/
Proceedings of the International MultiConference of Engineers and Comp Proceedings of the International MultiConference of Engineers and Comp

Proceedings of the International MultiConference of Engineers and Comp - PDF document

lois-ondreau
lois-ondreau . @lois-ondreau
Follow
394 views
Uploaded On 2015-10-23

Proceedings of the International MultiConference of Engineers and Comp - PPT Presentation

ISBN 9789881925190 ISSN 20780958 Print ISSN 20780966 Online IMECS 2012 SlackenPiercingPointBasedSubproblemAlgorithmfortheLPRelaxationofCrewRosteringZhaoMingyuLiuQiongandWangZhenyu Algo ID: 170423

ISBN: 978-988-19251-9-0 ISSN: 2078-0958 (Print);

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Proceedings of the International MultiCo..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Proceedings of the International MultiConference of Engineers and Computer Scientists 2012 Vol II, IMECS 2012, March 14 - 16, 2012, Hong Kong ISBN: 978-988-19251-9-0 ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online) IMECS 2012 SlackenPiercingPointBasedSubproblemAlgorithmfortheLPRelaxationofCrewRosteringZhaoMingyu,LiuQiongandWangZhenyu Algorithm1:ThemodiedalgorithmforCrewRosteringProblem 1A0 fajjt(aj)61;f(aj)2Cg[fajjf(aj)=2Cg; 02repeat 3Solvethesubproblemminz=cxs.t.A0x=b,letdenoteitsoptimaldualvector,andSCconsistsofcrewsthathavechangedinthelastbasis.4 max0;�dj dj�dj dj0;dj&#x]TJ/;ཧ ;.96;d T; 9.;ܨ ;� Td;&#x [00;0;f(j)=2S5 +(1�)6Removeallnon-basiccolumnsfromA07ifz&#x]TJ/;ཧ ;.96;d T; 9.;ܨ ;� Td;&#x [00;bthen 8L ;9foreachaj=2A0^dj�0do 10ifdj=0then 11A0 A0[fajg12elseiff(aj)=2Sand(dj6+^dj�0)_(dj6�^dj0)then 13L L[fajg14endif15endforeach16AddthemostNscolumnstoA0whichpossesssmallreducecostwithinL17Addthemost(1�)NscolumnstoA0whichpossesssmallreducecostwithandtheninL18endif19until=0;20SPRINT() Especially,theemptyLoW(notincludeanytask)islegalforanycrewmember.ForanyLoWaj,itconsistsofanumberoftasks,anditscardinalityisdenotedast(aj).EachLoWajhasanassociatecostcjevaluatingitsfairness.Crewrosteringproblemistypicallyformulatedasanextensionofthesetpartitioningproblem,inwhichwewanttondaminimumcostsubsetoftheLoWsfollowingthreecategoriesofconstraints.TherstisthateachcrewmemberhastochooseoneandonlyoneLoWfromallLoWsbelong-ingtoher/him,whichisreferredtoasassignmentconstraint.Second,thecrewmembersassignedtoanytaskshouldnotexceeditscapacity.Third,sometasksmusthavecrewmembersmore/lessthansomeamount,whosequalicationshouldbeasdesire.EveryLoWcanformacolumnaccordingtotheseconstraints,andproperlyintroducessomesupplierandslackvariablesadditionally,withwhichtheconstraintmatrixAcanbeconstructed.AsalmosteverycolumninAindicatesaLoWaj,itisalsodenotedasajforsimplerepresentation.Decisionvariablexjisequalto1ifLoWajisincludedinthesolution,and0otherwise.Insummary,therelaxationofcrewrosteringproblemcanbeformulatedasaLP,see(1).Thereadersarereferredto[3]fordetailsonthereal-worldbusinessrulesandthecorrespondingrelationswiththemodel.mincx(P)s.t.Ax6bx�0(1)Withoutlossofgenerality,itcanbeassumedc�0andb�0.AsubsetofallLoWsandsomeothervariablesconstituteasubproblemof(P),whosesolutionisfeasibleto(P)anddenotedas(SP).III.THEMODIFIEDALGORITHMFORCRPInthissection,amodiedsubproblemalgorithmforCRPbasedonaslackenpiercingpointconceptwasproposed,withanefcientsubproblemconstructionstrategyadaptedtothisspecialproblem.TheformaldescriptionofthemodiedalgorithmwasgivenbyAlgorithm1.A.InitialsolutionIntherealworldenvironment,therosteringproblemhasn'tanyinitialfeasiblesolutionusually.TherstsubproblemconsistsofnotonlyallsingletaskLoWsandemptyLoWsforallcrew,butalsoallsupplierandslackvariables.Evidently,itcanproduceafeasiblesolutionfortheoriginalproblem,becauseitislegaltoassignemptyLoWtoallcrewmembersatleast.Inaddition,thevector0isadualfeasiblesolutionasthecostofanycolumnisnon-negative.B.SlackenpiercingpointAsmentionedbefore,themaindifferencebetweensub-problemalgorithmsishowtoconstructthenextsubproblemateachiteration.Likepriceschemeforthesimplex,differentsubproblemconstructionstrategieshavedramaticallyimpactontheoverallperformanceforthesubproblembasedmethod,asindicatedby[5],[6].Asaresult,thesubproblemconstruc-tionmethodiscertainlythekernelsubjectforasubproblembasedalgorithm.Letdenotetheincumbentdualvector,andtheoptimaldualsolutionofthecurrentsubproblem.Thepiercingpoint0canbewrittenas0=+(1�),wheremakes0remaindualfeasibleandimprovethedualobject0baslargeaspossible.Aprobeistheoperationofndingthepiercingpointsandthecolumnsthatdecide.Thosecolumnscouldberegardedasthebestcandidatesforthenextsubproblem.Theseconceptsweredenedby[7]withdualversion.Itiswellknownthatitispossibletodesignmoreefcientpricealgorithmsforaspecialclassofproblemswhichex-hibitsomeidentiablestructures.Fortherosteringproblem,everycrewmembermusthaveoneandonlyoneLoWinanyfeasiblesolution,asaconsequenceoftheassignmentconstraints.Thus,everycrewmemberhasseveralLoWsinanybasicfeasiblesolutionforitsLPrelaxation.Asforsomecrewmemberk2SC,ifher/hisLoWsincurrentbasishavechangedsincethelastiteration,weattempttokeeptheseLoWsinthenextbasis.Theideabehindisthatithas gotlocally“best”representationsforcrewk,soitisunlikelythatkisstillagoodimprovingcandidateinthenextiteration,i.e.thebestcandidatecolumnsareunlikelytocomefromthiscrewmember.So,thiscrewmemberwon'tbeconsideredintheprobeoperationanymore.Todistinguishwith,isdenedasbellow=max(0;�dj dj�dj dj0;dj&#x]TJ/;ø 9;&#x.962; Tf;&#x 10.;Ԗ ;� Td;&#x [00;0;f(j)=2S)(2)wheredjanddjdenotereducecostsofcolumnajwithandrespectively.Theupdateddualvector0=+(1�)isreferredtoastheslackenpiercingpointofand.Ineachiteration,thecolumnsareregardedasthebestcandidateswhichhavezeroreducedcostwithslackenpiercingpoint.Thesecolumnslimitthefurtherimprovementofcurrentdualobject,sotheyarereferredtoasrestrictvariablesforsimplifyrepresentation.C.ColumnselectionBythedenitionofslackedpiercingpoint,itisevidentthatallrestrictvariablesshouldbeaddedtothesubproblem.Nevertheless,thereareonlyafewofrestrictvariablesineachiterationusually.Itnearlycan'tworkifonlytheserestrictvariablesareaddedtosubproblemforalargeproblem.Thus,wehavetochoosesomeotherpotentiallybenecialcolumns.Infact,asindicatedby[5],[6],thesizeofsubproblemhasanimportantimpactonsubproblembasedmethods,asthemorecolumnsareintroducedtothenextsubproblem,themoresolvingtimewillbeneededinevitably.Moreimportantly,atoogreedystrategybasedonlocalinformationwillleadtounnecessarysimplexiterationsfromaglobalview.Incontrast,toofewcolumnswillresultintoomanyredundantpricing.So,thesubproblemsizeshouldbetradedoffforthismodiedalgorithmcarefully.Althoughthegoaloftheslackenpiercingpointbasedcriteriaistosatisfythecomplementaryslacknessinasetwhichismadeofcolumnswithapproximatelyequalreducecostswith0,thecolumnswithsmallerreducedcostwith0arebetter.So,reducedcostwith0and0isusedtoevaluateothercolumnssimultaneously,ratherthantheP-Dsubproblemalgorithmdid.Inkeepingwithprobeoperation,othercolumnsofthecrewmembersthatbelongtoSwon'tbeaddedtosubproblemunlesstheyarerestrictvariables.AsforamembernotbelongingtoS,thecandidatesetLconsistsofcolumnswhosereducedcostwithislessthanzeroandreducedcostwithislessthanorequalto�,andthecolumnswhosereducedcostwithispositiveandreducedcostwithislessthanorequalto+,where+�.Thatis,L=naj dj&#x-278;0;d0j6+andf(j)=2So[naj dj0;d0j6�andf(j)=2So(3)Severalparametersareusedtocontrolthesubproblemsizeinthemodiedalgorithm.Toconstructthenextsubproblem,itisrstlyselectednomorethanNs(0661)columnswithsmallestreducedcostwith0fromL,regardlessofdj.Andthenitisaddedatmost(1�)Nscolumnswithsmallestreducedcostwith0anddj0fromL.Thatis,somecolumnswithdj0areusedinsteadofsomewithsmallerreducedcostwith0.ToefcientlyselectcolumnsfromL,twodimensionalbucketsareusedtorankcolumns,whichhaveapproximatelyequalreducecostswith0andplacedinthesamebucket.Ifah2Li;jandag2Li+1;jthendhdganddhdg,andifag2Li;j+1thendhdganddhdg.D.OptimalityNotethattheslackenpiercingpointdoesn'tconsiderallcolumnsintheprobeoperation,andthecorresponding0maynotbedualfeasibleforprimalproblem(P).Neverthe-less,ifthereducedcostofacolumnwiththeslackedpiercingpointisnegative,itisstillpossibletobecomenon-negativeinthelateriterations.Althoughitispossiblethatwecan'tobtaintheoptimumoftheoriginalproblembythismethodaftersatisfyingcondition=0,itisusualthattheincumbentisveryclosetoit.Ifacolumnnotdualfeasibleforexistsafterloop,calltheSPRINTalgorithmtoguaranteetheconvergence.AsfortheSPRINTalgorithm,itusesanarrayofappropriatesizetoaccommodatethepotentialcolumns.Thecolumnswithnegativereducedcostwithareappendedfromthebeginningofthearray,andotherslessthansomethreshold(suchas10�5)areappendedfromthebottomtoback.Thecolumnswithnegativereducedcostcanoverridetheothers,andnottrueinturn.Thesimplicationisrootedinthattheinitialbasisisveryclosetotheoptimalpoint.E.AnalysisThereareseveralreasonswhythisapproachiscompu-tationallyefcient.First,ituses6toupdate0intheprobeoperationsothatalargerdualobjectvalueisobtained,althoughitisslightlynotdualfeasiblefortheoriginalproblem(P).Atthesametime,itaddsmoregoodcolumnsforthecurrentsubproblem(dj0),whichwilldecreasetheobjectvalueofthenextsubproblemmorerapidly.Therefore,itconvergestosomegoodfeasiblepointfor(P)morequickly.Second,thisstrategylightenstheburdenontheprobeandsortoperationineachiteration,especiallybenecialtolargescaleproblem.Finally,evenacolumnmaybecomenotdualfeasibleinsomeiteration,itisnotpermanent.Itstillhasthepossibilityofbecomingdualfeasiblelater.TheconvergencepointoftheP-DphaseisusuallysoclosetotheoptimumoftheoriginalthatitcanrapidlyderiveoptimalitybySPRINTalgorithm.IV.COMPUTATIONALEXPERIENCEInthisstudy,anumberofproblemswereexperimentedona2:66GHzPCwith4GBofRAM,andXpress[8]wasusedastheLPsolverforthesubproblems.TheseproblemscamefromtheoperationcontrolsystemofalargeinternationalairlineinChina,andtargetedondifferentcrewranks.Infact,eachrankhasitsmodelcharacteristicsincethecorrespondingbusinessrulesareappropriative.TableIpresentsthenumbersofcrewsandtaskswiththescaleofconstraintmatrixintheproblemssolved.TableIIpresentseachoperation'stimeofthemodiedalgorithmforeveryproblemlistedinTableI.Everyproblem TABLEIIOPERATIONTIMEINTHEMODIFIEDALGORITHMFORTHEPROBLEMS Prob.MajorSimplexProbePriceSPRINTTotal iter.iter.timeupdatesortIter.iter.timeprice No.16615179615:082:733:544:23373921:230:2027:13No.212924500222:3510:4711:4911:1755:70No.37726029022:4511:1015:534:9737120:450:8655:63No.45439419938:9510:9415:877:2411266346:842:5082:80No.549986618:1713:8417:5811:0151:42No.65813860911:3323:0227:6513:752240:171:2077:83 TABLEIIIaCOMPARISONWITHP-DSUBPROBLEMSIMPLEXALGORITHMFORNO.13 No.1 No.2 No.3 Majoriterations 379 66 82:6% 429 129 69:9% 90 77 14:4%Solving(SP)time 22:56 15:08 33:2% 24:17 22:35 7:5% 33:23 22:45 32:4%Probetime 22:90 2:73 88:1% 43:13 10:47 75:7% 20:22 11:10 45:1%Updatetime 20:58 3:54 82:8% 38:15 11:49 69:9% 18:29 15:53 15:1%Sorttime 24:49 4:23 82:7% 36:99 11:17 68:8% 7:90 4:97 37:1%Probe+Sort/iter. 0:13 0:11 15:4% 0:19 0:17 10:5% 0:31 0:21 32:3%SPRINTphase 1:43 1:31 Total 90:77 27:13 70:1% 142:63 55:70 60:9% 79:88 55:63 30:4% TABLEIIIbCOMPARISONWITHP-DSUBPROBLEMSIMPLEXALGORITHMFORNO.46 No.4 No.5 No.6 Majoriterations 129 54 58:1% 107 49 54:2% 149 58 61:1%Solving(SP)time 57:10 38:95 31:8% 14:89 8:17 45:1% 19:43 11:33 41:7%Probetime 40:87 10:94 73:2% 41:47 13:84 66:6% 76:11 23:02 69:8%Updatetime 38:14 15:87 58:4% 38:91 17:58 54:8% 71:59 27:65 61:3%Sorttime 23:40 7:24 69:1% 36:03 11:01 69:4% 49:55 13:75 72:3%Probe+Sort/iter. 0:50 0:34 32:0% 0:72 0:51 29:2% 0:84 0:63 25:0%SPRINTphase 9:38 1:39 Total 159:95 82:80 48:2% 131:83 51:42 61:0% 217:36 77:83 64:2% TABLEIPROBLEMSFORCREWROSTERING Prob.CrewsTasksRowsColumns No.137220814121;922;626No.226320813192;343;817No.335627418554;386;271No.458432318599;412;213No.5476237122412;446;241No.6485239123715;761;156 wassolvedthroughsettingNs=2104,+=200;�=400and=0:8.Theseresultsshowedthattheoptimalsolutionwasusuallyveryclosetothatoftheprimalproblemaftersolvingtherelaxedproblem.Italsoshowedthatthealgorithmworkedwellforvarioussizesofproblemsandforvariousmodelsthattargetedondifferentcrewranks.TableIIIa,IIIbgivecomparisonsofeachoperationwiththeP-Dsubproblemsimplexalgorithms.Foreachproblem,therstcolumnindicatestheP-Dsubproblemalgorithm,andthesecondindicatesthemodiedalgorithm.Thethirdindicatesimprovedpercentagesyieldedbythemodiedalgorithmwhichequalstothedifferenceofcolumn1and2dividedbytherstcolumn.FortheP-Dsubproblemalgorithm,theparameterNswasalsosetto2104,whileanycolumnwithdj�300couldn'tjointhesubproblems.TherearesomeresultsshowninTableIIIa,IIIb.Firstly,theimprovementofthemodiedalgorithmmainlycamefromitsdramaticallydecreaseoftheiterations.Thisprovesthatthecolumnsselectioncriteriaofthemodiedalgorithmismoreeffectiveandefcient.Secondly,theimprovementoftheprobeandsortoperation(interpretedas“Probe+Sort/iter.”)alsocontributedlargelytotheoverallperformance,especiallyforthelargescaleproblems.V.CONCLUSIONInthisstudy,wehavemodiedtheconceptofprobeoperationandproposedamodiedcolumnselectioncriteriaforthecrewrosteringproblemtakingplaceinairlines,whichcanbeusedtodesignasubproblembasedalgorithm.Theideaofthemodicationistodividevariablesintogroups,andonlypricecolumnsinthemostpromisinggroupateachstep.Atthesametime,considertwofactors,oneforprimalproblemandtheotherforitsdual,toselectcolumns.Thecomputationalexperimentsonthereal-worldprob-lemshavebeenpresented,whichhaveshownthatthemod-iedalgorithmsavedaboutone-halftimewithcomparetotheprimal-dualsubproblemalgorithm. ACKNOWLEDGMENTTheauthorswouldliketothanksomelargeairlineinChinaforprovidinguswiththereal-worldproblems.Wearealsoappreciativeofthevaluablefeedbackandcommentsfromtheanonymousreferees.REFERENCES[1]CynthiaBarnhart.“AirlineScheduling:Accomplishments,Opportuni-tiesandChallenges.”LectureNotesinComputerScience,Vol.5015,2008.[2]CynthiaBarnhart,AmyCohn,EllisJohnson,DiegoKlabjan,et.al.“AirlineCrewScheduling.”RandolphW.Hall,ed.HandbookofTrans-portationScience,KluwerScienticPublishers,Boston.2003,pp.57-93.[3]NiklasKohl,StefaneE.Karisch.“AirlineCrewRostering:ProblemTypes,ModelingandOptimization.”AnnalsofOperationsResearch,Vol.127,No.1-4,2004,pp.223-257.[4]Gamache,M.,F.Soumis.“Amethodforoptimallysolvingtherosteringproblem.”G.Yu,ed.OperationsResearchintheAirlineIndustry.Kluwer,Boston,MA,pp.124-157[5]RangaAnbil,RajanTanga,EllisJohnson.“AGlobalApproachtoCrewPairingOptimization.”IBMSystemsJournal31,1991,71-78.[6]JingHu,EllisJohnson.“Computationalresultswithaprimal-dualsubproblemsimplexmethod.”OperationsResearchLetters,Vol.25,No.4,1999,pp.149-157.[7]AwantiP.Sethi,GeraldL.Thompson.“Thepivotandprobealgorithmforsolvingalinearprogram.”MathematicalProgramming,Vol.29,No.2,1984,pp.219-233.[8]FICO.“Xpress-OptimizerReferencemanual.”Release22.01.2011.