/
OnLine Geometric Modeling Notes VECTOR SPACES Kenneth I OnLine Geometric Modeling Notes VECTOR SPACES Kenneth I

OnLine Geometric Modeling Notes VECTOR SPACES Kenneth I - PDF document

lois-ondreau
lois-ondreau . @lois-ondreau
Follow
574 views
Uploaded On 2015-01-19

OnLine Geometric Modeling Notes VECTOR SPACES Kenneth I - PPT Presentation

Joy Visualization and Graphics Research Group Department of Computer Science University of California Davis These notes give the de64257nition of a vector space and several of the concepts related to these spaces Examples are drawn from the vector s ID: 33127

Joy Visualization and Graphics

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "OnLine Geometric Modeling Notes VECTOR S..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Associativity–foranythreevectors~v1,~v2and~v3inV,(~v1+~v2)+~v3=~v1+(~v2+~v3)Thisruleisillustratedinthegurebelow.Onecanseethateventhoughthesum~v1+~v2+~v3iscalculateddifferently,theresultisthesame. ZeroVector–thereisauniquevectorinVcalledthezerovectoranddenoted~0suchthatforeveryvector~v2V~v+~0=~0+~v=~vAdditiveInverse–foreachelement~v2V,thereisauniqueelementinV,usuallydenoted�~v,sothat~v+(�~v)=~0Inthecaseof2-dimensionalvectors,�~vissimplyrepresentedasthevectorofequalmagnitudeto~v,butintheoppositedirection. Theuseofanadditiveinverseallowsustodeneasubtractionoperationonvectors.Simply~v2�~v1=~v2+(�~v1)Theresultofvectorsubtractioninthespaceof2-dimensionalvectorsisshownbelow.2 Frequentlythis2-dvectorsisprotrayedasjoiningtheendsofthetwooriginalvectors.Aswecansee,sincethevectorsaredeterminedbydirectionandlength,andnotposition,thetwovectorsareequivalent. ScalarMultiplicationassociateswitheveryvector~v2Vandeveryscalarc,anotheruniquevector(usuallywrittenc~v), Forscalarmultiplicationthefollowingpropertieshold:Distributivity–foreveryscalarcandvectors~v1and~v2inV,c(~v1+~v2)=c~v1+c~v2Inthecaseof2-dimensionalvectors,thiscanbeeasilyseenbyextendingtheparallelogramillustrationabove.Wecanseebelowthatthesumofthevectors2~v1and2~v2isjusttwicethevector~v1+~v23 DistributivityofScalars–foreverytwoscalarsc1andc2andvector~v2V,(c1+c2)~v=c1~v+c2~vAssociativity–foreverytwoscalarsc1andc2andvector~v2V,c1(c2~v)=(c1c2)~vIdentity–foreveryvector~v2V,1~v=~v2ExamplesofVectorSpacesExamplesofvectorspaceaboundinmathematics.Themostobviousexamplesaretheusualvectorsin2,fromwhichwehavedrawnourillustrationsinthesectionsabove.Butwefrequentlyutilizeseveralothervectorsspaces:The3-dspaceofvectors,thevectorspaceofallpolynomialsofaxeddegree,andvectorspacesofnnmatrices.Webrieydiscussthesebelow. TheVectorSpaceof3-DimensionalVectorsThevectorsin3alsoformavectorspace,whereinthiscasethevectoroperationsofadditionandscalarmultiplicationaredonecomponentwise.Thatis~v1=x1;y1;z1&#x-433;and~v2=x2;y2;z2&#x-433;arevectors,thenadditionis~v1+~v2=x1+x2;y1+y2;z1+z2&#x-278;4 and,ifcisascalar,scalarmultiplicationisgivenbyc~v1=cx1;cy1;cz1&#x-278;Theaxiomsareeasilyveried(forexampletheadditiveidentityof~v1=x1;y1;z1&#x-295;isjust�~v1=�x1;�y1;�z1&#x]TJ/;༔ ;.9; T; -4;Y.5; -;.0; Td;&#x[000;,andthezerovectorisjust~0=0;0;0&#x]TJ/;ø 1;�.90; Tf;&#x 12.;Է ;� Td;&#x[000;.Heretheaxiomsjuststatewhatwealwayshavebeentaughtaboutthesesetsofvectors. VectorSpacesofPolynomialsThesetofquadraticpolynomialsoftheformP(x)=ax2+bx+calsoformavectorspace.Weaddtwoofpolynomialsbyaddingtheirrespectivecoefcients.Thatis,ifp1(x)=a1x2+b1x+c1andp2(x)=a2x2+b2x+c2,then(p1+p2)(x)=(a1+a2)x2+(b1+b2)x+(c1+c2)andmultiplicationisdonebymultiplyingthescalarbyeachcoefcient.Thatis,ifsisascalar,thensp(x)=(sa)x2+(sb)x+(sc)Theaxiomsareagaineasilyveriedbyperformingtheoperationsindividuallyonliketerms. Asimpleextensionoftheaboveistoconsiderthesetofpolynomialsofdegreelessthanorequalton.Itiseasilyseenthatthesealsoformavectorspace. VectorSpacesofMatricesThesetofnnMatricesformavectorspace.Twomatricescanbeaddedcomponentwise,andamatrixcanbemultipliedbyascalar.Allaxiomsareeasilyveried.5 Assumingthatc1isnotzero,wecanseethat~v1=c2 c1~v2++cn c1~vnAnysetofvectorscontainingthezerovector(~0)islinearlydependent.3.2.1ExampleTogiveanexampleofalinearindependentsetthateveryonehasseen,considerthethreevectors~i=1;0;0&#x]TJ/;ø 1;�.90; Tf;&#x 11.;ԕ ;� Td;&#x[000;;~j=0;1;0&#x]TJ/;ø 1;�.90; Tf;&#x 11.;ԕ ;� Td;&#x[000;;~k=0;0;1&#x]TJ/;ø 1;�.90; Tf;&#x 11.;ԕ ;� Td;&#x[000;inthevectorspaceofvectorsin3Considertheequationc1~i+c2~j+c3~k=~0Ifwesimplifyleft-handsidebyperformingtheoperationscomponentwiseandwritetheright-handsidecomponentwise,wehavec1;c2;c3&#x-278;=0;0;0&#x]TJ/;ø 1;�.90; Tf;&#x 11.;ԕ ;� Td;&#x[000;whichcanonlybesolvedifc1=c2=c3=0.3.3ABasisforaVectorSpaceLet~v1;~v2;:::;~vnbeasetofvectorsinavectorspaceVandletSbethespanofV.If~v1;~v2;:::;~vnislinearlyindependent,thenwesaythatthesevectorsformabasisforSandShasdimensionn.SincethesevectorsspanS,anyvector~v2Scanbewrittenuniquelyas~v=c1~v1+c2~v2++cn~vn7