/
The circlet transform A robust tool for detecting feat The circlet transform A robust tool for detecting feat

The circlet transform A robust tool for detecting feat - PDF document

lois-ondreau
lois-ondreau . @lois-ondreau
Follow
409 views
Uploaded On 2015-05-15

The circlet transform A robust tool for detecting feat - PPT Presentation

Chauris I Karoui P Garreau H Wackernagel P Craneguy L Bertino Centre de Ge osciences Mines ParisTech 35 rue SaintHonore 77300 Fontainebleau France UMRSisyphe 7619 UPMC Paris France Ifremer Plouzane France Actimar Brest France Nersc Bergen Nor ID: 67096

Chauris Karoui

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "The circlet transform A robust tool for ..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Thecirclettransform:ArobusttoolfordetectingfeatureswithcircularshapesH.Chauris,I.Karoui,P.Garreau,H.Wackernagel,P.Craneguy,L.BertinoCentredeGe Correspondingauthorat:CentredeGeosciences,MinesParisTech,35rue,77300Fontainebleau,France.E-mailaddress:herve.chauris@mines-paristech.fr(H.Chauris). Computers&Geosciences37(2011)331…342 extensionofwaveletswheretheelementsusedforthedecom-positionareelongatedalongoneaxisandoscillatingintheperpendiculardirection.WerefertoMaandPlonka(2010)forareviewoncurveletapplications.Boththewaveletandcurveletanalysisdonotrevealtheopticdisk.Theproposedherehasbeendesignedtodetectobjectswithcircularshapes.Asforwaveletsandcurvelets,itpreservesthemulti-scaleaspect.However,italsohasthepossibilitytofollowglobalstructuresasfortheHT.Theobjectiveofthenewtransformfordetectingcircularshapesshouldaddressthefollowingissues:(1)theusershouldbeabletospecifyarangeofradiifortheselection;(2)thesegmentationpartshouldbeavoidedformorerobustness;(3)thecircularshapeshouldbeanannulusofacertainwidthinordertohandlenon-perfectlycircularshapes.Thisisalsoawaytotakeintoaccounttheband-limitedaspectofthedata;(4)thetransformshouldbeperfectlyinvertible:ifallcoef“cientsareselected,thentheinvertedimageshouldbethesameastheoriginalimage;(5)thetransformshouldbefastenoughtoenableiterativeprocessessuchasthesoft-thresholdingtechniqueforreducingthenumberofkeyelementsneededtorepresentthecircularstructuresintheimage(Donoho,1995Theoutlineofthepaperisthefollowing.We“rstdescribetransform.Wethenpresentthealgorithmusedtoselectonlyafewrepresentativecoef“cients.Weshowapplicationsinthreedifferent“elds:ophthalmology,moonexplorationandcoastaloceanography,onmainlyrealimages.Theapplicationsrangefromthedetectionofasingleandclearcircularshapetothe“ndingofaseriesofcircularshapeswithmorediffusecontours.Finally,wediscussthecurrentlimitationsofthemethodandwhatcouldbeimproved,inparticulartoremovesomespuriousdetections.2.TheIntheproposedapproach,thereisnoneedforbinaryimagesegmentation.Themethodconsistsofdecomposinganyimageintocircleswithdifferentradiiandacertainwidth,viaaseriesoffastFouriertransforms(FFTs).Thesecirclesarecalledtheycanbeseenastheconvolutionofacirclewitha1Doscillatoryfunction,possiblyawavelet,inthesamewayasrelatetowaves.However,thestrategyforcomputingthecoef“cientsisratherdifferentfromtheclassicalapproachusedforwaveletdecomposition.Usually,waveletcoef“cientsareobtainedviaaseriesofcascadedconvolutionsanddown-sampling(Daubechies,1992).Asexplainedbelow,thedecompositionisformulatedintheFourierdomainwiththede“nitionofspeci“c“lters,followingasimilarapproachastheoneproposedbyCandesetal.(2005)forcurvelets. Fig.1.Retinographyimage(left)andassociatedimagegradientmaps(right),with(A)opticdisk,(B)retinalbloodvessels,and(C)exudates.Localgradientvaluesarehigheraround(B)and(C).Onlytheopticdiskhasacircularshape. 400 600 800 1400 400 600 800 400 600 800 1400 400 600 800 Fig.2.ReconstructedimageafterMeyerwavelet(left)andcurvelet(right)transforms.Ineachcase,onlycoef“cientswithvalueshigherthan40%ofthemaximumvalueareselected.Othercoef“cientsaresettozero.H.Chaurisetal./Computers&Geosciences37(2011)331…342 2.1.Generalframeworkelementsarecharacterizedbyacentralposition),aradiusandacentralfrequencycontentFig.3).This“nitefrequencyprovidesacertainwidthtotheinthespatialdomain.ThisisthemaindifferencewiththeHoughtransform,beyondtheimplementationaspects.AllcanbededucedfromareferencecircletceitherbyashiftorbymodifyingtheradiusorthecentralfrequencycontentoftheFig.4,Eq.(1)).Theparametersfullycharacterizeeach.Formally,thefunctioncanbewrittenasistypicallyanoscillatoryfunc-tion,possiblyawaveletfunction,designedtodetectdisconti-nuities(Daubechies,1992).Fromapracticalpointofview,beexplicitlyde“nedinthe2DFourierdomain.2.2.ThecircletdecompositionTheforwardandinversetransformissimilarinessencetothecurvelettransform(CandesandDonoho,2004;Candesetal., y coordinate 50 100 150 200 250 300 50 100 150 200 250 300 x coordinatey coordinate 50 150 200 250 300 150 200 250 300 Fig.3.Representationofasingle(left)andits2DFouriertransform(right).Byconstruction,itiswell-localizedintheFourierdomain. x coordinate 100 200 300 50 100 150 200 250 300 x coordinatey coordinate 100 200 300 50 100 150 200 250 300 x coordinatey coordinate 100 200 300 50 100 150 200 250 300 Fig.4.Representationofthereference(left)andothercorrespondingtoadifferentradius(middle)andtoadifferentfrequencycontent(right).Artifactsvisibleontheimageinthemiddleareduetoanabrupttruncationintheshapeof“lters(Fig.5 3210123 Frequency (rad)Amplitude Fig.5.Representationofasingle“lter2determiningthefrequencycontentoftheH.Chaurisetal./Computers&Geosciences37(2011)331…342 ).Theobjectiveistodecomposeany2Dimage)intoasumofbasicfunctionsForcurvelets,thebasicelementshaveelongatedshapes,similartotherepresentationoflocalplanewaves(Candesetal.,).For,thebasicfunctionsarecircular.Theconstructionusesthepropertiesofatightframe,sothattheassociatedamplitudesareobtainedbyascalarproductFromapracticalpointofview,thecoef“cientsarede“nedintheFourierdomain,usingParsevalstheorem y coordinate 100 200 300 50 100 150 200 250 300 x coordinatey coordinate 100 200 300 50 100 150 200 250 300 x coordinatey coordinate 100 200 300 50 100 150 200 250 300 Fig.6.Simpleinputimage(left),imagereconstructedafterselectionofallcoef“cientscorrespondingtoasingle2value,andradiusvaluesin[10,55]pixels(middle),andimageafterselectionof0.01%ofcoef“cientswiththehighestamplitudes. 200400600800100012001400 200400600800100012001400 200400600800100012001400 200400600800100012001400 Fig.7.Imagesofeyefundus.Fordetection,radiusrangevariesfrom30to80pixels.H.Chaurisetal./Computers&Geosciences37(2011)331…342 denotesthe2DFouriertransformoftheconjugate.Withthisformulation,thetransformisconstructedinthe2DFourierdomain.Thekeystepconsistsofde“ning,theFouriertransformof.Thisisobtainedbydevelopingappropriate“lterstoensurethatthebasicfunctionshavecircularshapes.2.3.De“nitionof“ltersThe“lterconstructionisobtainedinatwo-stepprocess:“rstwederive1D“ltersandthen2D“lters.Both“ltersarede“nedinthefrequencydomainandformapartitionofit:for,wehaveThisconditionisimportanttoensureaperfectreconstructionscheme(Candesetal.,2005).Firstde“neisthenumberof“lters.For,otherwise0.Notethatthe“ltersaresymmetric(Fig.5).Onecaneasilycheckthatthe“ltersformapartitionofthe1Dfrequencydomain.The“ltersarede“nedfromthe“ltersbyintroducingaphasedelayinordertocreateacircularshapeinthespacedomain,.Oncethe“ltersde“ned,Eq.(8)providesanexplicitformulationfortheFouriertransformofa)isthecentralpositionandwheretheradiusofthe.Byde“nition,denotesthescalarproduct.Wethushave.TheindexcontrolsthefrequencycontentoftheFig.4).WithEqs.(5)and(7),itisalsoeasytoseethatforanygivenvalues,the“ltersalsoformapartitionofthe2Dfrequencydomain.Byusingpolarcoordinates,weshowinAppendixAthatthe2DinverseFouriertransformofiscircular,meaningthatthebasisfunctionshavecircularshapes.2.4.PracticalimplementationTheforwardtransformconsistsof(1)a2DFouriertransformoftheoriginalimage)toobtain;(2)forall“ltersandforallselectedvalues,amultiplicationof;(3)theinverseFouriertransformoftheproductthatprovidesallthecoef“cientsrelatedtoscaleandradius 200400600800100012001400 200400600800100012001400 200400600800100012001400 200400600800100012001400 Fig.8.Imagesofaneyefundus(top)andassociatedgradientmaps(bottom).Bloodvesselsandexudates(seeFig.1)havelargegradients.Forthedetection,radiusrangevariesfrom30to80pixels.H.Chaurisetal./Computers&Geosciences37(2011)331…342 Theinversetransformfollowsthesamerule.Firstapplya2DFouriertransformforallscalesandselectedradii,multiplybytheconjugateofandsumallresults.The“nalimageisobtainedbyapplyinga2DinverseFouriertransform.Becauseoftheconditionon(Eq.(6)),wehaveaperfectreconstructionschemeifallcircletcoef“cientsarepreserved.Formoredetailsontheforwardandinversetransforms,werefertothecurvelettransform(Candesetal.,).Themaindifferencewiththecircletconstructionisthechoiceofthe“lters.Fromapracticalpointofview,weratherselectasinglescale(i.e.single“lter)andaseriesofradii,withexpectedvaluesfrommin0totopotentiallyemphasizecircularformswithsomespeci“cspatialsizes.3.ApplicationsWe“rstindicatehowtochoosethekeycoef“cientsandthenpresentapplicationstodifferent“elds. 300 400 100 200 300 300 400 100 200 300 Fig.10.Zoomfromtheprevious“gure,whereonlyconsideredasartifactsarerepresented,superimposedontheimage(left)anditsgradient(right).Thesearetangenttoarclinesduetothecombinationofthesunshadowandthetopography. 200 300 400 500 100 200 300 400 500 200 300 400 500 100 200 300 400 500 Fig.9.Satelliteimagefromthemoon(left),withthe“rst13selected(right).Radiusrangevariesfrom25to60pixels.H.Chaurisetal./Computers&Geosciences37(2011)331…342 3.1.SelectionofrepresentativecircletsFig.6illustratesaverysimpleexample.Theinputimageconsistsofrectangularandcircularshapes.Thecoef“cientswiththehighestabsoluteamplitudesareassociatedwithcircularshapes.Theselectionofthesecoef“cientsleadstoanimagefreedfromtherectangles.Inthecircletdomain,thecoordinatesofthecoef“cientsdirectlyindicatethecentersofcirclesandtheirassociatedradii.Formorecomplicatedcaseswherethecontoursarediffuse,weapplythefollowingstrategy.Asapre-processingstep,performaspatialgradient(discreteLaplacianoperator)totheoriginalimageinordertoemphasizethediscontinuitiesinthedata.Inthecaseofsatelliteimages,theyclassicallysufferfrommissinginforma-tionduetothepresenceofclouds.Wetheninterpolatethedatabyageostatistical“lteringmethod(kriging)thatprovidesresultsspatiallyconsistentwiththeoriginaldata(Wackernagel,2003Forthedetectionofasinglecircularstructure,wesimplyselectthehighestcoef“cient.Formorecircles,weusedthesoft-thresholdingapproachinaniterativeprocess(Donoho,1995First,weselectthehighestcoef“cient.Thetransformisredundant,meaningthatthenumberofcoef“cientsislargerthanthesizeoftheinputdata.Thenextcoef“cientswithhighvalueshaveapproximatelythesameradiusandcentralpositions.Forthatreason,wesettozeroallcoef“cientsassociatedtothesameradiusandspatiallyclosetotheselectedcoef“cient.Byclose,wemeanadistancelowerthanhalfoftheradius.Itdoesnotpreventfromselectingacoef“cientwithadifferentradiusaroundthesamecentralposition.Wethenrecompose/decomposetheimagetoobtainnewcoef“cients.Theoperationisrepeateduntilthenumberofkeycoef“cientsspeci“edbytheuserisreached.Thecombinationofreconstructionanddecompositionisnotnecessa-rilyneeded.Itisusedherebecausethetransformisredundant, 100 150 200 50 100 150 150 100 150 Fig.12.SyntheticSSTmap.Radiusrangevariesfrom10to30pixels. 200 300 400 500 100 200 300 400 500 200 300 400 500 100 200 300 400 500 Fig.11.Othersatelliteimagefromthemoon(left),withthe“rst16selected(right).Radiusrangevariesfrom15to75pixels.H.Chaurisetal./Computers&Geosciences37(2011)331…342 differentcombinationsofcoef“cientsmayrepresentthesameimage.ThisiterativeapproachisfeasiblewiththeuseofFFTs.Forthedifferentapplications,wespecifytheradiusrangesinthecaptionofthe“gures.3.2.OphthalmologyThemotivationshavebeenpresentedintheintroductionpart.Inthe“rstexample(Fig.7),theopticdiskisclearlyde“nedandthealgorithmeasilydetectsit.InFig.7(bottom),thebrightzonewithintheopticdiskisnotselectedastheminimumradiusissetto30px.Inaslightlymorecomplicatedexamplewiththepresenceofexudates(Fig.8),thealgorithmisstillabletodetecttheopticdisk.Itscircularshapecompensatesforalowervalueofthegradient.Weconcludeonthisexampletheabilityforthetodetectatleastasinglecircle.3.3.AstronomyCountingcratersisamethodforestimatingtheageofaplanetssurface(Kerr,2006).WeselectedtwozonesfromtheMoonimageanddetectedanumberofcratersinaspeci“edradiusrange(Figs.9and11).Thesoft-thresholdingprocessas 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200 Fig.13.SyntheticSSTmap(top)anditsgradient(bottom).Radiusrangevariesfrom15to40pixels.H.Chaurisetal./Computers&Geosciences37(2011)331…342 proposedhereallowstoremovecircleswiththesameradiiandslightlydifferentpositions.Withinthespeci“edrange,thecratersareindeedwelldetected(Fig.9,right).However,somespuriouseventsarealsoselected(Fig.10).Theseareduetothecombinationoftheshallowsunandthetopography.Weindicateinthediscussionparthowtheartifactscouldberemoved.Theapplicationonasecondmoonimageleadstosimilarconclusions(Fig.11).Onthecrateronthebottomleftside,theshapeisratherelliptic.Inthatcase,twosigni“cantweredetected.3.4.OceanographyIncoastaloceanography,thedetectionofeddieswithasub-mesoscalestructure(20…100km)isakeyelementforabetterunderstandingofthesurfacecirculation.Onremotesensingimages,tracerssuchasthesea…surfacetemperature(SST)orthechlorophyllmaps,areusedtorevealtheoceancirculation.Theunderlyingassumptionisastrongcorrelationbetweenthetracerandthevelocity“eld(Sugimuraetal.,1984;BorisovandMonin,1989;Essen,1995).Theeddiesaregenerallydetectedeitheronspatialortemporalgradientmaps(AleksaninandAleksanina,2001;Yangetal.,2000).WerefertoCastellani(2005)andNascimento(2006)Haietal.(2008);DAlimonte(2009)foramorecompletereview.Classically,theHoughtransformandseveralothercircleorellipse“ttingalgorithmsareappliedtodeterminetheradiusandthecentralpositionofeddiesonbinaryedgemaps(PeckinpaughandHolyer,1994;FernandesandNascimento,2006Themaindif“cultyfordetectingeddiesiscertainlyduetotheweakandblurrycontours.Weapplythetransformonbothsyntheticandsatelliteimages.Inthe“rstexample,themaincircularfeatureisextractedfromanSSTimagecomputedfromamodelinaturbulent”ow(Fig.12limitthespiralshape.Onalargerimage,thesoft-thresholdingprocesscoupledwiththetransformisabletodetectaseriesofturbulentstructures(Fig.13).Furtherre“ne-mentsareindicatedinthediscussionpart.Remotesensingimagesareusuallymoreblurry(Figs.14…16transformisabletodetectthemaineddyonSSTimages.Forthechlorophyllmap,the“rstfourelementsarerelatedtospiralfeatures:thechlorophyll“lamentistrappedinacycloniceddy(Fig.16).Theuserhastospecifythenumberof.Abroaderselectionsimplyconsistsofresumingtheiterativethresholdingprocess.4.DiscussionThroughaseriesofapplicationsonsyntheticandrealimages,wehaveshownthecapabilityforthetransformtodetect 100 150 50 100 50 100 150 50 100 50 100 150 50 100 50 100 150 50 100 Fig.14.RemotesensingSSTimageintheGulfofLion,NorthWesternMediterraneanSea(top),andimagegradientmaps(bottom).Radiusrangevariesfrom10to20H.Chaurisetal./Computers&Geosciences37(2011)331…342 50 100 150 200 50 100 50 100 150 200 50 100 150 200 50 100 50 100 150 200 Fig.15.RemovesensingSSTimage(top)anditsgradient(bottom),stillintheGulfofLion.Radiusrangevariesfrom10to20pixels. 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300 Fig.16.Gradientimageofthechlorophyllmap(left),withthe“rstfourmoresigni“cantcircularstructures(right).Fortheselection,theradiusrangevariesfrom5to20pixels.ThespiralshapeonthebottomleftisdetectedbytwoH.Chaurisetal./Computers&Geosciences37(2011)331…342 circularshapes.Theapplicationsarecertainlynotrestrictedtothe“eldspresentedhere.Thewidthoftheisimportanttohandleblurryandweakcontrasts.Theusermayeasilychangetheshapeofthe1DwaveletundertheconditionthatEq.(5)issatis“ed.The”exibilityalsocomesfromthepossibilitytospecifyradiusranges.Thelargeredundancyofthetransformisduetotheselectionofmanyradii.Withthesoft-thresholdingapproachpresentedhere,thisisnotreallyanissue,exceptforapplicationsonverylargeimages.Inpractice,theseimagescouldbesplitintosmallerimages.Thesizeoftheoverlappingzoneshouldbetwicethemaximumspeci“edradiustoavoidedgeeffects.Wehaveobservedsomespuriousdetections(e.g.Fig.10The“rstpossibilitywouldbetomeasurethelocalcoherencyalongarcsfortheselected.Thiswouldremoveartifactsrelatedtotheshadowonthemoonimage.Theotherpossibilitywouldbetodetectcircularstructuresonasequenceofimagesandtrackthem.Applicationsincoastaloceanographywouldbeinteresting,inparticularforremotesensingimageswithweakcontrasts(Maetal.,2006).Otherinvestigationscoulddealwiththemulti-scaleapproachprovidedby.Currently,wehaveselectedasinglescaleandvariousradii.Thesameanalysiscouldberepeatedfordifferentscales.Thiscoulddeliveramorerobustapproachifcircularshapesarestableatdifferent5.ConclusionWehavepresenteda”exiblemethodfordetectingdisconti-nuitieswithcircularshapeson2Dimages.Thekeypropertyofthetransformiscertainlythe“nitefrequencyaspectofthebasisfunctions.Thetransformisef“cientduetoitsimplementationintheFourierdomain.Combinedwithasoft-thresholdingalgorithm,itappearstosuccessfullydetectcircularstructuresonaseriesofimagesfromdifferent“elds.Thenextstepistotrackthesestructuresonasequenceofimages.Thisisalsopotentiallyawaytoremovesomespuriousdetections.Theauthorsaregratefultothetworeviewersforconstructivecomments.TheyacknowledgepartialfundingfromthePRECOCprojectfromtheFranco-NorwegianFoundation.TheythankJianweiMa(TsinghuaUniversity,China)fortheapplicationontheimagefromthemoon.TheyalsothankEtienneDecenciereandJean-ClaudeKlein(MinesParistech)forthemedicalimages.TheeyeimageswerekindlyprovidedbytheMessidorprogrampartners(seeAppendixA.CircularshapesWeaimatprovingthatwiththede“nitionofEq.(7),thehavecircularshapes.Inotherterms,thefunctionsexpressedinpolarcoordinatesshouldnotdependon.Byde“nition,wehave.TheinverseFouriertransformof Inpolarcoordinates,isexpressedas WeapplyasecondchangeofvariablesfromÞ¼ðj,leadingto ð2pÞ2jojdajojeijojrðcosycosaþsinycosaÞeijojr0FkðjojÞ,¼ 1ð2pÞ2jojdajojeijojrcosðyaÞeijojr0FkðjojÞ,¼ InEq.(A.3),weusethechangeofvariables,whereintegratedbetween0and2.Eq.(A.3)doesnotdependanymoreof;inotherterms,havecircularshapes.Asallothercanbededucedfromashiftorbychangingtheradiusorthefrequencycontentoftheoriginalcirclet,theyallhavecircularshapes.Aleksanin,A.I.,Aleksanina,M.G.,2001.QuantitativeanalysisofthermalseasurfacestructuresonNOAAIR-images.In:ProceedingsoftheInternationalSympo-siumonCREAMS,Vladivostok,pp.158…165.Ayala-Ramirez,V.,Garia-Capulin,C.H.,Perez-Garcia,A.,Sanchez-Yanez,R.E.,2006.Circledetectiononimagesusinggeneticalgorithms.PatternRecognitionLetters27,652…657.Ballard,D.H.,1981.GeneralizingtheHoughtransformtodetectarbitraryshapes.PatternRecognition13(2),111…122.Borisov,S.B.,Monin,A.S.,1989.Abouttemperatureandcurrentcorrelationintheocean.TransactionsoftheUSSRAcademyofScience306,1230…1233.Candes,E.,Demanet,L.,Donoho,D.,Ying,L.,2005.Fastdiscretecurvelettransforms.MultiscaleModelingSimulation5,861…899.Candes,E.,Donoho,D.,2004.NewtightframesofcurveletsandoptimalrepresentationsofobjectswithpiecewiseCsingularities.CommunicationonPureandAppliedMathematics57,219…266.Castellani,M.,2005.AutomaticdetectionofMediterraneanwatereddiesfromsatelliteimageryoftheAtlanticOcean.In:Pham,D.T.,Eldukhri,E.E.,Soroka,A.J.(Eds.),IntelligentProductionMachinesandSystems.ElsevierLtd.,Amsterdam,pp.163…170.DAlimonte,D.,2009.Detectionofmesoscaleeddy-relatedstructuresthroughiso-SSTpatterns.GeoscienceandRemoteSensingLetters6,189…193.Daubechies,I.,1992.TenLecturesonWavelets.SocietyforIndustrialandAppliedMathematics,Philadelphia377pp.Davies,E.R.,1997.MachineVision:Theory,Algorithms,Practicalities.AcademicPress,SanDiego750pp.Donoho,D.,1995.De-noisingbysoft-thresholding.IEEETransactionsonInforma-tionTheory41(3),613…627.Duda,R.O.,Hart,P.E.,1972.UseoftheHoughtransformationtodetectlinesandcurvesinpictures.CommunicationsAssociationforComputingMachinery15,11…15.Essen,H.,1995.GeostrophicsurfacecurrentasderivedfromsatelliteSSTimagesandmeasuredbyalandbasedHFradar.InternationalJournalofRemoteSensing16,239…256.Fernandes,A.,Nascimento,S.,2006.AutomaticwatereddydetectioninSSTmapsusingrandomellipse“ttingandvectorial“eldsforimagesegmentation.LectureNotesinComputerScience,vol.4265;2006,pp.77…88.Hai,J.,Xiaomei,Y.,Jianming,G.,Zhenyu,G.,2008.AutomaticeddyextractionfromSSTimageryusingarti“cialneuralnetwork.In:TheInternationalArchivesofthePhotogrammetry,RemoteSensingandSpatialInformationSciencesXXXVII,PartB6b,pp.279…282.Iivarinen,J.,Peura,M.,Sarela,J.,Visa,A.,1997.Comparisonofcombinedshapedescriptorsforirregularobjects.In:ProceedingsofEighthBritishMachineVisionConference,Cochester,UK,pp.430…439.Illingworth,J.,Kitttler,J.,1988.AsurveyoftheHoughtransform.ComputerVisionGraphicsandImageProcessing44,87…116.Kerr,R.A.,2006.WhocanreadtheMartianclock?Science206(5777)1132…1133.Kiryati,N.,Bruckstein,A.M.,1991.AntialiasingtheHoughtransform.GraphicalModelsandImageProcessing53(3),213…222.Lam,W.C.Y.,Yuen,S.Y.,1996.Ef“cienttechniqueforcircledetectionusinghypothesis“lteringandHoughtransform.IEEEProceedingsofVision,ImageandSignalProcessing143(5),292…300.Leavers,V.,1993.WhichHoughtransform?ComputerVisionGraphicsandImageProcessing58250…264.Ma,J.,Antoniadis,A.,LeDimet,F.-X.,2006.Curvelet-basedsnakeformultiscaledetectionandtrackingofgeophysical”uids.IEEETransactionsonGeoscienceandRemoteSensing44,3626…3638.Ma,J.,Plonka,G.,2010.Thecurvelettransform:areviewofrecentapplications.IEEESignalProcessingMagazine27(2),118…133.štre,H.,1985.AreviewonHoughtransform.TraitementSignal2(4),305…317.Mallat,S.,1996.Waveletsforavision.ProceedingsoftheIEEE84(4),604…614.Montgomery,D.,1993.Clinicaldiskbiometryinearlyglaucoma.Ophthalomoly100,52…56.H.Chaurisetal./Computers&Geosciences37(2011)331…342 Peckinpaugh,S.H.,Holyer,R.J.,1994.Circledetectionforextractingeddysizeandpositionfromsatelliteimageryoftheocean.IEEETransactionsonGeoscienceandRemoteSensing32,267…273.Song,J.,Lyu,M.R.,2005.AHoughtransformbasedlinerecognitionmethodutilizingbothparameterspaceandimagespace.PatternRecognition38,539…552.Sugimura,T.,Tanaka,S.,Hatakeyama,Y.,1984.SurfacetemperatureandcurrentvectorsintheseaofJapanfromNOAA-7AAVHRRdata.In:Proceedingsof15thInternationalonRemotesensingshelfseahydrodynamics,Liege,pp.133…147.Wackernagel,H.,2003.MultivariateGeostatistics:AnIntroductionwithApplica-tions,thirded.Springer-Verlag,Berlin387pp.Yang,Q.,Parvin,B.,Mariano,A.,2000.Singularfeaturesinseasurfacetemperaturedata.In:Proceedingsof15thInternationalConferenceonPatternRecognition,Barcelona,Spain,pp.516…520.H.Chaurisetal./Computers&Geosciences37(2011)331…342