedtoUniformHeatFluxInthiscase,theboundarycondition,representedbyEq.()isreplacedby TheconstrictionalleviationfactorforthisproblemwastheoreticallyderivedbyYovanovich(Note:1.Inthefollowingexpression2.Theconstrictionresistanceisnon-dimensionalizedbymultiplyingitby,thatis,byandnotðÞ¼ peX1n¼1 Negus,YovanovichandBeck()providedthefollowingcorrelationtoevaluateðÞ¼47890þð Table2.1Comparisonofconstrictionalleviationfactorsa/bRoess(Eq.)Mikic(Eq.)Gibson(Eq.)N-Y(Eq.0.10.85940.85840.85940.85940.20.72050.72020.72090.72080.30.58530.58510.58650.58650.40.45580.45570.45860.45860.50.33400.33410.33980.33950.60.22300.22310.23280.2318182ThermalConstrictionResistance 2.3EccentricConstrictions In Sect.2.2 ,thecontactspotwasassumedtobeconcentricwiththefeedingßux tube.ThesubjectofeccentricconstrictionshasbeenstudiedbyCooperetal. ( 1969 ),SexlandBurkhard( 1969 )andothers.AmorerecentworkisbyBairiand Laraqi( 2004 )whopresentedananalyticalsolutiontocalculatethethermal constrictionresistanceforaneccentriccircularspotwith uniformßux ona semi-inÞnitecircularheatßuxtube.ThissolutionisdevelopedusingtheÞnite cosineFouriertransformandtheÞniteHankeltransform(Fig. 2.3 ). Theauthorsproposedadimensionlesscorrelationtocalculatetheconstriction alleviationfactorasafunctionof e andtheeccentricity e : W  ¼ W W 0 ¼ 1 þ 1 : 5816 a = b  0 : 0528  1 hi e b  a \b 1 : 76 a b  e \b 0 : 88 ð 2 : 31 Þ Inthisequationtheauthorstookthefollowingcorrelationfor W 0 ,the constrictionfactorforzeroeccentricity(Negusetal. 1989 ): W 0 ¼ 0 : 47890  0 : 62076 a = b ðÞ þ 0 : 114412 a = b ðÞ 3 þ 0 : 01924 a = b ðÞ 5 þ 0 : 00776 a = b ðÞ 7 ð A Þ However,theexpressiongivenin( A )isthe constrictionfactorforacircular crosssectionattheendofasquaretube! Thecorrectfactorthattheauthorsshould haveusedisinEq.( 2.30 ).ThereforetheaccuracyofEq.( 2.31 )isopento question. 2.4ConstrictioninaFluidEnvironment Inthiscase,theboundaryconditionsatthecontactplane(z = 0)areasshownin Fig. 2.4 inwhichk f isthethermalconductivityoftheßuid(gas)and d isthe effectivegapthickness. a e b Fig.2.3 Eccentric constriction 2.3EccentricConstrictions19 ApproximatesolutionstotheaboveproblemhavebeenobtainedbyCetinkaleandFishenden(),MikicandRohsenow()andTsukizoeandHisakado).AlaterworkbyDasandSadhal()presentsananalyticalsolutiontotheproblemofaconstrictionsurroundedbyaninterstitialßuid.AnÔexactÕsolu-tionwaspresentedbySanokawa(),buttheresultsofthisworkwerenotinareadilyusableform.Inanycase,themodelusedintheseanalyses,asillustratedaboveinFig.,issomewhatartiÞcialÑthegapthicknessisabruptlychangedfromzerothicknesstoaÞnitethicknessat.Thethicknessisexpectedtoincreasegradually.Anyanalyticalsolutionis,therefore,likelytobecomplicatedandadigitalcomputerwouldbestillrequiredtoevaluatetheresults.Forthisreason,anumericalsolutionisperhapsmoresuitableforthesolutionofthistypeofproblems.Inalargenumberofsituations,theheatßowthroughthegasgapissmallcomparedtotheheatßowthroughthesolidcontactspots.Insuchcases,theßuidconductancemaybeestimatedbydividingtheßuidconductivitybytheeffectivegapthickness.Thismaythenbeaddedtothesolidspotconductancetoobtainthetotalconductance.FactorsaffectingthegasgapconductancearediscussedindetailChap.4 Fig.2.4Constrictioninaßuidenvironment202ThermalConstrictionResistance 2.5ConstrictionsofOtherTypesApartfromthesolutionsdiscussedabove,problemspertainingtoconstrictionsofothershapesandboundaryconditionshavebeenanalysedbyvariousresearchers.ThesearelistedinTable Table2.2ConstrictionresistanceÑrepresentativeworksNo.ReferenceConÞgurationApproach1MikicandRohsenowStripofcontactandrectanglesinvacuumAnalytical2YipandVenart()Singleandmultipleconstrictionsin3VezirogluandChandraTwodimensional,symmetricandeccentricconstrictionsinvacuumAnalyticaland4Williams()ConicalconstrictionsinvacuumExperimental5YovanovichCircularannularconstrictionattheendofasemi-inÞnitecylinderinvacuum6GibsonandBush()Discconstrictioninhalfspaceinconductingmedium7MajorandWilliamsConicalconstrictionsinvacuumAnalogue8Schneider()Rectangularandannularcontactsinvacuumhalfspace9Yovanovichetal.()Doublyconnectedareasboundedbycircles,squaresandtrianglesin10Madhusudana(),(Conicalconstrictionsattheendofalongcylinder,invacuumandinconductingNumericaland11Major()ConicalconstrictionsinvacuumNumerical12Negusetal.()Circularcontactoncoatedsurfacesin13DasandSadhal()Twodimensionalgapsattheinterfaceoftwosemi-inÞnitesolidsinaconductingenvironment14MadhusudanaandChenAnnularconstrictionattheendofasemi-inÞnitecylinderinvacuumAnalyticaland15Olsenetal.(Coatedconicalconstrictionsinvacuum,gasandwithradiation2.5ConstrictionsofOtherTypes21 AbramovitzM,StegunIA(1968a)Handbookofmathematicalfunctions.Dover,NewYork,p409AbramovitzM,StegunIA(1968b)Handbookofmathematicalfunctions.Dover,NewYork,p48BairiA,LaraqiN(2004)Thethermalconstrictionresistanceforaneccentricspotonacircularheatßuxtube.TransASMEJHeatTransf128:652Ð655CarslawHS,JaegerJC(1959)Conductionofheatinsolids,2ndedn.ClarendonPress,Oxford,pp214Ð217CetinkaleTN,FishendenM(1951)Thermalconductanceofmetalsurfacesincontact.In:Proceedingsofthediscussionontransfer,InstituteofMechanicalEngineers,London,pp271Ð275CooperMG,MikicBB,YovanovichMM(1969)Thermalcontactconductance.IntJHeatMassTransf12:279Ð300DasAK,SadhalSS(1992)Theeffectofinterstitialßuidonthermalconstrictionresistance.TransASMEJHeatTransf114:1045Ð1048DasAK,SadhalSS(1998)Analyticalsolutionforconstrictionresistancewithinterstitialßuidinthegap.HeatMassTransf34:111Ð119GibsonRD(1976)Thecontactresistanceforasemi-inÞnitecylinderinvacuum.ApplEnergyGibsonRD,BushAW(1977)Theßowofheatbetweenbodiesingas-Þlledcontact.ApplEnergyGradshteynIS,RyzhikM(1980)Tablesofintegrals,seriesandproducts.AcademicPress,NewHolmR(1957)Electriccontacts,theoryandapplication,4thedn.Springer,NewYork,pp11Ð16HunterA,WilliamsA(1969)HeatßowacrossmetallicjointsÑtheconstrictionalleviationfactor.IntJHeatMassTransf12:524Ð526Llewellyn-JonesF(1957)Thephysicsofelectriccontacts.OxfordUniversityPress,NewYork,pp13Ð15MadhusudanaCV,ChenPYP(1994)Heatßowthroughconcentricannularconstrictions.In:Proceedingsofthe10thinternationalheattransferconference,paper3-Nt18,InstitutionofChemicalEngineers,RugbyMadhusudanaCV(1979a)Heatßowthroughconicalconstrictionsinvacuumandinconductingmedia.In:AIAA14ththermophysicsconference,paper79-1071,Orlando,FloridaMadhusudanaCV(1979b)Heatßowthroughconicalconstrictions.AIAAJ18:1261Ð1262Madhusudana,CV(1980)Heatßowthroughconicalconstrictions,AIAAJournal,18:1261Ð1262MajorSJ,WilliamsA(1977)Thesolutionofasteadyconductionheattransferproblemusinganelectrolytictankanalogue,InstEngrs(Australia).MechEngTrans7Ð11Major,SJ(1980)TheÞnitedifferencesolutionofconductionproblemsincylindricalco-ordinates,IE(Aust),MechEngTrans,PaperM1049MikicBB,RohsenowWM(1966)Thermalcontactresistance,MechenicalEngineeringDepartmentreportno.DSR74542-41.MIT,CambridgeNegusKJ,YovanovichMM(1984)Constrictionresistanceofcircularßuxtubeswithmixedboundaryconditionsbysuperpositionofneumannsolutions.In:ASMEPaper84-HT-84,AmericanSocietyofMechanicalEngineersNegusKJ,YovanovichMM,ThompsonJC(1988)Constrictionresistanceofcircularcontactsoncoatedsurfaces:effectofboundaryconditions.JThermophysHeatTransf12(2):158Ð164NegusKJ,YovanovichMM,BeckJV(1989)Onthenondimentionalizationofconstrictionresistanceforsemi-inÞniteheatßuxtubes.TransASMEJHeatTransf111:804Ð807OlsenE,GarimellaSV,MadhusudanaCV(2001a)Modelingofconstrictionresistanceatcoatedjointsinagasenvironment.In:2ndinternationalsymposiumonadvancesincomputationalheattransfer,PalmCove,Qld,Australia,20Ð25May2001222ThermalConstrictionResistance OlsenE,GarimellaSV,MadhusudanaCV(2001b)Modelingofconstrictionresistanceatcoatedjointswithradiation.In:35thnationalheattransferconference,Anaheim,California,10JuneOlsenEL,GarimellaSV,MadhusudanaCV(2002)Modelingofconstrictionresistanceincoatedjoints.JThermophysHeatTransf16(2):207Ð216RosenfeldAM,TimsitRS(1981)Thepotentialdistributioninaconstrictedcylinder:anexactsolution.QApplMaths39:405Ð417SanokawaK(1968)Heattransferbetweenmetallicsurfaces.BullJSME11:253Ð293Schneider,G.E,(1978),ThermalconstrictionresistancesduetoarbitrarycontactsonahalfspaceÑnumericalsolution.In:AIAAPaper78-870,AmerInstAeronauticsandAstronautics,NewYorkSexlRU,BurkhardDG(1969)Anexactsolutionforthermalconductionthroughatwodimensionaleccentricconstriction.ProgAstroAero21:617Ð620TsukizoeT,HisakadoT(1972)OnthemechanismofheattransferbetweenmetalsurfacesincontactÑPart1,heattransfer.JpnRes1(1):104Ð112VezirogluTN,ChandraS(1969)Thermalconductanceoftwodimensionalconstrictions.ProgAstroAero21:591Ð615WeillsND,RyderEA(1949)Thermalresistanceofjointsformedbystationarymetalsurfaces.TransASME71:259Ð267WilliamsA(1975)Heatßowthroughsinglepointsofmetalliccontactsofsimpleshapes.ProgAstroAero39:129Ð142YipFC,VenartJES(1968)Surfacetopographyeffectsintheestimationofthermalandelectricalcontactresistance.ProcIMechEng182(3):81Ð91Yovanovich,M.M.(1975),Generalexpressionsforconstrictionresistanceduetoarbitraryßuxdistributions,AIAAPaper75-188,AmerInstAeronauticsandAstronautics,NewYorkYovanovich,MM(1976)Generalthermalconstrictionparameterforannularcontactsoncircularßuxtubes,AIAAJournal,14:822Ð824YovanovichMM,MartinKA,SchneiderGE(1979)Constrictionresistanceofdoubly-connectedcontactareasunderuniformheatßux,AIAAPaper79-1070,TheAmericanInstituteofAeronauticsandAstronautics