/
Effect of disjoining pressure on the drainage and rela Effect of disjoining pressure on the drainage and rela

Effect of disjoining pressure on the drainage and rela - PDF document

lois-ondreau
lois-ondreau . @lois-ondreau
Follow
427 views
Uploaded On 2015-06-02

Effect of disjoining pressure on the drainage and rela - PPT Presentation

Tabakova ac Krassimir D Danov b Laboratory of Physicochemical Hydrodynamics Institute of Mechanics Bulgarian Academy of Science 1113 Soa Bulgaria Laboratory of Chemical Physics and Engineering Faculty of Chemistry University of Soa 1164 Soa Bulgari ID: 78527

Tabakova Krassimir

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Effect of disjoining pressure on the dra..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Effectofdisjoiningpressureonthedrainageandrelaxationdynamicsofliquid“lmswithmobileinterfacesSoniaS.Tabakova,KrassimirD.DanovLaboratoryofPhysicochemicalHydrodynamics,InstituteofMechanics,BulgarianAcademyofScience,1113So“a,BulgariaLaboratoryofChemicalPhysicsandEngineering,FacultyofChemistry,UniversityofSo“a,1164So“a,BulgariaDepartmentofMechanics,TU-So“a,BranchPlovdiv,4000Plovdiv,Bulgariaarticleinfo Correspondingauthor.Fax:+35929625643.E-mailaddress:(K.D.Danov). JournalofColloidandInterfaceScience336(2009)273…284 ContentslistsavailableatScienceDirectJournalofColloidandInterfaceScience low.Thekinematicboundaryconditionatthe“lmsurface,seeEq.below,introducesanadditionalfunction,thelocal“lm.Hence,thekinematicboundaryconditiondoesnotde-creasethenumberofunknownparameters.Todeterminethem,thedynamicboundaryconditionattheinterfacemustbetakenintoaccount.Inlubricationapproximationthenormalstressboundaryconditionrelates=1,2),,and,seeEq.low.However,thetangentialstressboundarycondition,Eq.isautomaticallyful“lledbytheleadingordersolutionoftheprob-lem.Forthatreason,thesecondordertermsshouldbeconsidered.Thisapproachisknownintheliteratureastheextendedlubrica-tionapproachŽapproachŽ….Forsomerecentpracticalapplicationsitisveryimportanttoproducethinliquid“lmsfromsurfactant-freephasesorfromphaseswithaverysmallamountofsurfaceactivecomponents.Similarproblemsarisewhenthe“lmsarestabilizedbynanome-ter-sizedparticles.Inthesecases:(i)thelateraldimensionsaremuchlargerthanthelocal“lmthickness;(ii)the“lmdrainageoc-cursinadynamicregimeatarbitraryvaluesoftheReynoldsnum-ber.Modelingofthedynamicsofsuchsystemsispossibleusingtheextendedlubricationapproachapproach…,formerlyappliedtostudylinearandnonlinearstabilityof“lms.Thisapproachhasalsoproveditswideapplicabilityformodelingthedrainageandstabil-ityofevaporating“lms“lms…andformodelingthesolidi“cationoffreethin“lmsattachedtoaframeandpulledfromameltmelt.OriginallythesemodelsaccountforthevanderWaalsinteractionsbetweeninterfaces.Recentexperimentalandtheoreticalinvestiga-tionsmanifesttheimportanceofanumberofothercomponentsofthedisjoiningpressure.Experimentalmeasurementsshowthat,eveninpureliquid,thegasbubbleshave-potentialof65mVmV,whichforthexylene,dodecane,hexadecane,andper”uorom-ethyldecalindropletschangesfrom100mVto20mV,depend-ingontheelectrolyteconcentrationandpHofthesolutionsolution.Thechargeaccumulationonthesurfacesisduetothespontaneousadsorptionofhydroxylions,whichcauseselectrostaticrepulsionbetweenthe“lminterfaces.Manyexperimentswithemulsionandfoam“lms“lms…suggestthatthelongrangehydrophobicattractionforcescanbeconsiderablylargerthanthevanderWaalsinteractions,andmustbeincludedasadisjoiningpressurecompo-nent.Atclosedistancesbetween“lminterfacesstrongstericinter-actionsbetweenadsorbedparticlescanstabilize“lmdrainageandprevent“lmrupturerupture….Theaimofthepresentstudyistotakeintoaccounttheroleofdifferenttypesofintermolecularinter-actionsforthe“lmdrainageandstabilityindynamicconditions,usingtheextendedlubricationapproach.Thepaperisorganizedasfollows.InSection,wedescribetheextendedlubricationapproachappliedfor“lmswithtangentiallymobilesurfacesintheframeworkofthedisjoiningpressureap-proach.Thedimensionlessnumbersappearinginthemodelequa-tionsforone-dimensionalsymmetric“lmsareintroducedin.Theytakeintoaccountthecontributionofinertia,inter-facialtension,vanderWaals,hydrophobic,electrostaticandstericforces.Therein,theboundaryconditionsandpossibleregimesofthe“lmdrainageandrelaxationarediscussed.TheeffectoftheintermolecularforcesandthemagnitudesoftheReynoldsandWe-bernumberson“lmdrainagearestudiedinSectionandtheirin”uenceon“lmrelaxation…inSection.ThegeneralconclusionsaregiveninSection2.Modelingofthedynamicsofthinliquidfree“lms2.1.ConservationofmassandmomentuminthebulkphaseWeconsiderasymmetricthinfoam“lmwithalocalthicknessFig.1).Thebulkphaseinthe“lmisdescribedasanincompress-iblehomogeneousliquidwithvelocityvector,pressuredynamicviscosityanddensity.TheCartesiancoordinatesystem,,isplacedintheplaneof“lmsymme-=0,where=1,2)arethelateralcoordinatesandtheverticalcoordinate(Fig.1).Thecharacteristiclateralvelocity,thelaterallengthscaleis,andthenaturalscaleoftime,.The“lmthickness,,ismeasuredwiththeverticallength,andisassumedtobesosmallthattheratio,canbeconsideredasasmallparameterintheproblem.Thedimen-sionlesstime,,thelateralcoordinatesandcomponentsofthevelocityvector,=1,2),arede“nedasfollows UTa;xa Xaa;andua Thedimensionless“lmthickness,,theverticalcoordinate,,andtheverticalcomponentofthevelocity,,areintroducedthroughthefollowingrelationships Hb;x3 X3b;andu3 accountsforthefactsthat:(i)inthecaseofthinliquid“lmstheverticalcomponentofthevelocityismuchsmallerthantherespectivelateralcomponents;(ii)thecontinuityequationmustbeinvariantlyexpressedintermsofdimensionlessquantities ouboxbþ InEq.andbelowwewillusetheEinsteinsummationconven-tion,wheretheGreeklettersubscripts()indicatesumsre-latedtothelateralcomponentsdenotedwithindexes1and2.ForNewtonian”uidsthemomentumbalanceisdescribedbytheNavier…Stokesequation.Forfoam“lmswithfullymobilesur-faces(seeSection)aviscousscale,,isappropriateformea-suringthepressure.Thedimensionlesspressure,,andtheReynoldsnumber,Re,areintroducedbythede“nitions andRe Usingtheaboveexpressions,Eqs.(2.1),(2.2)and(2.4),weobtainthedimensionlessformofthemomentumbalanceequationinthelateraldirections(=1,2) ouaotþ ooxbðubuaÞþ oox3ðu3uaÞ¼ opoxaþ o2uaoxboxbþ 1e2 o2uaox23:ð2:5Þ Fig.1.Sketchofasymmetricthinliquid“lmwithalocal“lmthickness.TheverticalcoordinateaxisoftheCartesiancoordinatesystem,,isperpendic-ulartothe“lmmiddleplane,=0.Thecharacteristiclaterallength,,ismuchlargerthanthecharacteristicverticallength,.Thepositionoftheupper“lmsurfaceisde“nedas/2andthepositionofthelowerone…as/2.Theuppersurfacenormalandtangentvectorsare,and,respectively.S.S.Tabakova,K.D.Danov/JournalofColloidandInterfaceScience336(2009)273…284 TherespectivedimensionlessformoftheverticalprojectionoftheNavier…Stokesequationreads ou3otþ ooxbðubu3Þþ oox3ðu3u3Þ¼ 1e2 opox3þ o2u3oxboxbþ 1e2 TheReynoldsnumber,Re,appearinginEqs.(2.5)and(2.6)andde-“nedbyEq.,isassumednottobeverylarge,i.e.ReForexample,forwater“lms(=10=10Pas)withaninitialthickness=1mmandaframelaterallength=1cm=0.1),thelateralvelocity,,atwhichRe==1isequalto1mm/s,thusinthatcasethemodelwouldbeapplicableforsuctionvelocitiessmallerthan1mm/s.Theeffectoftheinertiaonthe“lmdrainageisdiscussedinSectionFig.3Becauseofthesymmetryoftheconsideredproblematthemiddleplane=0.TakingintoaccountEq.oneobtainstheleadingordersolutionofEqs.(2.5)and(2.6)[22] wherethefunctionsdependontime,,andlateralcoordi-.AftersubstitutingEq.intothecontinuityequa-tion,Eq.,integratingtheobtainedresultwithrespecttousingthesymmetrycondition=0atthemiddleplane,weobtaintheleadingorderexpressionfortheverticalvelocitycomponent: Theunknownfunctions,andaredeterminedfromthekine-maticanddynamicboundaryconditionsatthe“lminterfaceusinganappropriateasymptoticprocedure(seeSectionAppendixA2.2.KinematicanddynamicboundaryconditionsattheinterfaceUsingtheabovede“nitions,Eqs.(2.1)and(2.2),onepresentsthekinematicboundaryconditionatthe“lmsurfaceinasimpledimensionlessform ohotþub ohoxb¼2u3atx3¼ Throughsubstitutingtheleadingordersolutions,Eqs.(2.7)and,intoEq.weobtaintherespectiveexpressiondescribingtheconservationofmassinthecontinuous“lmphase ohotþ Insurfactant-free“lmstheinterfacialtension,,isconstantandthesurfaceshearanddilatationalviscositiesarenegligible.There-fore,inthiscase,thebulkviscousfrictionforceatthe“lmsurfaceiszerozero.Theleadingorderofthetangentialstressboundarycon-ditionat/2iscalculatedinAppendixA,seeEq..AftercombiningtheobtainedresultwiththeintegratedformofEq.AppendixA,wederivetheasymptoticformofthemomen-tumbalanceequationinthe“lm: ootðhwaÞþ ooxbðhwbwaÞ¼h ooxaqþ owboxbþ ooxbh owboxaþ owaoxbþ2 istheKroneckerdelta.ItisimportanttoclearlyindicateforwhichsystemsthemomentumbalanceEq.,originallyderivedforpureliquids,isapplicable.(i)Ifthesolutioncontainsonlyindifferentelectrolytes(salts),thenthechangeofthesurfacetensionwiththeionicstrengthissmall,theGibbselasticityissmallandtheMarangonistresscanbeneglectedneglected.TheelectrostaticandvanderWaalscomponentsofthedisjoiningpressureappearatsmall“lmthicknessandcontrolthe“lmdrainageandstability.(ii)Inthecaseofsmallamountoflowmolecularweightsurfac-tants,thesurfactantrelaxationtimeiscomparabletothecharacteristictimeof“lmdrainageandtheMarangonieffectbecomesevident.Thiseffectsuppressesthesurfacemobilityanddecreasestherateof“lmthinningthinning.TheaccountoftheMarangonistressmakestherespectiveana-logueofEq.muchmorecomplex.(iii)Inthecaseoflargeamountoflowmolecularweightsurfac-tants(closeorabovethecriticalmicelleconcentration)thesurfactantrelaxationtimedecreasesconsiderablyanditisoftheorderoforsmallerthanseveralmicrosecondsmicroseconds.Inthesesystemsthesurfacetensiondoesnotchangeduetothe“lmdrainageandtheMarangonistresscanbeneglected.Fromtheliteratureitisknownthatlowmolecularweightsurfactantshaveverysmallvaluesofsurfaceviscos-viscos-andtherefore,theroleofinterfacialrheologyisalsonegligible.ForsuchsystemsEq.isvalid.Inaddi-tiontotheclassicalcomponentsofthedisjoiningpressure,thesteric,oscillatory,etc.non-DLVOsurfaceforcesshouldbeconsidered.(iv)Filmsstabilizedbyproteinsorpolymershavesigni“cantval-uesofthesurfacedilatationalandshearviscosities,whichconsiderablyincreasetheeffectofthesurfacerheologyonthedrainageandrelaxationdynamics.Forsuchsystemsourmodelisnotapplicable.Forsmall“lmthicknesses(below200nm)thesurfaceforcesofintermolecularoriginmustbeaccountedfor.OnetypeofsuchforcesisthevanderWaalsattractionforce,whichischaracter-izedbytheHamakerconstant,constant,.ManyauthorsincludethevanderWaalsinteractionsasabulkpotentialforceintheNavier…Stokesequation.Thisapproachisknownintheliteratureasthebodyforceapproachapproach….Thebodyforceapproachap-pliedforionicsolutionsleadstoverycomplexmathematicalcal….Manyothertypesofsurfaceforcesaretheoreticallyandexperimentallyinvestigatedintheliterature(thestericrepulsion,thehydrophobicattraction,theoscillatorystructuralforces,etc.).Inmanycasestheoriginoftheobtainedinteractionsisnotclearlyunderstoodunderstood.Forthatreason,amoreconvenientwaytoaccountfortheroleofthesurfaceforcesistousethesocalleddisjoiningpressureapproachapproach.InthisapproachthebulkforcedensityintheNavier…Stokesequationisomittedandallintermolecularinteractionsinthe“lmaretakenintoconsiderationbyintroducinganaddi-tionaldisjoiningpressureterm,,inthenormalstressboundarycondition.Thedisjoiningpressuredependsonlyonthelocal“lm,andthephysicochemicalpropertiesofthesolutions.Thespeci“cexpressionsforthedifferentcomponentsofgiveninSection.Thenormalcomponentofthebulkforceact-ingonthe“lmsurfaceisthencompensatedbythe“lmcapillaryanddisjoiningpressuresandthepressureinthegasphase,.InAppendixAwederivetheasymptoticformofthenormalstressboundarycondition.TheobtainedresultreadsS.S.Tabakova,K.D.Danov/JournalofColloidandInterfaceScience336(2009)273…284 qþ owboxbþ e2Ca wherethecapillarynumber,Ca,thedimensionlessdisjoiningpres-,andthepressureinthegasphase,,arede“nedas gUr;pdp 2Pa2rb;andpg SubstitutingEq.intoEq.wearrivetothe“nalequationofthemodel: ootðhwaÞþ ooxbðhwbwaÞ¼ eh2Ca ooxa o2hoxboxbþpdp !þ ooxbh owboxaþ owaoxbþ2 Notethatthetypicalvaluesofthecapillarynumberaresmall.Thustheparameter/CainEq.isoftheorderoforlargerthanErneuxandDavisDavisshowedthatthemodelisanalogoustoarespectiveapproachingasdynamics.Eqs.(2.10)and(2.14)spondtothetwo-dimensionalviscous-”owequationsifweiden-tifythethicknessŽasthedensityŽofthecompressiblegas,thethicknessŽastheshearviscosityŽ.The“rsttermintheright-handsideofEq.canbeconsideredasthepressure)Ž,whichadmitsthefollowingcomplexequationofÞ¼ eq2Ca o2qoxaoxbþ e4Ca2Z1qn dpdpðnÞdndnþ oqoxc generalizedforanarbitraryfunction).Forsmallvaluesofthe“lmthickness,,thedensityŽinEq.isverysmallandthesoundspeedŽbecomesequalto eq2Ca showsthatifd�0thesoundspeedŽisimaginary,whichcorrespondstoinstability.Incontrast,ifd0thesys-temhasarealsoundspeedŽ,correspondingtowavepropagation.Thisfactiswellknownintheliterature,i.e.d&#x-241;0destabilizesandd0stabilizesthedrainageofthinliquid“lms“lms.3.One-dimensionalthinliquid“lmsattachedtoframesWeconsiderthesimplecaseofone-dimensionalthinliquid“lmattachedtoaframe(Fig.2).Theparametersoftheframeare:width;left-andright-hand-sideheights,respectively.The”owratesfrombothframechannelsarecharacterizedbytheFig.2),the“lmsurfacesaresymmetricwithrespecttothemiddleplaneandhave“xedcontactlinesattheframeborders.Atinitialtime,=0,the“lmthicknessisgivenbythefunction),whichdeterminestheinitialliquidvolumecaughtintheframe.Themodelequations,Eqs.(2.10)and(2.14)describingthedynamicsofsuch“lms,aresimpli“edtothe ohotþ ooxðhwÞ¼0;ð3:1Þ owotþw owox¼ 1We o3hox3þ 4Re o2wox2þ 4Re owox olnhoxþ oox isthedimensionlessvolumeoftheliquidcaughtinthe“lm,perunitchannellength;,andarethedimensionlesslat-eralcoordinate,thicknessandvelocity,respectively;andtheclassi-calWebernumberisrescaledwiththesmallparameterasfollows 2eCaRe¼2 qa2U2rb¼ Atinitialtime,=0,theliquidisatrest,the“lmpro“leisaknown),andtheliquidvolumeis.Therefore,theinitialconditionsfornumericalcalculationofEqs.(3.1)and(3.2)The“lmsurfaceshave“xedcontactlineswiththeframe,whichas-signsthefollowingboundaryconditionsforthe“lmthickness:The”owratesfrombothsidesoftheframeareknown(Fig.2);theyde“netheboundaryconditionsforvelocityisthecharacteristiclateralvelocity(seeSection).Theminussigninthe“rstequationofEq.accountsforthedirec-tionofthe”ow(Fig.2).InSectionwewillstudytheprocessof“lmdrainagetothepointofminimumpossible“lmthickness,Inthiscasethe”owratesarenon-zeroduringthewholeprocess.Inthe“lmthinsundertheactionofthesuctionvelocities,,foratime,,necessarytoreachagivenvolume,.Atsuctionisstoppedandthe“lmisallowedtorelaxtoits“nalshape.Inthiscasetheright-handsidesofbothequationsinEq.aresettozerofor,whichdoesnotchangethenumericalschemede-scribedinAppendixBThedisjoiningpressureappearinginEq.canbepresentedasasumofthevanderWaalsandhydrophobicattraction,,elec-trostaticrepulsion,,stericrepulsion,,andotherinteractions.Hereweconsideronlythe“rstthreecomponents:.Therespectivedimensionlesscomponentsofthedisjoiningpressurearedenotedas,and.ThevanderWaalsandhydrophobiccomponentsofthedisjoiningpressurearecalculatedbytheexpression),whereaneffectiveconstantconstant.ItisimportanttonotethatrecentexperimentssuggestthehydrophobicinteractionsareinmanycasesstrongerthanthevanderWaalsinteractioninteraction….TheauthorsshowthatthehydrophobicinteractionsaredescribedbythesameexpressionasthatforthevanderWaalscomponentofthedisjoiningpressure,butwithmuchlargerinteractionconstant,,thantheHamakerconstant,.Forthatreasontheeffectiveisusedbelow.FromEqs.(2.13)and(3.3) Fig.2.Sketchofone-dimensionalsymmetricthinliquid“lmattachedtoaframewithaleft-hand-sideheight,right-hand-sideheight,andwidth2.Theinitial“lmthicknessis),the”owratesattheleftandrightbordersoftheframearecharacterizedbyvelocities,respectively.S.S.Tabakova,K.D.Danov/JournalofColloidandInterfaceScience336(2009)273…284 theattractivecomponentofthedisjoiningpressureispresentedinthefollowingform: p1We¼ B1h3andB1 isthedimensionlessinteractionconstant.Inthecaseof1:1electrolytestheelectrostaticcomponentofthedisjoiningpressure,,iscalculatedfromtheexpression1),whereisthethermalenergy,istheionicstrengthofthesolution,andisthedimensionlesselectricpo-tentialatthemiddleplaneplane.FromEqs.(2.13)and(3.3)weob-taintherelationshipbetweentheelectrostaticcomponentofthedimensionlessdisjoiningpressureandthedimensionlessionic p2We¼B2ðcoshUm1ÞandB2 ItiswellknownintheliteratureliteraturethatthesolutionofthePois-son…Boltzmannequationfortheelectricpotentialinthe“lmleadstothetranscendentalequation, 1jbZUsUm whichrelatestheelectricpotentialatthemiddleplane,,withthesurfaceelectricpotential,,thelocal“lmthickness,,andtheDebyescreeninglength,.Foragivensystemthesurfaceelectricpotentialchangesinsigni“cantlyduringthe“lmdrainage.Onlysmallvariationsofarepossibleforverythin“lmswhenthelocal“lmthicknessissmallerthan10nmnm.Belowwewillas-sumethat:(i)theconstantvaluesofareknown;(ii)thenumericalsolutionofEq.providesthedependence);(iii)Eq.).VarioussimplerapproximationsofEqs.(3.8)and(3.9)areknownintheliteratureliterature.Theseapproximationsarevalidfor1or1andcannotbeappliedforthewhole“lmpro“lewheresigni“cantly.Thepowerlawexpressionsforthestericcomponentofthedis-joiningpressure,widelyusedintheliteratureliteratureforproteinandpolymersolutions,arenotconsistentwithourmodel,asseeninthediscussionafterEq..Inthecaseoflowmolecularweightsurfactants,theadsorbedmolecules,forwhichourmodelcanbeapplied,oftenpossessbulkyhydrophilicheads,e.g.,whenthepolarpartoftheamphiphileconsistsofoxyethylenechainschains….Asthe“lmthins,thetwosurfacespackedwithsurfactantmoleculescloselyapproachoneanotherandthehydrophilicheadsmaybegintooverlap.Letbethecharacteristicthresholddistanceatwhichthestericinteractionbecomesactive.Therepulsiveforcewillbedescribedbymeansofamodelexpressionfortherespec-tivedisjoiningpressurecomponent,),whereistheinteractionconstant.Thevalidityofthisasymptoticequationisdiscussedbymanyauthorsauthors.FromEqs.(2.13)and(3.3)oneobtainstheexpressionsforandfortheinteractionconstant, p3We¼B3exp hbdandB3 Thenonlinearsystemofequations,Eqs.(3.1)and(3.2),withini-tialandboundaryconditions,Eqs.,canbesolvednumericallybyappropriateconservative“nitedifferenceschemeonstaggeredgridsanditerativealgorithmsalgorithms.Here,wedevelopafasternumericalmethodbrie”ydescribedinAppendixB.Wechosearegularspaceandtimegridwithalengthstep,,andtimestep,.Theprecisionofthenumericalscheme()is),whichguaranteeshighaccuracyandef“ciencyofthealgorithm.Allcalculationsbelowareperformedwith=10.Thesesmallvaluesofmakeitpossibletocalcu-latetheformulatedproblemuptotheminimum“lmthickness,,oftheorderoforlargerthan10.Moreprecisely,thevaluedependsontheprecisionofthedifferenceformulausedforthe“rstderivativeofdisjoiningpressure,Eq..Inthecaseofacentraldifferenceschemewithprecision)therelativeerrorofthederivativecalculatedat=10is3.4%.Thiserrorde-creaseswiththeincreaseof:for=20therelativeerroris0.84%;for=30itis0.37%,etc.4.Drainageofone-dimensionalthinliquid“lms4.1.NodisjoiningpressureWhenthedisjoiningpressurehasnoeffectonthe“lmdynam-ics,themodel,givenbyEqs.(3.1)and(3.2),containstwodimen-sionlessnumbers,ReandWe,de“nedbyEqs.(2.4)and(3.3)Thesenumberschangeinadifferentwayforgivenphysicochemi-calparametersoftheliquidphasedependingonthevelocity,andontheratio.Forexample,ifforagivencon“gurationRe=1andWe=1(solidlinesinFig.3a),thenthe“vetimesin-creaseofthevelocity,,leadstoRe=5andWe=25(dashedlinesFig.3a),whilethe“vetimesdecreaseofreducesthesenum-berstoRe=0.2andWe=0.04(solidlinesinFig.3b).Fora“xedva-lueofRetheWebernumberincreaseswiththeincreaseof Fig.3.Timeevolutionofthe“lmpro“lesinthecaseofsymmetricboundary,andaninitialcondition)=1:(a)Re=1andWe=1(solidlines),Re=1andWe=10(dash-dottedlines),andRe=5andWe=25(dashedlines);(b)Re=0.2andWe=0.04(solidlines)andRe=1andWe=0.1(dashedlines).S.S.Tabakova,K.D.Danov/JournalofColloidandInterfaceScience336(2009)273…284 ,andWedecreaseswiththeincreaseofdensity,frameheight,,andsurfacetension,,seeEq..Notethatthepossiblechangesofthesurfacetensionoffoam“lmsarefrom72mN/m(surfactant-freesystems)to25mN/m(closeorabovethecriticalmicelleconcentration),whiletheotherparameters()canvaryinordersofmagnitude.Theexamplesfortheevo-lutionofthe“lmpro“le,),inthecaseofRe=1,We=10andRe=1,We=0.1areillustratedinFig.3a(dash-dottedlines)andFig.3b(dashedlines),respectively.Forsymmetricboundaryconditions,,andaconstantvalueoftheinitial“lmthickness,)=1,theinitial“lmvolumeis=2andthedimensionlesstimeneededforthecom-pletesuctionofthisvolumeisequalto1.ForRe=1andWe=1the“lmdrainsupto=0.7withoutdimpleformationandwithavirtually“xedlengthofitsplane-parallelregion(Fig.3a…solidlines).Subsequentlythe“lmringspreadstotheborders,apro-nounceddimpleisformed,andat=0.9the“lmrupturesbecausethemenisciatthe“lmperipherytouchŽtheframeborders.There-fore,theruptureisnotaresultofreachingtheminimalpossible.Withthe“vetimesincreaseofthe”owrateawellpronounceddimpleisformedatanearlystage,thedimplegrows,the“lmringspreads,andat=0.6the“lmrupturesbeforereach-Fig.3a…dashedlines).Atthe“nalmomentthedimpleheightat=0hasquitealargevalueof0.6,thusthedimplecovers40%oftheinitial“lmvolume.IncreasingtheWebernumber(Re=1andWe=10)resultsinthe“lmsurfacesbecomingmoredeformable(Fig.3a…dash-dottedlines).Inthiscasetheevolution)issimilartothecasewiththetentimessmallerWebernumber:thethicknessesofthetwo“lmsat=0areclosetoeachother;the“lmringforWe=10isinitiallylargerthanthatforWe=1,butatthe“nalstageboth“lmpro“lesarevirtuallyidenti-cal.Therefore,theWebernumbercanbeconsideredasacharacter-isticofthedeformabilityof“lmsurfaces.Fromapracticalviewpointitisveryimportanttoproduce“lmswiththicknessasuniformaspossibleandwithalargeplane-par-allelarea.Onewayistoreducethe”owrate:asitisshowninFig.3b(solidlines),the“vetimesdecreaseofthe”owrate(Re=0.2,We=0.04)leadstoaregular“lmthinningwithacontin-uousincreaseoftheplane-parallelregionupto=0.9whenthe“lmthicknessat=0is4.25andthe“lmringisplacedapproximatelyat0.8.Anotherwayistodecreasethedeforma-bilityof“lmsurfaces:forRe=1thetentimesdecreaseoftheWe-bernumber,We=0.1,stabilizestheprocessof“lmdrainageFig.3b…dashedlines).Such“lmshaveregularpro“les,),dur-ingthewholeprocess.Atmoment=0.9theirthicknessat=0is,i.e.smallerthanthatforthecaseofRe=0.2andWe=0.04,andthe“lmringisplacedapproximatelyatthesameInthecaseofunsymmetricalboundaryconditionstheproduc-tionof“lmswithlargeplane-parallelareasisamorecomplicatedtask.Onecanexpectthattheincreaseofthesurfacetensionwillhelptosolvethisproblem.OurcalculationsforRe=1,We=0.1,)=1,andwithoutaliquid”owfromtheleft-hand-sideboundary(Fig.4a)showthatinthiscaseadimpledoesnotform,i.e.alargeamountofliquidisleftcapturedclosetotheleft-hand-sideboundary.Becauseofthetwicesmaller”owrate(onlyfromoneside)thedimensionlesstimenecessaryforthecompletesuctionoftheinitialvolumeisequalto2.The“lmreachesitsmin-imalthicknessslightlyafter=1.4withacomplexshapewithoutplane-parallelregions.Theminimal“lmthicknessislocatedat=0.75.Theprocessof“lmdrainageisregular,withoutwavesandinstabilities.WehaveperformedcalculationsforthesamecasedecreasingtheWebernumbertoWe=0.01.The“lmpro“leatthemomentofreachingofisplottedinFig.4a(dashedline),whereitcanbeseenthatislocatedat=0.38.Thefollowingconclusionscanbedrawn:these“lmsreachtheminimalthicknessatapproximatelythesametime;thedecreaseofdeformabilityof“lmsurfacesleadstomoresymmetric“lmthicknessesbuttheplane-parallelareasofthe“lmsareverysmallforunsymmetricalboundaryconditions.Toextendtheplane-parallel“lmregionwehavedecreased“vetimestheheightoftheleft-hand-sideborderassumingthat=0.2andhaveusedthesameconditionsasinFig.4awithasmal-lervalueoftheWebernumber,We=0.01(Fig.4b).Startingwithaninitialcondition,)=0.6+0.4,correspondingtoaninitialdimensionlessvolume,=1.2,wehaveobtainedthattheevolu-tionofsuch“lmsisregularuntiltheminimal“lmthickness,isreachedat=0.9and=0.23.Therefore,theconsiderablede-creaseofthedeformabilityof“lmsurfacesandtheframeheight,,isnotsuf“cienttoproducelargeplane-parallel“lmareas.ThecalculationsillustratedinFigs.3and4showthatthemostef“cientwaytoaccomplishthistechnologicaltaskistousesymmetric”owratesandsymmetricgeometricalparametersoftheframesasmuchaspossible.4.2.EffectofvanderWaalsandhydrophobicattractionThevanderWaalsandhydrophobicattractions,accountedforbythedisjoiningpressurecomponent,arealwaysactiveandhavethelongestrangecomparedtotheothercomponentsofTheroleofthiskindofattractionforcesontheevolutionofthe“lmpro“lesinthecaseofsymmetricboundaryconditionsforRe=1, Fig.4.Plotsof)for“lmdrainageintheabsenceofa”owfromtheleft-hand-sideborder:(a)andinitialcondition)=1atRe=1,We=0.1,till=1.4(solidlines)andatRe=1,We=0.01,=1.4(dashedline);(b)Re=1,We=0.01,=0.2,andinitialcondition)=0.6+0.4S.S.Tabakova,K.D.Danov/JournalofColloidandInterfaceScience336(2009)273…284 We=1,and=0.1isillustratedinFig.5a(solidlines).Thecom-parisonbetweenFigs.3aand5a(solidlines)showsthatuptotime=0.7thedisjoiningpressuredoesnotconsiderablyaffectthepro-cessofthe“lmdrainage.Whenthelocal“lmthicknessdecreasestoacertaincriticalvalue,theattractionforcesbecomesigni“cantandtheareaofthe“lmringthinsfaster.Attime=0.818the“lmatposition=0.984andbreaks.The“naldimplecov-ers1.82%oftheinitialliquidvolume.Oneexpectsthatthedecreaseofthe”owratealwaysmakesthe“lmdrainagemoreregular(seeFig.3).Whenkeepingalltheotherparametersconstantanddecreasing“vetimesthe”owrate,thevalueofincreases25times,seeEq..TheobtainednumericalresultsforRe=0.2,We=0.04,and=2.5areplottedinFig.5a(dashedlines).ThecomparisonoftheseresultswiththoseplottedinFig.3b(solidlines)inthecasewithoutdisjoiningpressuretakenintoaccountshowsthatboth“lmsfollowthesameregularbehavioruptotime=0.4.Atsubsequentmomentstheattractionmolecularforcessig-ni“cantlyacceleratethe“lmthinninginthecentralzone,(comparetherespectivepro“lesfor=0.5,0.55,0.58,and0.591).=0.591atypicalinstabilityappearsandthe“lmbreaks.ThiseffectisknownintheliteratureaspimpleŽformationasopposedtothecaseofthe“lmbreakageattheringring.4.3.EffectofelectrostaticandstericrepulsionOnepossibilitytoreducethedestabilizingroleoftheattractivecomponentsofthedisjoiningpressureistouseionicsurfactantsandthusincreasetheelectrostaticcomponentof.Itisprovenintheliteraturethatevenwithoutaddedsurfactantsthesurfacepotentialisdifferentfromzero:itsoriginforsuchsystemsisthesurfacechargeduetothespontaneousadsorptionofhydroxylionsions.Inthecaseoflargevaluesoftheasymptoticexpressionfortheelectrostaticcomponentofthedisjoiningpressure,=644.Therefore,amorecon-venientdimensionlessparameter,characterizingthemagnitudeofthisforceis/4),seeEq..InFig.3(dashedlines)wehaveillustratedthatatRe=1thedecreaseoftheWebernumbertoWe=0.1leadstoaregulardrainageofsuch“lms.Ifwetakeintoaccounttheactionoftheattractivecompo-nentofthedisjoiningpressurebyassumingthat=1andcalcu-latethe“lmevolution,weobtainthesolidlinesinFig.5b.Itisclearlyseenthatafter=0.4thepro“les)accelerateintime,=0.537apimpleinstabilityappearsatthecentralzoneandsubsequentlythe“lmbreaks.Notethatthe“lminFig.3bobtainedatthesameprocessparametersbutwithouttheactionofhasawideplane-parallelregionat=0.9.InordertohaveanideaaboutthemagnitudeofonecalculatesitsvalueforwatersolutionwithoutsurfactantsatpH=9androomtemperature:=45We).TakingthevaluesWe=0.1,m,and=5mmweob-tainthat=1.1andtherespectivevalueofis10.3.Experimentsfor“lmdrainageandequilibriumthicknessofsimilarsystemsarereportedinRef.Ref..Theincreaseofthesurfacepoten-tialandionicstrengthincreases.The“lm,whichisunstablewithoutaccountingfortheelectrostaticrepulsion,be-comesmorestablefor=10=10,seeFig.5b(dashedlines).ThecomparisonbetweenFigs.3band5b(dashedlines)showsthatinthepresenceofdisjoiningpressuretheelectrostaticrepulsioncounterbalancestheattractionforcesinawideplane-parallelcentralzone.Nevertheless,atthelateststageof“lmdrain-ageawellpronounced“lmringat=0.864isformedandsubse-quentlythe“lmbreaksdown.Thedecreaseofthesurfacepotential,,suppressestheelec-trostaticinteractions.Forexample,ifwetaketheabovesystemandchangepHto5whilekeepingalltheotherparameterscon-stants,thevalueofdecreasestentimes.Thesmallerrepulsiveforceisnotsuf“cienttopreventthepimpleformation,seeFig.6(solidline).ThecomparisonbetweenFigs.5band6(solidlines)illustratesthattheelectrostaticcomponentofdeceleratestheappearanceofsuchkindofinstabilities.The“lm(Fig.6,solidline)thinsregularlyforalongertime=0.65comparedtothatwithout,whichthinsinasimilarmannerupto=0.52(Fig.5b,solidline).Nevertheless,at=0.682(Fig.6,solidlines)theattractivecomponentsofthedisjoiningpressureprevailandthe“lmrup-turesatitscenterline.Inaddition,theshorterrangerepulsiveforcecanbeincluded,namelytheeffectofstericinteractionscanbeinvestigated.Asarulerule…forsuchforcesismuchlarger,exceptforthecasesoflargeionicstrengths,andtheinter-actionconstant,,isverylarge,seeEq..InFig.6lines)wecalculatethe“lmevolutionadditionallyaccountingforthestericinteractionsat=20and.Inthiscasethedrainageprocessstabilizesandregular“lmthinningisob-servedupto=0.9.Themechanismofthe“lmrupturechangestoaringformationatpositionandtime,=0.916and=0.921,respectively,andalargeplane-parallelcentralzonewiththickness0.064isformed.Figs.5band6showthatthedynamiceffectscan-notbesuppressedbytheactionoftherepulsivedisjoiningpressure.5.Relaxationofone-dimensionalthinliquid“lmsIfonewantstoproducea“lmwithagivenvolume,,the”owratesarestoppedaftertime,.Dependingonthemagnitudesof Fig.5.Roleofdisjoiningpressureonthedrainageof“lmswithsymmetricboundaryconditionsandinitialcondition)=1:(a)Re=1,We=1,=0.1(solidlines)andRe=0.2,We=0.04,=2.5(dashedlines);(b)Re=1,We=0.1,(solidlines)andadditionally=10,and=10(dashedlines).S.S.Tabakova,K.D.Danov/JournalofColloidandInterfaceScience336(2009)273…284 interactionforcesandregimesof“lmdrainagethe“lmsurfaceswillrelaxtothesteadystate“lmpro“le,),oreventuallythe“lmmayrupturebeforereaching)(seebelow).Inthecaseofthick“lmswhentheroleofthedisjoiningpressurecanbene-glected,thestaticvariantofEq.,simpli“estod=0.Thesolutionfor“lmswithsymmetricboundarycondi-(±1)=1,anda“xedvolume,,is 3vf24þ Therefore,theminimumpossibledimensionlessvolume(minimumstaticequilibriumvolume)is2/3andif2/3theLaplaceequationofcapillarityhasnosolution,thusnostaticequilibriumexists.Therefore,ifonestopsthe”owratesat&#x-248;2/3inthecaseshownFig.3therespective“lmswillbreak.Whenthedisjoiningpres-sureistakenintoaccount,thestaticvariantofEq.hasnoana-lyticalsolutionand)isobtainedasalimitof)aftercompleterelaxation.The“rststepinourstudyistoobtainthecharacteristicrelaxa-tiontimeandthetypeof“lmpro“lerelaxationinthesimplestcase,withoutthedisjoiningpressureeffectbeingtakenintoac-count.WeconsidertwocasesforRe=1,We=1,andvolume=1,largerthantheminimumpossibleone,2/3:initial“lmpro-“leis)=1(”atsurfaces)and=0.5,andparabolicinitialpro-)=(5+3)/8with=1.5and=0.25(Fig.7).Thedrainageofthese“lmsisillustratedinFig.3a(solidlines)andFig.7a(dashedlines);therespectiverelaxationcurvesshowasim-ilarbehavior.ThesolidlinesinFig.7ashowtheevolutionof“lm),duringtheprocessofrelaxationfor.Thestableregularapproachtotheequilibriumstate)=(1+3)/4iswellillustrated.Thechangesofthethicknessdifference,withtimeforbothsetsofinitialconditionsareshowninFig.7Oneseesthatinthesecasestheinitialconditionsdonotaffectthetypeofrelaxationforallvaluesofthelateralcoordinate.IntheinsetofFig.7bwepresentthechangesofthicknessdifferenceinthecentralzone,(0),inalogarithmicscaleasafunc-tionof.Theexcellentparallelstraightlineswithaslopeof1.5provesthattherelaxationobeysanexponentialrule,),forbothkindsofinitialconditions.Therefore,theelasticforcearisingfromtheactionofthesurfacetensionisstrongenoughtostabilizesuch“lms.Theattractioncomponentofthedisjoiningpressuredestabi-lizesthe“lmsnotonlyinthe“lmdrainageprocess(seeFig.5butalsoduringthe“lmrelaxation.Ifwetakethe“lmsgiveninFig.5aandstopthe”owratesat=0.45,whentheliquidvolume=1.1islargerthanthatforthe“lmsinFig.7,the“lmscannotreachthesteadystateandthereforerupture,asseenonFig.8.InthecaseofRe=1,We=1,and=0.1thechangeof)for0.45withatimestep0.1isshowninFig.8.Thepimpletypeinstabilityappearsat=2.245andsubsequentlythe“lmrupturesinitscentralzone.TheinsetofFig.8demonstratesthedecreaseof,0)withtimeforthis“lm(solidline)andforthe“lmwiththesamephysicochemicalparameters,butwith5timessmallersuc-tionvelocity(dashedline).Oneseesthatinbothcasestheinstabil-ityappearsat=0andforsmaller”owratesthedimensionlessrupturetimeof0.707forRe=0.2islowerthanthatof2.245forRe=1.Takingintoaccountthede“nition,Eq.,oneconcludesthatduetothe5timessmaller”owratetherealrupturetime,forRe=0.2becomeslonger(50.707=3.535)thanthatforRe=1.Thisfactcanbeexplainedbythelongertimeneededtosup-pressthelargerlocalsurfacevelocitiesafterstoppingthe“lmdrainageatlarger”owrates.Asdiscussedabove,theproductionofplane-parallel“lmswithsmallvolumes,2/3,andthicknessesisimpossiblewithoutusingadditives,whichincreasetherepulsivecomponentsofthedisjoiningpressure.However,theattractivedisjoiningpressureal-waysappearsandcannotbeexcludedfromconsideration.ThedashedlinesinFigs.5band6representregular“lmdrainagein Fig.6.Roleofelectrostaticandstericcomponentsofthedisjoiningpressureforthedrainageof“lmswithsymmetricboundaryconditionsandinitialcondition)=1forRe=1,We=0.1,=1,=10=10(solidlines),and=20(dashedlines). Fig.7.Relaxationof“lmsforRe=1,We=1,and=1:(a)Local“lmthickness,),withinitialpro“le,)=(5+3)/8,andinitialvolume,=1.5,=0.25(solidlines).For�0.35solidlinescorrespondtotimestep0.2;(b)thickness),linesplottedwithtimestep0.1for)=1,=2,=0.5(solidlines)andforcase(a)(dashedlines).Theinsetshowsthedifference(0)intime,,forthetwocasesafterthe“lmsuctionisstopped.S.S.Tabakova,K.D.Danov/JournalofColloidandInterfaceScience336(2009)273…284 thepresenceof.Wetookthesesystemsandstoppedthe”owratesattwodifferenttimes,at=0.7when=0.6,andat=0.85whenthevolumeissmaller,=0.3.Forbothsystemsandtimesthe“nal“lmpro“les,),areshowninFig.9.Oneseesthatthe“lmscontainlargealmostplane-parallelcentralzonesandsteepmenisciaroundthem.These“lmsarestablebecausetherepulsivecomponentsofthedisjoiningpressure,,prevailtherespectivevanderWaalsandhydrophobiccomponents,TheinsetofFig.9illustratesthetypeofrelaxationofthese“lms…inallcasesthe“lmthickness,,0),foroscillatesaroundtheequilibriumthickness,(0),buttheamplitudesofoscillationsexponentiallydecreasewithtime.Byapplyinglinearstabilityanal-ysis,analogoustothatgiveninRef.Ref.,forthedisturbancesofthe“lmsurfacesinacentralplane-parallelzoneoneprovesthatthecriticalwavelengthsforthecasesillustratedinFig.9aremuchlar-gerthanthelateraldimensionoftheframe.Therefore,the“nal“lmthicknessescorrespondtoastableequilibrium.Theseconclusionsareimportantforpracticalapplicationsbe-causetheygiveonepossiblewayforacontrollableproductionoflargethin“lms.6.SummaryandconclusionsAmodeldescribingthedrainageandrelaxationdynamicsofsymmetricthinliquid“lmswithtangentiallymobilesurfacesisdeveloped.Theobtainedequations,Eqs.(2.10)…(2.12),areapplica-bleforlaminar”owswhenthe“lmthicknessesaremuchsmallerthanthecharacteristiclateraldimensions.Themodeldescribesthe“lmpro“le,surfacevelocityandpressureforarbitraryvaluesoftheReynoldsandcapillarynumber,accountingfordifferentcompo-nentsofthedisjoiningpressure.Inthecaseofone-dimensional“lmattachedtoaframetheproblemissimpli“edinSectionandthevanderWaals,hydrophobic,electrostaticandstericinter-actionsbetween“lmsurfacesareincludedinthedisjoiningpres-sure.Afastalgorithmfornumericalsolutionofthisproblem,whichhasasecondorderprecisionintimeandspace,isdevelopedAppendixBandappliedinSections4and5Inthecaseofunsymmetricalboundaryconditions(different”owratesorframeheights)the“lmsdrainwithcomplexshapesoftheirsurfaces,thereforetheformationoflargeplane-parallelareasbycontrollingthe”owratesisdif“cult(Fig.4).For“lmswithsymmet-ricalboundaryconditionstheincreaseof”owratesleadstoapro-nounceddimpleformationwitharingclosetotheframe(Fig.3Theprocessof“lmdrainagebecomesmoreregularwithalmostnodimpleformationbydecreasingthe”owrateorthedeformabilityofthe“lmsurfaces,i.e.forsmallervaluesoftheReynoldsandWebernumbers(Fig.3b).Theattractivedisjoiningpressurefavorsthe“lmbreakageintwodifferentways:forlarger”owratesthedimplerup-turesatitsring;forsmaller”owratesthe“lmbreaksinitscentralzone(Fig.5).TheelectrostaticandstericrepulsivecomponentsofthedisjoiningpressurecansuppressthevanderWaalsandhydro-phobicattraction,makingtheprocessof“lmdrainageregular,withawidecentralplane-parallelzone(Figs.5and6).Thetypeof“lmdrainagecanbeef“cientlycontrolledbyvaryingthemagnitudesofdifferentcomponentsofthedisjoiningpressure.Whenthe”owratesarestopped,the“lmsurfaceseitherrelaxtotheir“nalequilibriumpro“le,orthe“lmruptures.ForagivenliquidvolumetheLaplaceequationofcapillaritydescribesthesteady“lm).Withoutaccountingfortherepulsivecomponentsofthedisjoiningpressure,)hasaparabolicorpimpleformwith-outplane-parallelareas.The“lmscanbeeitherstablewithanexpo-nentialdecayofsurfacecorrugations(Fig.7)orunstableifattractivesurfaceforcesarepresent(Fig.8).Theonlypossiblewaytoproduce“lmswithsmallvolumesandthicknessesistocontrolthemagni-tudesofelectrostaticandstericinteractions(Fig.9).These“lmsarestable:theirthicknessesoscillatearoundtheequilibriumpro-),andtheamplitudesofsurfacecorrugationsexponentiallydecreasewithtime.Theequilibriumpro“lescontainlargealmostplane-parallelcentralzonesandsteepmenisciclosetotheframes.ThemodeldescribedinSectioncanbeappliedtostudythedrainageandrelaxationdynamicsofcircular“lms.Howeverinthiscasethe“lmsthinundertheactionofaconstantpressurediffer-ence,whichchangestheboundaryconditions.Thechangeofgeometryandboundaryconditionsmustbetakenintoaccountinthemodelequationsandnumericalscheme.Thisproblemisanaimforourfuturepublication.AcknowledgmentThisstudyispartiallyfundedbyprojectINZ01/01024oftheNa-tionalScienceFundofBulgaria(programIntegratedResearchCentersintheUniversitiesŽ). Fig.8.Relaxationof“lmsurfacesinthecaseofsymmetricboundaryconditionsforRe=1,We=1,=0.1,and=0.45.Solidlinesareplottedwithtimestep0.1andthemomentbeforethe“lmruptureis2.245.Theinsetcomparestherelaxationof,0)forthis“lm(solidline)withthecaseofrelaxationofthesame“lmbutwith“vetimessmaller”owrateRe=0.2,We=0.04,=2.5,and=0.45(dashedline). Fig.9.Equilibrium“lmthicknessesforRe=1,We=0.1,and=1correspondingto=0.7and=0.85.Solidlinesareplottedfor=10=10withoutaccountingforthestericinteractions(seeFig.5b)anddashedlines…for=10=10,,and=20(seeFig.6).Theinsetillustratestherespectiverelaxationsof,0)afterstoppingthe”owrates.S.S.Tabakova,K.D.Danov/JournalofColloidandInterfaceScience336(2009)273…284 AppendixA.Derivationoftheleadingorderofthedynamicboundaryconditionsatthe“lmsurfaceToobtainthedensityoftheforce,,actingfromthebulk”uidontotheupper“lminterfaceoneneedstocalculatethenormalprojectionofthebulkstresstensor,,atthesurface.Wewillusethefollowingnotations:=1,2,3)aretheunitvectorsoftheCartesiancoordinatesystems=1,2)arethetangen-tialvectorsattheupper“lmsurface;istherespectivesurfacenormalvector.Therefore, 12 oHoXae31þ 1 oHoXa2"#1=2ða¼1;2Þ;ðA:1Þn¼ 1 oHoXbebþe31þ 1 oHoX12þ 1 ForincompressibleNewtonian”uidsthestresstensor,,isgivenbythede“nition oUioXkþ istheKroneckerdelta.FromEqs.onederivestheexpressionfortheforcedensity, Pkb2 oHoXbþPk31þ 1 oHoX12þ 1 whereallparametersarecalculatedat/2and=1,2,3.FromEqs.(A.1)and(A.4)weobtaintheformulaforthetangen-tialcomponentoftheforce: P332 oHoXa Pab2 oHoXb P3b4 oHoXb oHoXa1þ 1 oHoX12þ 1 oHoX22"#1=21þ 1 oHoXa2"#1=2atX3¼ Thetangentialstressboundarycondition(seeSection)forfreesurfacesreads=0.Substitutingthede“nitionofthestresstensor,Eq.,intoEq.onereducesthetangentialstressboundaryconditiontothefollowingrelationship oUaoX3þ oU3oXaþ4 oU3oX3 oHoXa2 oUaoXbþ oUboXa oHoXb oU3oXbþ oUboX3 oHoXb 0at FromEqs.(2.1),(2.2)and(A.6)weobtainthedimensionlessformofthisboundarycondition: 1e2 ouaox3¼ ou3oxa ou3ox3 ohoxaþ 1 ouaoxbþ ouboxa ohoxbþ 1e2 ou3oxbþ oubox3 ohoxb ohoxaatx3¼ Usingtheleadingordersolutionoftheconsideredproblem,Eqs.(2.7)and(2.8),wesimplifytheright-handsideofEq.totheasymptoticexpression: 1e2 ouaox3x3¼h=2¼ h2 o2wboxaoxbþ ohoxa owboxbþ 12 owaoxbþ owboxa SubstitutingEq.intoEq.wereduceittotheasymptoticrelationship: 1e2 o2uaox23¼ ooxaq owboxb o2waoxboxbþRe owaotþ ooxbðwbwaÞþ IntegratingEq.withrespecttofrom0to/2andaccountingforthekinematicboundarycondition,Eq.,onederives 1e2 ouaox3x3¼h=2¼ h2 oqoxa h2 o2wboxaoxb h2 o2waoxboxbþRe oot h2waþ ooxb Therefore,theright-handsidesofEqs.(A.8)and(A.10)mustbeequalandaftersimpletransformationswearrivetotheresultgivenbyEq.inSectionFromEqs.(A.2)and(A.4)onecalculatestheexpressionforthenormalcomponentoftheforcedensity: Pab4 oHoXa oHoXb oHoXbPb3þP331þ 12 oHoX12þ 1 whereallparametersarecalculatedat/2.Bysubstitutingthede“nitionsofthestresstensor,Eq.,andofthedimensionlessparameters,Eqs.(2.1),(2.2)and(2.4),inEq.wederivetherelationship gUapþ gUa2 ouboxbþ ohoxb oubox3þe2 ohoxb ou3oxb e24 ouaoxbþ ouboxa ohoxa ohoxb1þe2 1 ohox12þe2 1 writtenatFromtheleadingordersolution,Eq.,thetangentialstressboundarycondition,Eq.,andEq.oneobtains: gUaqþ Thenormalstressboundaryconditionreads(seeSectionSection)Fs\bnþPcþP¼Pg;ðA:14ÞwherePgisthepressureinthegasphase,isthe“lmcapillarypressure,andisthedisjoiningpressure.FromEqs.(A.13)andtheleadingorderformofthenormalstressboundarycondi-tionisreducedto owboxbþ rb2gUa o2hoxboxbþ 2Pa2rb Byde“ningthecapillarynumberandthedimensionlessdisjoiningandgaspressuresbyEq.wetransformEq.intothe“-nalresultgivenbyEq.AppendixB.NumericalschemeToconstructthenumericalschemewedenotethevaluesofallparametersattimewiththesuperscript(-)andthosecalculatedattimewiththesuperscript(+),whereisthelocalnumer-icaltimestep.Forexample,aretakenattimelevelS.S.Tabakova,K.D.Danov/JournalofColloidandInterfaceScience336(2009)273…284 …atthesubsequenttimelevel.Therespec-tivetimedifferences,,arede“nedas.Eqs.(3.1)and(3.2)areconsideredatmo-/2andthetimederivativesappearingthereinareapproximatedwithprecision DhDt¼RhjtþDt=2þOðDt2Þand wheretheoperators,,arede“nedbytheexpressions ooxðhwÞ;ðB:2ÞRw oox w22þ 1We o3hox3þ oox pdpWeþ 4Re o2wox2þ 4Re owox UsingtheCrank-Nicolsonmethoddtheright-handsidesoftheequationsinEq.arereplacedwiththemeanvaluesofoperatorsattimelevelswithaccuracy),i.e. DhDt RðþÞhRðÞ2¼RðÞþOðDt2Þand DwDt InordertoapplytheNewtonmethodforlinearizationtionwecalculatethevariationsofwithsecondor-derprecision)usingtheabovede“nitions,Eqs.(B.2)and.Aftersimpletransformationsonearrivestotherelationships DhDtþ 12 oox½hðÞDwþwðÞDh\t¼RðÞh;ðB:5Þ DwDtþ oox wðÞDw2 12We o3Dhox3 oox ddhð pdpWeÞðÞ Dh2() 2Re o2Dwox2 2Re olnhðÞox oDwox 2Re owðÞox oox TosolvenumericallyEqs.(B.5)and(B.6)weusearegulargridforthespacecoordinate,,de“nedas=0,1,2,...isthenumberofintervalswithalength=2/.Theval-uesofthefunctionsinthenodesofthegridaredenotedwiththe.Forexample,thecentraldifferenceinspacewithpreci-)appliedtoEq. wðÞk14DxDhk1 hðÞ14DxDwk1þ DhkDtþ wðÞþ14DxDhkþ1þ hðÞþ14DxDwkþ1¼RðÞh;k;ðB:7ÞwhereRðÞ;k¼ =1,2,Therespectivedifferenceschemewithprecision)appliedtoEq. lnhðÞþ1lnhðÞ12ReDx2 wðÞ14Dx 2ReDx2"#Dwk1þ wðÞkþ1wðÞ12ReDx2hðÞ1þ 14Dx ddh pdpWeðÞk1()Dhk1þ 1Dtþ 4ReDx2Dwk 12WeDkðDhÞþ wðÞkþ14Dx 2ReDx2 lnhðÞþ1lnhðÞ12ReDx2"#Dwkþ1þ 12WeDx3 14Dx ddh pdpWeðÞkþ1 wðÞkþ1wðÞ12ReDx2hðÞkþ1()Dhkþ1¼RðÞ;k;ðB:9ÞwhereRðÞ;k¼ wðÞ1wðÞ1wðÞþ1wðÞþ14Dxþ 1WeDk½hðÞ\tþ pðÞdp;kþ1pðÞ;k12WeDxþ 4Re wðÞþ12wðÞþwðÞ1Dx2þ isthedifferenceoperatorrepresentingthethirdderivativewithrespecttothespacecoordinateBecauseofthethirdderivativewithrespectto,thedifferenceoperator,,inthenodes=2,3,2hasdifferentformthanthosewrittenforthenodes1and1.For=2,3,2weusethefollowingcentraldifferenceexpressionfor isde“nedbytherelationship iscalculatedusingthevaluesofthefunctioninthenodes1,andthroughequation Thematrixoftheobtainedlinearsystemofequations,Eqs.and(B.9),completedwiththeboundaryconditions,Eqs.(3.5)and,writtenintermsoftheunknownvector(),contains5upperand7lowerdiagonals.Thenumericalsolutionofthissystemisper-formedef“cientlyusingtheThomasalgorithmalgorithm.Thedescribednumericalschemeisstable,ofthesecondorderoftime,andistherefore,applicablefor[1]J.Sjoblom(Ed.),EmulsionsandEmulsionStability,seconded.,CRCTaylorandFrancis,BocaRaton,2006.[2]D.Exerowa,P.M.Kruglyakov,FoamandFoamFilms:Theory,Experiment,Application,ElsevierScience,Amsterdam,1998.[3]I.B.Ivanov,K.D.Danov,P.A.Kralchevsky,ColloidsSurf.A152(1999)161…182.[4]I.B.Ivanov,P.A.Kralchevsky,ColloidsSurf.A128(1997)155…175.[5]I.B.Ivanov(Ed.),ThinLiquidFilms,MarcelDekker,NewYork,1988.[6]B.V.Derjaguin,N.V.Churaev,V.M.Muller,SurfaceForces,PlenumPress,NewYork,1987.[7]K.S.Birdi(Ed.),HandbookofSurfaceandColloidChemistry,thirded.,CRCTaylorandFrancis,BocaRaton,2008.[8]J.Blawzdziewicz,E.Wajnryb,M.Loewenberg,J.FluidMech.395(1999)29…59.[9]A.K.Chesters,I.B.Bazhlekov,J.ColloidInterfaceSci.230(2000)229…243.[10]J.Blawzdziewicz,V.Cristini,M.Loewenberg,J.ColloidInterfaceSci.211(1999)[11]M.D.Ida,M.J.Miskis,SIAMJ.Appl.Math.58(1998)456…473.[12]M.D.Ida,M.J.Miskis,SIAMJ.Appl.Math.58(1998)474…500.[13]I.B.Ivanov,PureAppl.Chem.52(1980)1241…1262.[14]A.K.Malhotra,D.T.Wasan,AIChEJ.33(1987)1533…1541.[15]D.E.Tambe,M.M.Sharma,J.ColloidInterfaceSci.147(1991)135…151.[16]D.S.Valkovska,K.D.Danov,J.ColloidInterfaceSci.241(2001)400…412.[17]P.deRoussel,D.V.Khakhar,J.M.Ottino,Chem.Eng.Sci.56(2001)5511…5529.[18]S.D.Stoyanov,N.D.Denkov,Langmuir17(2001)1150…1156.[19]D.S.Valkovska,K.D.Danov,I.B.Ivanov,Adv.ColloidInterfaceSci.96(2002)[20]M.B.Williams,S.H.Davis,J.ColloidInterfaceSci.90(1982)220…228.[21]M.Prévost,D.Gallez,J.Chem.Phys.84(1986)4043…4048.[22]T.Erneux,S.Davis,Phys.FluidsA5(1993)1117…1122.[23]A.deWit,D.Gallez,C.I.Christov,Phys.Fluids6(1994)3256…3266.[24]D.Vaynblat,J.R.Lister,T.P.Witelski,Phys.Fluids13(2001)1130…1140.[25]J.P.Burelbach,S.G.Bankoff,S.H.Davis,J.FluidMech.195(1988)463…494.[26]D.Hatziavramidis,J.MultiphaseFlow18(1992)517…530.[27]K.D.Danov,N.Alleborn,H.Raszillier,F.Durst,Phys.Fluids10(1998)131…143.[28]K.D.Danov,V.N.Paunov,N.Alleborn,H.Raszillier,F.Durst,Chem.Eng.Sci.53(1998)2809…2822.[29]K.D.Danov,V.N.Paunov,S.D.Stoyanov,N.Alleborn,H.Raszillier,F.Durst,Chem.Eng.Sci.53(1998)2823…2837.S.S.Tabakova,K.D.Danov/JournalofColloidandInterfaceScience336(2009)273…284 [30]V.N.Paunov,K.D.Danov,N.Alleborn,H.Raszillier,F.Durst,Chem.Eng.Sci.53(1998)2839…2857.[31]S.Tabacova,L.Carotenuto,MicrogravityQ4(1994)55…61.[32]A.Graciaa,G.Morel,P.Saulner,J.Lachaise,R.S.Schechter,J.ColloidInterfaceSci.172(1995)131…136.[33]K.G.Marinova,R.G.Alargova,N.D.Denkov,O.D.Velev,D.N.Petsev,I.B.Ivanov,R.P.Borwankar,Langmuir12(1996)2045…2051.[34]V.N.Paunov,S.I.Sandler,E.W.Kaler,Langmuir17(2001)4126…4128.[35]L.Wang,R.-H.Yoon,Langmuir20(2004)11457…11464.[36]J.K.Angarska,B.S.Dimitrova,K.D.Danov,P.A.Kralchevsky,K.P.Ananthapadmanabhan,A.Lips,Langmuir20(2004)1799…1806.[37]L.Wang,R.-H.Yoon,ColloidsSurf.A263(2005)267…274.[38]L.Wang,R.-H.Yoon,ColloidsSurf.A282…283(2006)84…91.[39]M.Bosröm,D.R.M.Williams,B.W.Ninham,Phys.Rev.Lett.87(2001)168103.[40]J.N.Israelachvili,H.Wennerström,J.Phys.Chem.96(1992)520…531.[41]K.D.Danov,I.B.Ivanov,K.P.Ananthapadmanabhan,A.Lips,Adv.ColloidInterfaceSci.128…130(2006)185…215.[42]L.G.Leal,LaminarFlowandConvectiveTransportProcesses:ScalingPrinciplesandAsymptoticAnalysis,Butterworth-Heinemann,Stoneham,MA,1992.[43]M.Boström,W.Kunz,B.W.Ninham,Langmuir21(2005)2619…2623.[44]N.C.Christov,K.D.Danov,P.A.Kralchevsky,K.P.Ananthapadmanabhan,A.Lips,Langmuir22(2006)7528…7542.[45]J.T.Petkov,N.D.Denkov,K.D.Danov,O.D.Velev,R.Aust,F.Durst,J.ColloidInterfaceSci.172(1995)147…154.[46]J.T.Petkov,K.D.Danov,N.D.Denkov,R.Aust,F.Durst,Langmuir12(11)(1996)[47]J.N.Israelachvili,IntermolecularandSurfaceForces,AcademicPress,London,[48]B.U.Felderhof,J.Chem.Phys.48(1968)1178…1185.[49]B.U.Felderhof,J.Chem.Phys.49(1968)44…51.[50]S.Sche,H.M.Fijnaut,Surf.Sci.76(1978)186…202.[51]A.A.Mohamed,E.F.Elshehawey,M.F.El-Sayed,J.ColloidInterfaceSci.169(1995)65…78.[52]L.Popova,G.Gromyko,S.Tabakova,Diff.Equat.39(2003)1037…1043.[53]D.S.Valkovska,K.D.Danov,I.B.Ivanov,ColloidsSurf.A156(1999)547…566.[54]S.I.Karakashev,E.D.Manev,R.Tsekov,A.V.Nguyen,J.ColloidInterfaceSci.318(2008)358…364.[55]D.A.Edwards,H.Brenner,D.T.Wasan,InterfacialTransportProcessesandRheology,Butterworth-Heinemann,Boston,1991.[56]C.A.J.Fletcher,ComputationalTechniquesforFluidDynamics.1.FundamentalandGeneralTechniques,Springer-Verlag,NewYork,1991.[57]C.A.J.Fletcher,ComputationalTechniquesforFluidDynamics.2.Speci“cTechniquesforDifferentFlowCategories,Springer-Verlag,NewYork,1991.[58]M.Abramowitz,I.A.Stegun,HandbookofMathematicalFunctions,NationalBureauofStandards,Washington,DC,1984.[59]W.H.Press,B.P.Flannery,S.A.Teukolsky,W.T.Vetterling,NumericalRecipesinFORTRAN:TheArtofScienti“cComputing,CambridgeUniv.Press,NewYork,S.S.Tabakova,K.D.Danov/JournalofColloidandInterfaceScience336(2009)273…284