/
Comment.Math.Univ.Carolin.46,4(2005)685{703685Cardinalinvariantsofuniv Comment.Math.Univ.Carolin.46,4(2005)685{703685Cardinalinvariantsofuniv

Comment.Math.Univ.Carolin.46,4(2005)685{703685Cardinalinvariantsofuniv - PDF document

lois-ondreau
lois-ondreau . @lois-ondreau
Follow
386 views
Uploaded On 2016-07-06

Comment.Math.Univ.Carolin.46,4(2005)685{703685Cardinalinvariantsofuniv - PPT Presentation

ThethirdauthorwouldliketoacknowledgethesupportofaNationalUniversityofIrelandTravellingStudentship 686GFaireyPGartsideAMarshIn4theauthorsinvestigatespacesthathaveuniversalsparametrisedbycompac ID: 392411

ThethirdauthorwouldliketoacknowledgethesupportofaNationalUniversityofIrelandTravellingStudentship. 686G.Fairey P.Gartside A.MarshIn[4]theauthorsinvestigatespacesthathaveuniversalsparametrisedbycom-pac

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Comment.Math.Univ.Carolin.46,4(2005)685{..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Comment.Math.Univ.Carolin.46,4(2005)685{703685CardinalinvariantsofuniversalsGarethFairey,PaulGartside,AndrewMarshAbstract.WeexaminewhenaspaceXhasazerosetuniversalparametrisedbyametris-ablespaceofminimalweightandshowthatthisdependsonthe-weightofXwhenXisperfectlynormal.WealsoshowthatifYparametrisesazerosetuniversalforXthenhL(Xn)hd(Y)foralln2N.Weconstructzerosetuniversalsthathaveniceproperties(suchasseparabilityorccc)inthecasewherethespacehasaK-coarsertopology.ExamplesaregivenincludinganSspacewithzerosetuniversalparametrisedbyanLspace(andviceversa).Keywords:zerosetuniversals,continuousfunctionuniversals,SandLspaces,admissi-bletopology,cardinalinvariants,functionspacesClassi cation:54C30,54C50,54D65,54D80,54E351.IntroductionInthispaperwedealwithcontinuousfunctionuniversalsandzerosetuni-versals.Auniversalwillinsomeappropriatesenseparametriseallobjectsinacertainclass.Morespeci callywecande neacontinuousfunctionuniversalasfollows.GivenaspaceXwesaythataspaceYparametrisesacontinuousfunc-tionuniversalforXviathefunctionFifF:XY!Riscontinuousandforanycontinuousf:X!Rthereexistssomey2YsuchthatF(x;y)=f(x)forallx2X.WewilluseFytodenotethecorrespondingfunctiononX.Notethatiftheyaboveisuniquethen,ine ect,YisthesetofallcontinuousrealvaluedfunctionsonXwithanadmissibletopology(theevaluationmapiscontinuous,see[1]).GivenaspaceXwesaythataspaceYparametrisesazerosetuniversalforXifthereexistsU,azerosetinXYsuchthatforallAXwithAazerosetthereexistsy2YsuchthatUy=fx2X:(x;y)2Ug=A.ThiszerosetUmustbewitnessedbysomecontinuousfunctionF:XY!Randwewillrefertosuchafunctionastheparametrisingfunction.NotethattheparticularcasewhenXisperfectlynormal,andYisthesetofclosedsubsetshasbeenstudiedunderthenamecontinuousperfectnormality([15],[8]). ThethirdauthorwouldliketoacknowledgethesupportofaNationalUniversityofIrelandTravellingStudentship. 686G.Fairey,P.Gartside,A.MarshIn[4]theauthorsinvestigatespacesthathaveuniversalsparametrisedbycom-pactorLindelofspaces.Inthispaperwetackleanumberofotherquestionsregardingtheparametrisationofcontinuousfunctionuniversalsandzerosetuni-versals.FirstofallweinvestigatethecasewhereXhasazerosetuniversalparametrisedbyametrisablespaceofminimalweight.Parametrisationbymetrisablespacesistrivialaswecantakeasucientlylargesetwiththediscretetopology.WeshowthatwecanparametriseazerosetuniversalforaspaceXbyametrisablespaceYwherew(Y)=w(X)whenthe-Z-weightofXequalstheweightofX.The-Z-weightisde nedtobetheminimalsizeofacollectionBofopensubsetsofXsuchthateverycozerosubsetisthecountableunionofelementsfromB.ExamininghowthehereditarypropertiesoftheparametrisingspaceYboundthehereditarypropertiesofXleadsustotheinequalityhL(Xn)hd(Y)foralln2!.ThisismorethanwegetwhenYparametrisesanopenuniversalforX(see[7]).Weconstructanumberofexamplesincludingahereditarilyseparable,hereditarilyLindelofspaceXwithnw(X)=@1suchthatXhasacontinuousfunctionuniversalparametrisedbyaspaceYwithhL(Y!)=hd(Y!)=!.Thishasapplicationstoadmissibletopologies.Inthe nalsectionwelookatwhentheparametrisingspaceisseparable,cccorhascalibre!1.FirstwedescribehowtoconstructacontinuousfunctionuniversalforaspaceXwhenXhasaK-coarsertopology(acoarsertopologysuchthateachpointofXhasaneighbourhoodbaseconsistingof-compactsets).Thisgeneralconstructionwillallowustoconstructcontinuousfunctionuniversalswith`nice'propertiesonceweknowthatthespaceinquestionhasaK-coarsertopologywiththeappropriateproperties.AsanexampleweshowthattheSorgenfreylinehasacontinuousfunctionuniversalparametrisedbyaseparablespace.Wewillusethefollowingtheoremfrequently.Foraproofsee[4].Theorem1.LetXbeTychono .IfYparametrisesazerosetuniversalforXthensomesubspaceofY!parametrisesacontinuousfunctionuniversalforX.2.ParametrisationbymetrisablespacesofminimalweightInthissectionweexaminethesituationwhereaspaceXhasazerosetuniversalorcontinuousfunctionuniversalparametrisedbyametrisablespaceofminimalweight.TheweightoftheparametrisingspaceisanupperboundfortheweightofthespaceXsotheminimalweightoftheparametrisingspaceistheweightofX.Thekeynotionisthatofthe-weightofX:theminimalsizeofabaseforXsuchthateveryopensetinXisthecountableunionofelementsfromthebase.WebeginbydealingwiththecasewhenXisperfectlynormal.WeuseD()todenotethediscretespaceofsize. Cardinalinvariantsofuniversals687Theorem2.LetXbeaperfectlynormalspacewithw(X)=.Thenthefollowingareequivalent:(i)XhasazerosetuniversalparametrisedbyD()!,(ii)Xhasazerosetuniversalparametrisedbya rstcountablespaceofweight,(iii)Xhas-weight,(iv)Xhasacontinuousfunctionuniversalparametrisedbyametrisablespaceofweight.Proof:LetXbeaperfectlynormalspacewithw(X)=.Clearly(i)implies(ii)and(iv)implies(ii).(ii)implies(iii):LetXhaveazerosetuniversalparametrisedbyYandletF:XY!Rbetherelevantparametrisingfunction.LetU=F1(Rn0).AssumethatYis rstcountableandthatfC : 2gisabasisforY.Foreach 2wede neB =SfU:Uisopen,UC Ug.LetB=fB : 2g.WeshowthatBisa-basis.FixUXsuchthatUisopen.SinceXisperfectlynormalthenUisinfactacozeroset,sothereissomey2YsuchthatU=Uy.LetfC n:n2!gbeacountablebasisaty.ThenU=SfB n:n2!g.(iii)implies(i):LetB=fB:2gbea-baseforX.AsXisperfectlynormalwecanassumethateachB2Bisacozerosetaswitnessedbyf:X!I.Forall 2D()!let ndenotethen'thelementofthesequence .Wede neF:XD()!!RbyF(x; )=1Xn=0f n(x) 2n+1forall 2D()!andx2X.Wemustshowthat(a)Fiscontinuousand(b)thatforallUopeninXthereissome 2D()!suchthat(F )1(Rnf0g)=U.Toshow(b)we xUopeninX.NowsinceBisa-basewecan nd 2D()!suchthatSfB n:n2!g=U.Thenforallx2XweknowthatF(x; )=0ifandonlyifx=2SfB n:n2!g=U.Toshow(a)we xx2X, 2D()!andUopensuchthatF(x; )2U.FindN2!suchthat(F(x; )2N;F(x; )+2N)U.Foreachj2!suchthatjNde neUj=f1 j(f j(x)2N1;f j(x)+2N1).LetV=TNj=0UjandW=QNj=0f jgQ1j=N+1D().If(x0; )2VWthenjF(x; )F(x0; )j1Xj=0jf j(x)f j(x)j 2j+1=NXj=0jf j(x)f j(x)j 2j+1+1Xj=N+1jf j(x)f j(x)j 2j+1 688G.Fairey,P.Gartside,A.MarshNXj=02N12j1+1Xj=N+12j11 2N:ThisshowsthatF(x0; )2Uandsowearedone.(i)implies(iv):WeknowthatifaspaceYparametrisesazerosetuniversalforXthenbyTheorem1somesubspaceofY!parametrisesacontinuousfunctionuniversalforX.Sincemetrisabilityandweightarecountablyproductiveandhereditarywearedone.IntheclassofTychono spacesthecrucialpropertyis-Z-weight:theminimalsizeofacollectionBofopensubsetsofXsuchthateverycozerosubsetisthecountableunionofelementsfromB.ThefollowingversionofTheorem2canbeprovedinmuchthesameway.Theorem3.LetXbeTychono withw(X)=.Thefollowingareequivalent:(i)Xhasacontinuousfunctionuniversalparametrisedbyametrisablespaceofweight,(ii)Xhasazerosetuniversalparametrisedbya rstcountablespaceofweight,(iii)Xhas-Z-weight.Corollary4.EveryLindelofT3spacehasacontinuousfunctionuniversalpara-metrisedbyametrisablespaceofminimalpossibleweight.In[5]itisshownthatifXisaT3LindelofspacecontaininganuncountablediscretespacethennometrisablespaceofminimalweightparametrisesanopenuniversalforX.Sowegetthefollowing.Corollary5.ThereexistsaTychono spaceforwhich-Z-weightisstrictlylessthan-weight.Wenowexaminethespecialcasewherethespaceinquestionisthediscretespaceofsize.ItisclearfromTheorem2thatD()hasacontinuousfunctionuniversalparametrisedbyametrisablespaceofweightifandonlyifthereisasubcollectionCofP()ofsizesuchthateverysubsetofistheunionofcountablymanyelementsofC.Wewillcallsuchacardinala-cardinal.Weknowthefollowingabout-cardinals(see[5]).Theorem6.Letbeacardinal.(i)Ifisa-cardinalthenhascountableco nality.(ii)Ifisastronglimitandcf()=!thenisa-cardinal.(iii)If(GCH)holdsandisa-cardinalthenisastronglimit.(iv)Itisconsistentthat@!isa-cardinalandthat2@0=@!+1.AlsoconnectedwiththequestionofparametrisationofD()isthenotionofsupermetrisability:aspaceXofweightissaidtobesupermetrisableifandonlythereisa nermetrisabletopologyonXofweight. Cardinalinvariantsofuniversals689Theorem7.Thefollowingareequivalent:(i)isa-cardinal,(ii)allspacesofweighthave-weight,(iii)allTychono spacesofweighthaveacontinuousfunctionuniversalparametrisedbyametrisablespaceofweight,(iv)Rissupermetrisable,(v)allTychono spacesofweightaresupermetrisable,(vi)D()hasazerosetuniversalandacontinuousfunctionuniversalpara-metrisedbyametrisablespaceofweight.Proof:(i)implies(ii):Letbea-cardinalandletCP()besuchthateverysubsetofisacountableunionofelementsfromC.LetB=fB : 2gbeabasisforaspaceX.ThenB0=fSfB : 2Cg:C2Cgisa-basisforX.(ii)implies(iii):ThisisshowninTheorem3.(iii)implies(iv):NotethatthesetofcontinuousfunctionsonthediscretespaceofsizeissimplyR.NowthereissomemetrisablespaceYofweightthatparametrisesacontinuousfunctionuniversalforD()(viathefunctionF).Foreachfunctionf2Rchooseyf2YsuchthatF(x;yf)=f(x)forallx2.Thespacefyf:f2RgwitnessesthatRissupermetrisable.(iv)implies(v):ThisfollowsfromthefactthateveryTychono spaceofweightembedsinR.(v)implies(vi):Letbea nermetrictopologyonRofweight.Then(R;)parametrisesacontinuousfunctionuniversalforD()viatheevaluationmap.(vi)implies(i):ThisfollowsfromTheorem2.3.HereditarypropertiesAssumethatYparametrisesazerosetuniversalforX.WeexaminehowcardinalinvariantsofYboundcardinalinvariantsofX.Inparticularweareinterestedinhereditarypropertiessuchasthehereditarydensity.Thecaseisverymuchthesameasforopenuniversalsstudiedin[7].HoweverinthecasewhereYishereditarilyseparablewewillshowthatinfactXnishereditarilyLindelofforalln2!.WhendealingwithopenuniversalweonlygethL(X)hd(Y).Theorem8.LetXbeTychono andassumethatXhasazerosetuniversalparametrisedbyY.Thenthefollowingaretrue:w(X)nw(Y);hd(X)hL(Y);hc(X)hc(Y);hL(Xn)hd(Y)foralln2N:Proof:The rstthreestatementscanbeprovedbyminormodi cationsoftheproofsin[7].WewillprovethathL(Xn)hd(Y).We rstprovethefollowing.If 690G.Fairey,P.Gartside,A.MarshXisTychono andhaszerosetuniversalparametrisedbyYsuchthatd(Y),then9ZRanda1{1continuoussurjectionG:X!Z.Proofofclaim:WemustshowthatifDisadensesubsetofYsuchthatjDj=,thenfFd:d2DgseparatespointsinX.Fromthis,wecande neG:X!RDbyG(x)(d)=F(x;d),thentakeZ=ran(G).Letx1andx2betwodistinctpointsinX.Thereforethereisy2YsuchthatF(x1;y)=0andF(x2;y)=0,andhencedisjointopensetsU1andU2suchthatF(x1;y)2U1andF(x2;y)2U2.BycontinuityofF,thereareopensetsV1andV2inY,bothcontainingysuchthatfxigViF1(Ui)fori=1;2.Hencefory02V1\V2,weseethatF(x1;y0)=F(x2;y0);also,sinceV1\V2isopeninY,itmustmeeteverydenseset,sothereissuchay0withinanydenseset.Proofofmainresult:Let=hd(Y).Thenfromtheabovecondition,weknow rstlythathL(X).Now,foracontradiction,wesupposethat,forsomen2N(wepicktheleastsuch),fx : +gisaright-separatedsubsetofXn,witnessedbythebasicopensetsfQni=1Vi : g.ByProposition21of[7],thiscanbedoneinamoresymmetricway,sothatfor ; +,wheneverx 2Qni=1Vi forsome2Sn(wherethegroupactionpermutesco-ordinates),then  .Also,wecanassumethatallpointsareo thediagonal,sincehL(X)(andthediagonalishomeomorphictoX).Infact,wecanusethislastfacttoguaranteethateachpointx hasnotwoco-ordinatesequal.NowthediagonalofX,denotedX,ispreciselythesetf(x;y)2XX:G(x)=G(y)g,whereGisasde nedpreviously.Havingde nedS=f(i;j):1ijng,thesubsetcorrespondingtothediagonalinXiXjisT Tm!f(y;z)2XiXj:jG(y) G(z) j1=mg.Hence,de ningW( :!+m)=f(y;z)2XX:jG(y) G(z) j1=mg,weseethatfx2Xn:8(i;j)2S;x(i)=x(j)g=\(i;j)2Sfx2Xn:(x(i);x(j))2Xg=\(i;j)2S\ fx2Xn:(x(i);x(j))2W g=\ \(i;j)2Sfx2Xn:(x(i);x(j))2W g=\ W0 whereW0 isthebasicopensetfx2Xn:8(i;j)2S(x(i);x(j))2W g.Bythepigeon-holeprinciple,theremustbeonesuchW0 whichcontainsthediagonal,butwhichmisseseveryx (takingasub-familyofx sifnecessary).Also,wecanre neeachoftheopensetsVi sothatx 2Qni=1Vi still,butnow,(Vi )nW0 .SinceXisTychono ,wecanevenmakefVi :1ing Cardinalinvariantsofuniversals691pairwisedisjointcozerosets.Therefore,forall +,thereissomey inYsuchthatSni=1Vi =fx2X:F(x;y )=0g.Hence,thereareopensubsetsofY,fU : +g,sothat,foreach +,y 2U andfx (i):1ingU F1(Rnf0g).Asaresult,whenevery 2U ,thenfori=1;:::;n,x (i)2Sni=1Vi .Inotherwords,thereissome2Snsuchthatx 2Qni=1Vi .Butthismeansthat  ,sofy : +gisleft-separated,hencehd(Y)+whichcontradictsouroriginalhypothesis.4.SspacesandLspacesInthissectionweconstructthreerelatedexamplesof`bad'spaceswithcontin-uousfunctionuniversalsparametrisedbya`good'space.Forinstance,thereisanonmetrisablespacewithacontinuousfunctionuniversalparametrisedbyaspacewhosecountablepowerisbothhereditarilyLindelofandhereditarilyseparable.ThespacesareconstructedfromtheinteractionoftheBairemetrictopologyona xedsubset,A,of!!withvariousordersonA.Moreparticularly,givenapartialorderonA,then(asinTodorcevic[14])wede netheintersectiontopologyA[]fromacountablelocalbaseateacha2AmadeupofthesetsB(n;a)forn!whereB(n;a)=fb2A:(ba)^(an=bn)g.Thetwoordersthatweconsiderhereare:whichisde nedcomponent-wise(i.e.abpreciselyif,foralln,anbn),andthelexicographicorderL(whereaLbpreciselyif,atthesmallestnsuchthatan=bn,thenanbn).Assumingthatb=!1,wecan ndasubsetAof!!withordertype!1under(wherehanin!hbnin!preciselyifthereissomeN!suchthat,forallnN,anbn).Todorcevichasshownthat,inthiscase,variousintersectiontopologiesonAbehaveasfollows:([14,Theorem0.6])A[]isastrongSspace(i.e.thecountablepowerofA[]ishereditarilyseparable,butA[]itselffailstobeLindelof).([14,Theorem0.6])A[]isastrongLspace(i.e.itscountablepowerishere-ditarilyLindelof,butisitselfnon-separable).([14,Theorem3.0])A[L]andA[L]areeachhomeomorphictoasubspaceoftheSorgenfreylinesuchthatthecountablepowerofeachishereditarilyseparableandhereditarilyLindelof.Neitherspace,however,ismetrisableaseachfailstohaveacountablebase.Onceweknowthesebasicproperties,wecanusethem,alongwiththede nitionofthelocalbaseatapointtoproducethefollowingthreeexamples:Example9(b=@1).ThereisanLspacewithazerosetuniversalparametrisedbyastrongSspace.Hencethereisanon-hereditarilyseparablespacewithacontinuousfunctionuniversalparametrisedbyaspacewhosecountablepowerishereditarilyseparable.Proof:The`hence'partfollowsfromthe rstassertionandTheorem1. 692G.Fairey,P.Gartside,A.MarshLetX=A[]andY=(A[]!)!.WeshallshowthatXhasazerosetuniversalparametrisedbyY.SinceXisanLspaceandhencehereditarilyLindelofandregular,thenitmustindeedbeperfectlynormal.Therefore,everyopensetisacozeroset,andfromacoverbybasicopensetswecan ndacountablesub-cover.Inotherwords,thecozerosetsinXarepreciselythoseoftheformSfB(mn;an):n!gwhereeachmn!andan2A.Thus,wehaveawayofcodingupthezerosetsofXbypointsinY,whichweusetode neafunctionF:XY!2!byF(x;han;mnin!)=hbnin!wherebn=1ifx2B(mn;an)andbn=0otherwise.Now,F(x;han;mnin!)=h0ipreciselyif,foreachn,x=2B(mn;an),i.e.x=2SfB(mn;an):n!g.Since,withthecanonicalembeddingoftheCantorsetwithin[0;1](wherehbnin!mapston!2bn=3(n+1)),onlyh0imapsto0,itwillsucetoshowthatthisfunctionFiscontinuous.Thissimpli estocheckingcontinuitywithrespecttoeachofthetwotypesofsub-basicopensetsin2!:ForU(m;0)=fhbnin!:bm=0g,welet(x;han;mnin!)2F1(U(m;0)).Hence,equivalently,x=2B(mm;am)=fb2A:bam^ammm=bmmg.Therefore,oneoftwocaseswillapply.Firstly,ifxmm=ammm,weletn=mm.Otherwise,xmm=ammmandx6am,sothereissomen&#x-1.6;鎕mmsuchthatx(n1)am(n1),inwhichcasexn=amn.Thus,ify2B(n;x)andhci;riii!issuchthatcm2B(n;am)andrm=mm,thenyn=xn=amn=cmn.Inthesecondcase,itmustalsobethecasethaty(n)cm(n)andymm=cmmm,soinbothcases,(y;hci;riii!)2F1(U(m;0))whichisthereforeopen.ForU(m;1)=fhbnin!:bm=1g,welet(x;han;mnin!)2F1(U(m;1)).Hence,equivalently,x2B(mm;am)=fb2A:bam^ammm=bmmg,so,inotherwords,xamandxmm=ammm.Now,ify2B(mm;x)andcm2B(mm;am),thenyxamcmandymm=xmm=ammm=cmmm,soy2B(mm;cm)whichisenoughtoguaranteethatF1(U(m;1))isopentoo.Since,toprovecontinuityofafunction,itsucestoshowthattheinverseimageofeachopensetinasub-basisisopen,wehaveestablishedthatFisacontinuousfunction,soYparametrisesazerosetuniversalforX,asrequired.Example10(b=@1).ThereisanSspacewithazerosetuniversalparametrisedbyastrongLspace.Hencethereisanon-hereditarilyLindelofspacewithcontinuousfunctionuni-versalparametrisedbyaspacewithhereditarilyLindelofpower.Proof:The`hence'partfollowsfromthe rstassertionandTheorem1.LetX=A[]andY=2!(A[]!)!.WeshallshowthatXhasazerosetuniversalparametrisedbyY.First,weshowthatXisperfectlynormal,byprovingthatanyopensubsetisacozeroset.Usingthatinformation,wecreatea Cardinalinvariantsofuniversals693closed-setuniversal,asinGartsideandLo[7],andprovethatitis,infact,alsoazerosetuniversal.Let(Z;)besuchthatZRandis nerthantheEuclideantopologyonZ.Wesaythat(Z;)isa\Kunenline"-typespaceif,foreverysubsetSofX,j Sdn Sj@0,wheredrepresentstheEuclideanmetrictopology.Todorcevic[14,Chapter2]constructsatopologyA[H]onAof\Kunenline"-typewhichisalocallycompactstrongSspace.Thistopologyisbasedon,andhas nertopologythan,A[],butheobserves(onpage24of[14]):\Notethat:::wecouldhaveaddedtheconditionabinthisde nitionofHinsteadofab.Butsincewedon'thaveauseforthis,wekeepthede nitionasitis."Ifthede nitionforA[H]ischangedinthisway,thenthetopologyofA[]issandwichedbetweenthoseofA[H]andtheEuclideantopologyonA(consideredasasubspaceoftheirrationals),whichshowsthatA[]isa\Kunenline"-typespace.Hence,everyopensubsetofXistheunionofaEuclidean-typeopensetwithacountableunionofA[]-typebasicopensets.Now,Euclidean-typeopensetsarecozerosets,asthetopologyis nerthantheEuclideantopology,andbasicopensetsareclopensets,socountableunionsofbasicopensetsarecozerosetsalso,sothereforeanyopensetinA[]isacozeroset.Asshownin[4],thereisazerosetuniversalfortheEuclideanzerosets,givenviathenon-negativecontinuousfunctionF1:X2!!R.WeusethesamemethodasinExample9toproduceazerosetuniversalforthecount-ableunionsofbasicopensets.Wede neafunctionF2:X(A[]!)!byF2(x;han;mnin!)=Pn!2bn=3n+1wherebn=1ifx2B(mn;an)andbn=0otherwise.Now,F2(x;han;mnin!)=0preciselyif,foreachn,x=2B(mn;an),i.e.x=2SfB(mn;an):n!g,sothateachzerosetwhichisthecomplementofacountableunionofbasicopensetsisparametrisedbythisfunction.TheproofthatthisfunctionF2iscontinuousfollowsthesamepatternastheproofthatthefunctionFinExample9iscontinuous:ForU(m;0)=fhbnin!:bm=0g,welet(x;han;mnin!)2F12(U(m;0)).Hence,equivalently,x=2B(mm;am)=fb2A:bam^ammm=bmmg.Therefore,oneoftwocaseswillapply.Firstly,ifxmm=ammm,weletn=mm.Otherwise,xmm=ammmandx6am,sothereissomen&#x-1.6;鎕mmsuchthatx(n1)&#x-1.6;鎕am(n1),inwhichcasexn=amn.Thus,ify2B(n;x)andhci;riii!issuchthatcm2B(n;am)andrm=mm,thenyn=xn=amn=cmn.Inthesecondcase,itmustalsobethecasethaty(n)&#x-1.6;镈cm(n)andymm=cmmm,soinbothcases,(y;hci;riii!)2F1(U(m;0))whichisseentobeanopenset.ForU(m;1)=fhbnin!:bm=1g,welet(x;han;mnin!)2F1(U(m;1)).Hence,equivalently,x2B(mm;am)=fb2A:bam^ammm=bmmg,so,inotherwords,xamandxmm=ammm.Now,ify2B(mm;x)andcm2B(mm;am),thenyxamcmandymm=xmm=ammm= 694G.Fairey,P.Gartside,A.Marshcmmm,soy2B(mm;cm)whichisenoughtoguaranteethatF1(U(m;1))isopentoo.Thus,bothF1andF2arecontinuousfunctions,sode ningF:XY!RbyF(x;(hinin!;han;mnin!))=F1(x;hinin!)+F2(x;han;mnin!)willalsogiveacontinuousfunction.Asde ned,F(x;(hinin!;han;mnin!))=0pre-ciselywhenF1(x;hinin!)=0andF2(x;han;mnin!)=0,soeveryopensetisthecozerosetcorrespondingtoFyforsomey2Y,astheunionofaEuclideancozerosetwithacountableunionofbasicopensets.Example11(b=@1).Thereisahereditarilyseparable,hereditarilyLindelofnon-metrisablespaceXwithnw(X)=@1,whichhasazerosetuniversalpara-metrisedbyaspacewhichisbothhereditarilyseparableandhereditarilyLindelof.HencethereisaspacewithuncountablenetweightdespitehavingacontinuousfunctionuniversalparametrisedbyaspacewhosecountablepowerishereditarilyseparableandhereditarilyLindelof.Proof:The`hence'partfollowsfromthe rstassertionandTheorem1.LetX=A[L]andY=(A[L]!)!.WeshallshowthatXhasazerosetuniversalparametrisedbyY.Now,sinceXishereditarilyLindelof,weknow,again,thatthecozerosetsinXarepreciselytheopensets,andthat,moreover,eachofthesesetsisacountableunionofbasicopensets.Hence,wecande neFinasimilarfashiontoourpreviousexample,byF(x;han;mnin!)=hbnin!,wherebn=1ifx2BL(mn;an)andbn=0otherwise.Withthisde nition,itisclearthatFhasallproperties(savecontinuity)thatareneeded.Itjustremainstocheckcontinuity.Thissimpli estocheckingcontinuitywithrespecttoeachofthetwotypesofsub-basicopensetsin2!:ForU(m;0)=fhbnin!:bm=0g,welet(x;han;mnin!)2F1(U(m;0)).Hence,equivalently,x=2BL(mm;am)=fb2A:bLam^ammm=bmmg.Therefore,oneoftwocaseswillapply.Firstly,ifxmm=ammm,weletn=mm.Otherwise,xmm=ammmandx6Lam,soxLam,inwhichcase,picktheleastn&#x-5.1;䡣mmforwhichxn=amn.Thus,ify2BL(n;x)andhci;riii!issuchthatcm2BL(n;am)andrm=mm,thenyn=xn=amn=cmn.Inthesecondcase,itmustalsobethecasethatyLcmandymm=cmmm,soinbothcases,(y;hci;riii!)2F1(U(m;0))whichisseentobeanopenset.ForU(m;1)=fhbnin!:bm=1g,welet(x;han;mnin!)2F1(U(m;1)).Hence,equivalently,x2BL(mm;am)=fb2A:bLam^ammm=bmmg,so,inotherwords,xLamandxmm=ammm.Now,ify2BL(mm;x)andcm2BL(mm;am),thenyLxLamLcmandymm=xmm=ammm=cmmm,soy2BL(mm;cm)whichisenoughtoguaranteethatF1(U(m;1))isopentoo.Hence,bythestandardargumentfromasub-basisoftherangespace,Fiscon- Cardinalinvariantsofuniversals695tinuous,soshowsthatYparametrisesazerosetuniversalforXasrequired.ObservethatthislastexampleisanuncountablesubspaceoftheSorgenfreyline.AlsonotethattheseexamplesalsogiverisetoSandLadmissibletopologies.5.Separabilityandchainconditions5.1Sucientconditions.Wewill ndsomesucientconditionsforaspacetohaveacontinuousfunctionuniversalparametrisedbyaseparablespace,acccspaceoraspacewithcalibre!1.TheserelyontheideaofaK-coarsertopologyonaspace.De nition12.Let;betwotopologiesonasetXwith.WesaythatisaK-coarsertopologyif(X;)hasaneighbourhoodbasisconsistingof-compactneighbourhoods.TheexistenceofaK-coarsertopologyonaspace(X;)willallowustoconstructacontinuousfunctionuniversalfor(X;)byre ningthetopologyonCk(X)withoutadding\toomany"opensets.Fixaspace(X;).LetU=f(r;q):r;q2Q;rqgandUQ=U[ffqg:q2Qg.FixC=hC0;:::;CniwhereeachCiXandU=hU0;:::;UniwhereeachUiR.De neW0(C;U)=ff2RX:8in(f[Ci]Ui)gandW(C;U)=ff2C(X):8in(f[Ci]Ui)g.IfBP(R)and;aretopologiesonXwede nethespaceCk((X;);B)tohaveasitsunderlyingsetC(X;)andabasisS=fW(C;U):C2P(X)!;U2B!;jCj=jUj;8C2C(Cis{compact)g:ForanysetAthesetA!isthecollectionofall nitepartialfunctionsfrom!intoXwhosedomainconsistsofsomeinitialsegmentof!.NotethatCk((X;);U)issimplythespaceCk(X;).LetbeaK-coarsertopologyon(X;).ThespaceCk((X;);UQ)para-metrisesacontinuousfunctionuniversalfor(X;)viatheevaluationmap.InadditionthisspaceisT2and0-dimensional,andsothespaceisTychono .Al-thoughitmaybeeasiertoworkwiththespaceCk((X;);U)itisdiculttoseehowonewouldshowthatthisspaceisTychono .Wesummarisewiththefollowingtheorem.Theorem13.LetbeaK-coarsertopologyon(X;).(i)ThespaceCk((X;);UQ)parametrisesacontinuousfunctionuniversalfor(X;)viatheevaluationmap.(ii)Ck((X;);UQ)isT2and0-dimensional,andhenceisTychono .WewillnowshowthatCk((X;);UQ)isadensesubspaceofCk((X;);UQ).Towardsthisendwehavethefollowingtheorem. 696G.Fairey,P.Gartside,A.MarshTheorem14.LetXbeaTychono space.LetC=hC0;:::;CniconsistofsubsetsofXandletU=hU0;:::;UniwhereeachUi2U.AssumeD=hD0;:::;DmiconsistsofsubsetsofXandthatV=hfq0g;:::;fqmgiwhereeachqj2Q.Ifeither(i)eachCiandDiiscompactor(ii)eachCiandDiisazerosetandifthereexistsf2W0(C;U)\W0(D;V)thenthereexistsg2W(C;U)\W(D;V).Thefollowinglemmawillsimplifythisproof.Lemma15.LetC=hCi:iniconsistofsubsetsofX.De neEA=Tj2ACjnSj=2ACjandforeachAn+1de neo(A)=j(n+1)nAj.LetIP(n+1)satisfy:thereexistsknsuchthato(A)k+1forallA2Iandifo(A)kthenA2I(wesaythatsuchanIisdownwardclosed).ThenSfEA:A2Ig=SfTj2ACj:A2Ig.NowwearereadytoproveTheorem14.Proof:Weonlygivetheproofforcase(i)ascase(ii)canbeprovedwithminormodi cationsofthesameargument.LetC;U;DandVbeasinthestatementofthelemma,case(i).Assumethatthereexistssomef2W0(C;U)\W0(D;V).Wedivideourproofintotwoparts.Firstweshowthat(a)thereexistsh2W(C;U)andthenweshowthat(b)thereexistsg2W(C;U)\W(D;V).Part(a):Foreachinwewillrecursivelyde neacontinuousfunctionhisatisfying:forallAn+1suchthato(A)iandforallx2EAwehavehi(x)2TfUj:j2Ag.Thiswillsuceasde ningh=hnwemusthavethath2W(C;U).Toconstructh0:thereisonlyoneAn+1suchthato(A)=0,thatisA=n+1.IfEA=;thenwecanchooser02TU.Wede neafunctionh0bysettingforeachx2Xthath0(x)=r0.IfEA=;thenanychoiceofh0willdo.Assumethatforsomeknandforallikwehavetherequiredfunctionhi.Toconstructhk+1:LethA0;:::;AlibeanorderingofthesetfA:o(a)=jk+1jg.Weclaimthatforeachslwecanrecursivelyde neacontinuousfunctionhsk+1satisfying:(1)forallAn+1suchthato(A)kandforallx2EAwehavehsk+1(x)2TfUj:j2Agand(2)forallisandforallx2EAiwehavehsk+1(x)2TfUj:j2Aig.Thende ninghk+1=hlk+1wewillhaveconstructedtherequiredhk+1.Allthatremainstobeshownisthattheclaimistrue.Leth1k+1=hk.Assumethatforsomeslandalliswehavede nedtherequiredhik+1.LetZs+1k+1=fx:9jn(x2Cj^hsk+1(x)=2Uj)gandnotethatZs+1k+1isacompactset.ToseethiswecanrewriteZs+1k+1asZs+1k+1=[jn(Cj\(fsk+1)1(RnUj)): Cardinalinvariantsofuniversals697Tode nehs+1k+1:ifEAs+1\Zs+1k+1=;thenleths+1k+1=hsk+1andnotethatthisfunctionsatis es(1)and(2)asdescribedinthepreviousparagraph.Ifnotthen ndrs+1k+12TfUj:j2As+1g.ByLemma15thesetSfEA:o(A)kg[SfEAi:isgiscompactandfromthede nitionsisdisjointfromZs+1k+1.Wecannow ndacontinuousfunctionps+1k+1suchthatps+1k+1Zs+1k+1=1andps+1k+1(SfEA:o(A)kg[SfEAi:isg)=0andps+1k+1[X][0;1].Wede nethefunctionhs+1k+1bysettingforeachx2Xthaths+1k+1(x)=hsk+1(x)hsk+1(x)ps+1k+1(x)+rs+1k+1ps+1k+1(x).Thisfunctioniscontinuousanditsatis es(1)and(2)asdescribedearlier.Part(b):Wewillnowrecursivelyde neforeachkmacontinuousfunctiongksuchthatgk2W(C;U)\W(hD0;:::;Dki;hfq0g;:::;fqkgi).Letg1=h.Assumethatthereiskmsuchthatforeachikwehavede nedthere-quiredgi.Findacontinuousfunctionpk+1thatsatis es:forallx2Dk+1wehavepk+1(x)=1,forallikandx2Diwehavepk+1(x)=0andforalljnsuchthatDk+1\Cj=;andx2Cjwehavepk+1(x)=0.Nowwede nethefunctiongk+1bysettingforeachx2Xthatgk+1(x)=gk(x)pk+1(x)gk(x)+pk+1(x)qk+1.Itiseasilyveri edthatgk+12W(C;U)\W(hD0;:::;Dk+1i;hfq0g;:::;fqk+1gi).Nowde ningg=gmwehavecon-structedtherequiredfunction.ThenextresultfollowsalmostimmediatelyfromTheorem14.Corollary16.FixaTychono space(X;)andletbeaK-coarsertopology.ThenCk((X;);UQ)isadensesubspaceofCk((X;);UQ).NowwehavereducedtheproblemofshowingthatCk((X;);UQ)isseparable,cccorhascalibre!1tothatofdemonstratingthatCk((X;);UQ)hastheseproperties.FromnowonwewillwriteCk(X;UQ)andCk(X)astherewillbeonlyonetopologyconsideredonX.FixanarbitraryspaceX.WewillinvestigatewhenCk(X;UQ)isccc,separableorhascalibre!1.Lemma17.FixaTychono spaceX.Then(i)Ck(X;UQ)isseparableifandonlyifCk(X)isseparable,(ii)Ck(X;UQ)iscccifandonlyifCk(X)isccc,(iii)Ck(X;UQ)hascalibre!1ifandonlyifCk(X)hascalibre!1.Proof:TheidentitymapisacontinuousfunctionfromCk(X;UQ)ontoCk(X)andsooneimplicationisimmediatein(i),(ii)and(iii).Part(i):AssumethatCk(X)isseparableandsoXhasacoarserseparablemetrictopology.LetA=fAn:n2!gbeabasisfor.AssumethatAisclosedunder niteunions.Foreachn;m2!letfn;m:X!Rbea-continuousfunctionsatisfyingfn;m(x)=1whenx2 Amandfn;m(x)=0whenx2XnAn. 698G.Fairey,P.Gartside,A.MarshOfcoursethisisonlywell-de nedwhen AmAnandifthisdoesnotholdthenweletfn;m(x)=0forallx2X.Thelinearspanofffn;m:n;m2!goverQisacountablesetthatisdenseinCk(X;UQ).Part(iii):AssumethatCk(X)hascalibre!1.FixanuncountablecollectionW=fW : 2!1gofbasicopennon-emptysubsetsofCk(X;UQ).SowecanassumethateachW isoftheformW(C ;U )\W(D ;V )whereforall 2!1:C =fC i:in gconsistsofzerosetsofX,U =fU i:in gwhereeachUi2U,D =fD j:jm gconsistsofpairwisedisjointzerosubsetsofXandV =ffq jg:jm gwhereeachq j2Q.Bypassingtoanuncountablesubcollectionwecanassumethatforall ; 2!1wehaveU =U andV =V .WewilldropthesubscriptsanduseUandVtodenotethesesets.AssumethatjUj=nandjVj=m.WecanwriteVasffqjg:jmgwhereeachqj2Q.Choose�0suchthat4minfjqiqjj:i;jmg.Wede neanewcollectionV0byde ningforeachjmthesetV0j=(qj;qj+)andlettingV0=fV0j:jmg.Notethatforeach 2!1weknowthatW(C ;U )\W(D ;V0 )isanon-emptysubsetofCk(X).Sothereissomef2C(X)andA!1suchthatjAj=!1andf2TfW(C ;U )\W(D ;V0 ): 2Ag.Wede netwocollectionsofzerosetsCandDbyde ningforeachin,Ci=f1( Ui)andforeachjmwede neDj=f1( V0i).Notethatifj;j0mthenDj\Dj0=;whenj=j0.Wecande neanewfunctionf0bysettingf0(x)=f(x)whenx=2SDandf0(x)=qjwhenx2Dj.Nowwehavethatf02W0(C;U)\W0(D;V)andsoapplyingLemma14weknowthatthereexistsg2W(C;U)\W(D;V).ButW(C;U)\W(D;V)\ 2AW andsowearedone.Part(ii)canbeprovedinmuchthesamewayaspart(iii).Corollary18.Let(X;)beaTychono spaceandletbeaK-coarsertopology.(i)If(X;)issecondcountablethen(X;)hasacontinuousfunctionuni-versalparametrisedbyaseparablespace.(ii)IfCk(X;)iscccthen(X;)hasacontinuousfunctionuniversalpara-metrisedbyacccspace.(iii)IfCk(X;)hascalibre!1then(X;)hasacontinuousfunctionuniversalparametrisedbyaspacewithcalibre!1.Wecanalsoderivesucientconditionsinthecccorcalibre!1casesthatdonotdependonthepropertiesofanexternalobject(suchasCk(X;)).In[13]necessaryandsucientconditionsonXforCk(X)tohavecalibre!1aredescribedandin[12]thesameisdonefortheccccase.Wecansummarisethese Cardinalinvariantsofuniversals699resultsinthefollowinglemma.NotethatCisann-chainofsetsifCisanorderedcollectionofn+1manysetshC0;:::;CniandCi\Cj=;ifjijj�1.Lemma19.LetXbeaTychono space.Ck(X)iscccifandonlyforalln�1andforeverycollectionofn-chainsofcompactsetsfhF0 ;:::;Fn i: 2!1gthereare 1; 22!1andann-chainofzerosetsfCi:ingsatisfying:(a)forj=1;2andinwehaveFi jCiand(b)forj=1;2andinwehaveCi\Ci+1=;ifandonlyifFi j\Fi+1 j=;.Ck(X)hascalibre!1ifandonlyifforalln&#x-402;&#x.571;1andeverycollectionofn-chainsofcompactsetsfhF0 ;:::;Fn i: 2!1gthereissomeA!1withjAj=!1andann-chainofzerosetsfCi:ingsatisfying:(a)for 2AandinwehaveFi Ciand(b)for 2AandinwehaveCi\Ci+1=;ifandonlyifFi \Fi+1 =;.Theseresultsareusefulwhendealingwithspacesthatarenotlocallycompact,asinthelocallycompactcaseCk(X)itselfwillparametriseacontinuousfunctionuniversalforX.ForexamplewecannowconstructaseparablespaceYthatparametrisesacontinuousfunctionuniversalfortheSorgenfreyline.IfweletXbethedisjointsumofc+manycopiesoftheSorgenfreylinethenweknowthatXhasnocontinuousfunctionuniversalparametrisedbyaseparablespaceasCp(X)isnotevenseparable.ButsinceXwillhaveaK-coarsermetrictopologywecanconstructacontinuousfunctionuniversalparametrisedbyacccspace.5.2Necessaryconditions.Wewilldeal rstwiththecasewhereaspaceXhasacontinuousfunctionuniversalparametrisedbyaseparablespace.Wesayaspace(X;)isco-SMifandonlyifthereisaseparablemetrictopologysuchthat(X;)hasaneighbourhoodbasisof-closedsets.Lemma20.LetXbeaTychono space.IfXhasacontinuousfunctionuni-versalparametrisedbyaseparablespacethenXisco-SM.Proof:LetYbeaseparablemetricspacethatparametrisesacontinuousfunc-tionuniversalforXviathefunctionF:XY!R.LetDbeacountabledensesubsetofY.Eachd2DrepresentsthecontinuousfunctionFd.LetbethecoarsesttopologythatmakeseachFdcontinuousandnotethatisseparablemetric.FixxinopenU.Picky2YsothatF(x;y)=1andF[(XnU)fyg]=f0g.BycontinuityofFat(x;y)thereareopenVandWwithx2V,y2WandF[VW](2 3;4 3).Claim:Ifx0=2 Uthenthereisa-openTcontainingx0disjointfromV.Fromtheclaimitfollowsthat V U,andbyregularityofX,the-closedneighbourhoodsofxformalocalbase|asrequiredforco-SM. 700G.Fairey,P.Gartside,A.MarshIfweassumethatx0=2 UthenwemusthavethatF(x0;y)=0.SobycontinuityofFat(x0;y)thereareopenV0andW0withx02V0andy2W0sothatF[V0W0](1 3;1 3).Pickd2D\(W\W0).Thend2W0soF(x0;d)2(1 3;1 3).Henceby-continuityofFdatx0,thereisa-openT3x0suchthatF[Tfdg](1 3;1 3).Sinced2W,F[Vfdg](2 3;4 3).HenceVandTaredisjoint|asrequired.Notethatthisfallsshortofthesucientconditiongivenpreviouslyleadingtothefollowingquestion.Problem21.IsthereaTychono spaceXsuchthatXisco-SMbutXcanhavenocontinuousfunctionuniversalparametrisedbyaseparablespace?Turningourattentiontoparametrisingspaceswhicharecccweintroducethefollowingtwoproperties.De nition22.AspaceXhasthepropertyP1ifandonlyifforeverypairofdisjointcompactsubsets(K;L)thereexistsapairofopensetsU(K;L);V(K;L)withKU(K;L),LV(K;L)and U(K;L)\ V(K;L)=;satisfyingthefollowing:foranycollectionf(K ;L ): 2!1gofpairsofdisjointcompactsetsthereexists 1; 1suchthat [i=1;2U(K i;L i)\ [i=1;2V(K i;L i)=;:De nition23.AspaceXhasthepropertyP2ifandonlyifforeverypairofdisjointcompactsubsets(K;L)thereexistsapairofopensetsU(K;L);V(K;L)withKU(K;L),LV(K;L)and U(K;L)\ V(K;L)=;satisfyingthefollowing:foranycollectionf(K ;L ): 2!1gofpairsofdisjointcompactsetsthereexists 1; 1suchthat[i=1;2K i\i=1;2U(K i;L i)and[i=1;2L i\i=1;2V(K i;L i): Cardinalinvariantsofuniversals701Lemma24.LetXbeaTychono space.IfXhasazerosetuniversalpara-metrisedbyacccspacethenXhaspropertyP1andeverycompactsubspacehaspropertyP2.Proof:LetYbecccandassumethatYparametrisesazerosetuniversalforXviathecontinuousfunctionF:XY!R.LetZbethedisjointsumof!manycopiesofYandletYndenotethenthcopyofYthatisasubspaceofZ.De neafunctionF0:XZ!RbylettingF0(x;z)=nF(x;z)whenz2Yn.FinallyletG=jF0j.NotethatZparametrisesazerosetuniversalforXviaG,thatZiscccandthatforanypairofdisjointcompactsetsK;LXthereexistsz2ZsuchthatGz[K]=0andGz[L][1;1).WesaythatsuchazseparatesKandL.Wewill rstshowthatXhaspropertyP2onitscompactsubspaces.FixacompactsubspaceC.LetK;LbedisjointcompactsubsetsofC.WeshowhowtoconstructtherequiredU(K;L)andV(K;L).SinceKandLarecompactwecan ndz(K;L)2ZthatseparatesKandL.LetU(K;L)=fx2C:G(x;z(K;L))1 4gandV(K;L)=fx2C:G(x;z(K;L))�3 4g.FindopenW(K;L)suchthatz(K;L)2W(K;L)andforall(x;z1);(x;z2)2CW(K;L)wehavejG(x;z1)G(x;z2)j1 8.Nowtakeacollectionf(K ;L ): 2!1gofpairsofdisjointcompactsubsetsofC.LookatthecorrespondingcollectionfW(K ;L ): 2!1g.SinceZisccctheremustbez2Zand 1; 22!1suchthatz2W(K 1;L 1)\W(K 2;L 2).Weclaimthat[i=1;2K i\i=1;2U(K i;L i)and[i=1;2L i\i=1;2V(K i;L i)asrequired.WewillonlyshowthatK 1U(K 2;L 2)astheothercasescanbedealtwithsimilarly.Fixx2K 1.NotethatG(x;z)1 8sinceG(x;z(K 1;L 1))=0andz2W(K 1;L 1).ButthenG(x;z(K 2;L 2))1 8+1 8=1 4andsox2U(K 2;L 2).NowwewillshowthatXhaspropertyP1.TheproofissimilartotheP1caseandsowewillonlyshowhowtoconstructU(K;L)andV(K;L).LetK;Lbedis-jointcompactsubsetsofX.Findz2ZthatseparatesKandL.Usingthecom-pactnessofKandLandthecontinuityofG ndopenU(K;L);V(K;L);W(K;L)suchthatKU(K;L),LV(K;L)andz2W(K;L)satisfying:forall(x;z0)2U(K;L)W(K;L),G(x;z0)1 4andforall(x;z0)2V(K;L)W(K;L),G(x;z0)�3 4. 702G.Fairey,P.Gartside,A.MarshLemma25.LetXbeacompactHausdor space.IfXhaspropertyP2thenXismetrisable.Proof:Itsucesto ndacountableT1-separatingcollectionofopensubsetsofX(seeforexample[9]).LetC=f(K ;L ): 2IgbeacollectionofdisjointpairsofcompactsubsetsofXthatsatis es():forall 1; 22Ieither[i=1;2K i6\i=1;2U(K i;L i)or[i=1;2L i6\i=1;2V(K i;L i):AssumethatS=fU(K ;L ): 2Ig[fV(K ;L ): 2IgisnotaT1-separatingcollection.Wewillshowthatwecan nd(K;L)suchthatC[f(K;L)gsatis esthesameproperty()asC.SinceSisnotaT1-separatingcollectionthereexistx1;x22XsuchthatforallC2Swehavex12Cimpliesx22C.LetK=fx1gandletL=fx2g.Fix 2I.Ifx12U(K ;L )andx22V(K ;L )thenx2=2U(K ;L ),contradictingthechoiceofx1;x2.Socondition()holdsforC[f(K;L)g.NowletCbeacollectionofdisjointpairsofcompactsubsetsofXthatismaximalwithrespectto()(i.e.Csatis es(),butforanycollectionD,ifC(DthenDdoesnothaveproperty()).SinceXhasP2wemusthavethatCiscountable.ButSasdescribedabovemustbeaT1-separatingcollection,andsowearedone.Problem26.DoesthepropertyP1implythepropertyP2?IfnotisthepropertyP1equivalenttometrisabilityincompactspaces?References[1]ArensR.,DugundjiJ.,Topologiesforfunctionspaces,Paci cJ.Math.1(1951),5{31.[2]Arhangel'skiiA.V.,TopologicalFunctionSpaces,KluwerAcademicPublishers,1992.[3]EngelkingR.,GeneralTopology,Heldermann,Berlin,1989.[4]GartsideP.,MarshA.,Compactuniversals,TopologyAppl.143(2004),no.1{3,1{13.[5]GartsideP.M.,KnightR.W.,LoJ.T.H.,Parametrizingopenuniversals,TopologyAppl.119(2002),no.2,131{145.[6]GartsideP.M.,LoJ.T.H.,ThehierarchyofBoreluniversalsets,TopologyAppl.119(2002),117{129.[7]GartsideP.M.,LoJ.T.H.,Openuniversalsets,TopologyAppl.129(2003),no.1,89{101.[8]GruenhageG.,Continuouslyperfectnormalspacesandsomegeneralizations,Trans.Amer.Math.Soc.224(1976),323{338.[9]GruenhageG.,Generalizedmetricspaces,inHandbookofSet-theoreticTopology,NorthHolland,Amsterdam,1984,pp,423{501.[10]Gul'koS.P.,Onpropertiesofsubsetsof-products,SovietMath.Dokl.18(1977),1438{1442. Cardinalinvariantsofuniversals703[11]HodelR.,CardinalfunctionsI,inHandbookofSet-theoreticTopology,NorthHolland,Amsterdam,1984,pp.1{61.[12]MarshA.,Topologyoffunctionspaces,PhD.Thesis,Univ.Pittsburgh,2004.[13]NakhmansonL.B.,TheSuslinnumberandcalibresoftheringofcontinuousfunctions,Izv.Vyssh.Uchebn.Zaved.Mat.(1984),no.3,49{55.[14]TodorcevicS.,PartitionProblemsinTopology,ContemporaryMathematics84,Amer.Math.Soc.,Providence,RI,1989.[15]ZenorP.,Somecontinuousseparationaxioms,Fund.Math.90(1975/1976),no.2,143{158.SchoolofPhysicsandAstronomy,TheUniversityofManchester,ManchesterM139PL,UnitedKingdomDepartmentofMathematics,301ThackerayHall,UniversityofPittsburgh,Pittsburgh,PA15260,USAE-mail:gartside@math.pitt.eduDepartmentofMathematics,NUI,Galway,NewcastleRoad,Galway,Ireland(ReceivedNovember5,2004,revisedAugust29,2005)