PPT-Community Detection and Graph-based Clustering

Author : lois-ondreau | Published Date : 2015-10-05

Adapted from Chapter 3 Of Lei Tang and Huan Lius Book Slides prepared by Qiang Yang UST HongKong 1 Chapter 3 Community Detection and Mining in Social Media

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "Community Detection and Graph-based Clus..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

Community Detection and Graph-based Clustering: Transcript


Adapted from Chapter 3 Of Lei Tang and Huan Lius Book Slides prepared by Qiang Yang UST HongKong 1 Chapter 3 Community Detection and Mining in Social Media  Lei Tang and Huan Liu Morgan amp Claypool September 2010 . Ensemble Clustering. unlabeled . data. ……. F. inal . partition. clustering algorithm 1. combine. clustering algorithm . N. ……. clustering algorithm 2. Combine multiple partitions of . given. data . Why graph clustering is useful?. Distance matrices are graphs .  as useful as any other clustering. Identification of communities in social networks. Webpage clustering for better data management of web data. 2. /86. Contents. Statistical . methods. parametric. non-parametric (clustering). Systems with learning. 3. /86. Anomaly detection. Establishes . profiles of normal . user/network behaviour . Compares . and Physical Interaction . Datasets. Manikandan Narayanan, Adrian Vetta, Eric E. Schadt, Jun Zhu. PLoS Computational Biology 2010. Presented by: Tal Saiag. Seminar in Algorithmic Challenges in Analyzing Big Data* in Biology and . Sushmita Roy. sroy@biostat.wisc.edu. Computational Network Biology. Biostatistics & Medical Informatics 826. Computer Sciences 838. https://compnetbiocourse.discovery.wisc.edu. Nov 3. rd. 2016. RECAP. Sushmita Roy. sroy@biostat.wisc.edu. Computational Network Biology. Biostatistics & Medical Informatics 826. Computer Sciences 838. https://compnetbiocourse.discovery.wisc.edu. Nov 3. rd. , Nov 10. Fuzzy . k. -means. Self-organizing maps. Evaluation of clustering results. Figures and equations from Data Clustering by . Gan. et al.. Center-based clustering. Have objective functions which define how good a solution is;. issue in . computing a representative simplicial complex. . Mapper does . not place any conditions on the clustering . algorithm. Thus . any domain-specific clustering algorithm can . be used.. We . Unsupervised . learning. Seeks to organize data . into . “reasonable” . groups. Often based . on some similarity (or distance) measure defined over data . elements. Quantitative characterization may include. Lecture outline. Distance/Similarity between data objects. Data objects as geometric data points. Clustering problems and algorithms . K-means. K-median. K-center. What is clustering?. A . grouping. of data objects such that the objects . Produces a set of . nested clusters . organized as a hierarchical tree. Can be visualized as a . dendrogram. A . tree-like . diagram that records the sequences of merges or splits. Strengths of Hierarchical Clustering. Log. 2. transformation. Row centering and normalization. Filtering. Log. 2. Transformation. Log. 2. -transformation makes sure that the noise is independent of the mean and similar differences have the same meaning along the dynamic range of the values.. Randomization tests. Cluster Validity . All clustering algorithms provided with a set of points output a clustering. How . to evaluate the “goodness” of the resulting clusters?. Tricky because . What is clustering?. Grouping set of documents into subsets or clusters.. The Goal of clustering algorithm is:. To create clusters that are coherent internally, but clearly different from each other.

Download Document

Here is the link to download the presentation.
"Community Detection and Graph-based Clustering"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents