/
Transfer functions and bode plots Transfer functions and bode plots

Transfer functions and bode plots - PDF document

lois-ondreau
lois-ondreau . @lois-ondreau
Follow
388 views
Uploaded On 2017-07-10

Transfer functions and bode plots - PPT Presentation

brPage 1br mw mw w w mw m m m m w m mw m m m m m mw w m v v v v v brPage 2br ggw Y ggw gw gy gw gy gw m m m Nm m m m m v m m m m m m ID: 22586

brPage 1br

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Transfer functions and bode plots" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

TransferFunctionsandBodePlotsTransferFunctionsForsinusoidaltimevariations,theinputvoltagetoaltercanbewritten)=Rejωtisthephasorinputvoltage,i.e.ithasanamplitudeandaphase,andjωt Wecanwriteasfollows: isagainconstantandandarepolynomialsincontainingnoreciprocalpowersofTherootsof 2 2+1)(3+1) Thefunctionhasazeroatandpolesat.Notethat)=0.Becauseofthis,sometextswouldsaythathasazeroat.However,thisisnotcorrectbecauseNotethattheconstanttermsinthenumeratoranddenominatorofarebothunity.Thisisoneoftwostandardwaysforwritingtransferfunctions.Anotherwayistomakethecoecientofthehighestpowersofunity.Inthiscase,theabovetransferfunctionwouldbewritten)=6 2 +2)(+3)BecauseitisusuallyeasiertoconstructBodeplotswiththerstform,thatformisusedhere.Becausethecomplexfrequencyistheoperatorwhichrepresentsd/dtinthedierentialequationforasystem,thetransferfunctioncontainsthedierentialequation.Letthetransferfunctionaboverepresentthevoltagegainofacircuit,i.e.,where,respectively,arethephasoroutputandinputvoltages.Itfollowsthat 6+5 6 Whentheoperatorisreplacedwith,thefollowingdierentialequationisobtained: 62 +5 6 = ,respectively,arethetimedomainoutputandinputvoltages.Notethatthepolesarerelatedtothederivativesoftheoutputandthezerosarerelatedtothederivativesoftheinput.HowtoConstructBodePlotsABodeplotisaplotofeitherthemagnitudeorthephaseofatransferfunctionasafunctionofThemagnitudeplotisthemorecommonplotbecauseitrepresentsthegainofthesystem.Therefore,theterm“Bodeplot”usuallyreferstothemagnitudeplot.TherulesformakingBodeplotscanbederivedfromthefollowingtransferfunction: isapositiveinteger.Forastheexponent,thefunctionhaszerosat.For-,ithaspolesat.With,itfollowsthatω/ωω/ωand .Ifisincreasedbyafactorofchangesbyafactorof.Thusaplotversuslogscaleshasaslopeoflog(10decades/decade.TherearedBsinadecade,sotheslopecanalsobeexpressedasdB/decade.Asarstexample,considerthelow-passtransferfunction Thisfunctionhasapoleatandnozeros.Forandω/ωwehave,and .Forω/ωjω/ωω/ω,and .Onscales,themagnitudeplotforthelow-frequencyapproximationhasaslopeofwhilethatforthehigh-frequencyapproximationhasaslopeof.Thelowandhigh-frequency approximationsintersectwhen,orwhen.For and arctan(1)=.Notethatthisistheaveragevalueofthephaseonthetwoadjoiningasymptotes.TheBodemagnitudeandphaseplotsareshowninFig.1.Notethattheslopeoftheasymptoticmagnitudeplotrotatesby.Becauseisthemagnitudeofthepolefrequency,wesaythatthesloperotatesbyatapole.Astraightlinesegmentthatistangenttothephaseplotatwouldintersectthelevelatandthelevelat Figure1:Bodeplots.(a)Magnitude.(b)Phase.Asasecondexample,considerthetransferfunction Thisfunctionhasazeroat.Forω/ωwehaveand .Forω/ωjω/ωω/ωand =90.Onlogscales,themagnitudeplotforthelow-frequencyapproximationhasaslopeofwhilethatforthehigh-frequencyapproximationhasaslopeof.Thelowandhigh-frequencyapproximationsintersectwhenω/ω,orwhen.For and )=arctan(1)=45.Notethatthisistheaverageofthephaseonthetwoadjoiningasymptotes.TheBodemagnitudeandphaseplotsareshowninFig.2.Notethattheslopeoftheasymptoticmagnitudeplotrotatesby.Becauseisthemagnitudeofthezerofrequency,wesaythatthesloperotatesbyatazero.Astraightlinesegmentthatistangenttothephaseplotatwouldintersectlevelatandthelevelat Figure2:Bodeplots.(a)Magnitude.(b)Phase.Fromtheaboveexamples,wecansummarizethebasicrulesformakingBodeplotsasfollows: 1.Inanyfrequencybandwhereatransferfunctioncanbeapproximatedbyjω/ω,theslopeoftheBodemagnitudeplotisdec/dec.Thephaseis2.Polescausetheasymptoticslopeofthemagnitudeplottorotateclockwisebyoneunitatthepolefrequency.3.Zeroscausetheasymptoticslopeofthemagnitudeplottorotatecounter-clockwisebyoneunitatthezerofrequency.Asathirdexample,considerthetransferfunction s/ωThisfunctionhasapoleatandazeroat.Forandω/ωwehaveω/ω .Forω/ωand .Onlogscales,themagnitudeplotforthelow-frequencyapproximationhasaslopeofwhilethatforthehigh-frequencyapproximationhasaslopeof.Thelowandhigh-frequencyapproximationsintersectwhenω/ωorwhen.For 2 )=90arctan(1)=45.TheBodemagnitudeandphaseplotsareshowninFig.3.Notethattheslopeoftheasymptoticmagnitudeplotrotatesbyatthepole.Thetransferfunctioniscalledahigh-passfunctionbecauseitsgainapproacheszeroatlowfrequencies. Figure3:Bodeplots.(a)Magnitude.(b)Phase.Ashelvingtransferfunctionhastheforms/ω s/ωThefunctionhasapoleatandazeroat.Wewillconsiderthelow-passshelvingfunctionforwhich.Forω/ω,wehaveand .Asisincreased,thepolecausestheasymptoticslopetorotatefrom.Thezerocausestheasymptoticslopetorotatefrombackto.Forω/ω.TheBodemagnitudeplotisshowninFig.4(a).Ifthetransferfunctiondidnothavethezero,theactualgainatwouldbe Thezerocausesthegaintobebetween and.Similarly,thepolecausestheactualgainatbebetweenand .Theactualplotintersectstheasymptoticplotatthegeometricmeanfrequency 12.4 Thephaseplothasaslopethatapproachesatverylowfrequenciesandatveryhighfrequencies.Atthegeometricmeanfrequency ,thephaseisapproaching.Ifthefunctiononlyhadapole,thephaseatwouldbe,approachingathigherfrequencies.However,thezerocausesthehigh-frequencyphasetoapproach.Thusthephaseatismorepositivethan.Atthegeometricmeanfrequency ,theslopeofthephasefunctioniszero.TheBodephaseplotisshowninFig.4(b). Figure4:Bodeplots.(a)Magnitude.(b)Phase.ImpedanceTransferFunctionsRCNetworkTheimpedancetransferfunctionforatwo-terminalnetworkwhichcontainsonlyonecapacitorandisnotanopencircuitatdccanbewritten isthedcresistanceofthenetwork,isthepoletimeconstant,andisthezerotimeconstant.Thepoletimeconstantisthetimeconstantofthenetworkwiththeterminalsopencircuited.Thezerotimeconstantisthetimeconstantofthenetworkwiththeterminalsshortcircuited.Figure5(a)showsthecircuitdiagramofanexampletwo-terminalnetwork.Theimpedancetransferfunctioncanbewrittenbyinspectiontoobtain 1+2) Figure5:Exampleandimpedancenetworks. RLNetworkTheimpedancetransferfunctionforatwo-terminalnetworkwhichcontainsonlyoneinductorandisnotashortcircuitatdccanbewritten isthedcresistanceofthenetwork,isthepoletimeconstant,andisthezerotimeconstant.Thepoletimeconstantisthetimeconstantofthenetworkwiththeterminalsopencircuited.Thezerotimeconstantisthetimeconstantofthenetworkwiththeterminalsshortcircuited.Figure5(b)showsthecircuitdiagramofanexampletwo-terminalnetwork.TheimpedancetransferfunctioncanbewrittenbyinspectiontoobtainO/R 1+[VoltageDividerTransferFunctionsRCNetworkThevoltage-gaintransferfunctionofavoltage-dividernetworkcontainingonlyonecapacitorandhavinganon-zerogainatdccanbewritten = isthedcgain(anopencircuit),isthepoletimeconstant,andisthezerotimeconstant.Thepoletimeconstantisthetimeconstantofthenetworkwithandopencircuited.Thezerotimeconstantisthetimeconstantofthenetworkwithandopencircuited.Figure6(a)showsthecircuitdiagramofanexamplenetwork.Thevoltage-gaintransferfunctioncanbewrittenbyinspectiontoobtain =2+3 1+2+3×2k3) 1+[(Figure6(b)showsthecircuitdiagramofasecondexamplenetwork.Thevoltage-gaintransferfunctioncanbewrittenbyinspectiontoobtain =3 1+3×1+2) 1+[(High-PassRCNetworkThevoltage-gaintransferfunctionofahigh-passvoltage-dividernetworkcontainingonlyonecapacitorcanbewritten = istheinnitefrequencygain(ashortcircuit)andisthepoletimeconstant.Thepoletimeconstantiscalculatedwithandopencircuited.Figure6(c)showsthecircuitdiagramofathirdexamplenetwork.Thevoltage-gaintransferfunctioncanbewrittenbyinspectiontoobtain =2 1+2×(1+2) 1+2) Figure6:Examplevoltagedividernetworks.RLNetworkThevoltage-gaintransferfunctionofavoltage-dividernetworkcontainingonlyoneinductorandhavinganon-zerogainatdccanbewritten = isthezerofrequencygain(ashortcircuit),isthepoletimeconstant,andisthezerotimeconstant.Thepoletimeconstantisthetimeconstantofthenetworkwithopencircuited.Thezerotimeconstantisthetimeconstantofthenetworkwithandopencircuited.Figure7(a)showsthecircuitdiagramofanexamplenetwork.Thevoltage-gaintransferfunctioncanbewrittenbyinspectiontoobtain =2 1+[ (R1+R2)kR3])sFigure7(b)showsthecircuitdiagramofasecondexamplenetwork.Thevoltage-gaintransferfunctioncanbewrittenbyinspectiontoobtain =3 O/R 1k(2+3 Figure7:Examplevoltagedividercircuits. High-PassRLNetworkThevoltage-gaintransferfunctionofahigh-passvoltage-dividernetworkcontainingonlyoneinductorcanbewritten = istheinnitefrequencygain(anopencircuit)andisthepoletimeconstant.Thepoletimeconstantiscalculatedwithandopencircuited.Figure7(c)showsthecircuitdiagramofathirdexamplenetwork.Thevoltage-gaintransferfunctioncanbewrittenbyinspectiontoobtain =2 1+2×[1k2 1+[