PPT-5 . Machine Learning

Author : luanne-stotts | Published Date : 2016-06-11

Prof Tudor Dumitraș Assistant Professor ECE University of Maryland College Park ENEE 759D ENEE 459D CMSC 858Z httpterps 759d httpswwwfacebookcomSDSAtUMD Todays

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "5 . Machine Learning" is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

5 . Machine Learning: Transcript


Prof Tudor Dumitraș Assistant Professor ECE University of Maryland College Park ENEE 759D ENEE 459D CMSC 858Z httpterps 759d httpswwwfacebookcomSDSAtUMD Todays Lecture. Clustering and pattern recognition. W. ikipedia entry on machine learning. 7.1 Decision tree learning. 7.2 Association rule learning. 7.3 Artificial neural networks. 7.4 Genetic programming. 7.5 Inductive logic programming. Lecture . 4. Multilayer . Perceptrons. G53MLE | Machine Learning | Dr Guoping Qiu. 1. Limitations of Single Layer Perceptron. Only express linear decision surfaces. G53MLE | Machine Learning | Dr Guoping Qiu. R/Finance. 20 May 2016. Rishi K Narang, Founding Principal, T2AM. What the hell are we talking about?. What the hell is machine learning?. How the hell does it relate to investing?. Why the hell am I mad at it?. COS 518: Advanced Computer Systems. Lecture . 13. Daniel Suo. Outline. 2. What is machine learning?. Why is machine learning hard in parallel / distributed systems?. A brief history of what people have done. CS539. Prof. Carolina Ruiz. Department of Computer Science . (CS). & Bioinformatics and Computational Biology (BCB) Program. & Data Science (DS) Program. WPI. Most figures and images in this presentation were obtained from Google Images. Corey . Pentasuglia. Masters Project. 5/11/2016. Examiners. Dr. Scott . Spetka. Dr. . Bruno . Andriamanalimanana. Dr. Roger . Cavallo. Masters Project Objectives. Research DML (Distributed Machine Learning). Dan Roth. University of Illinois, Urbana-Champaign. danr@illinois.edu. http://L2R.cs.uiuc.edu/~danr. 3322 SC. 1. CS446: Machine Learning. Tuesday, Thursday: . 17:00pm-18:15pm . 1404 SC. . Office hours: . Prabhat. Data Day. August 22, 2016. Roadmap. Why you should care about Machine Learning?. Trends in Industry. Trends in Science . What is Machine Learning?. Taxonomy. Methods. Tools (Evan . Racah. ). Bahrudin Hrnjica, MVP. Agenda. Intro to ML. Types of ML. dotNET and ML-tools and libraries. Demo01: ANN with C#. Demo02: GP with C#. .NET Tools – Acord.NET, GPdotNET. Summary. Machine Learning?. method of teaching computers to make predictions based on data.. Page 46 L istening to the voice of customers plays a prominent role in a customer-centric business strategy. But with the business environment’s increased complexity and dynamism for a customer- Dr. Alex Vakanski. Lecture 1. Introduction to Adversarial Machine Learning. . Lecture Outline. Machine Learning (ML). Adversarial ML (AML). Adversarial examples. Attack taxonomy. Common adversarial attacks. Berrin Yanikoglu. Slides are expanded from the . Machine Learning-Mitchell book slides. Some of the extra slides thanks to T. Jaakkola, MIT and others. 2. CS512-Machine Learning. Please refer to . http. Gihyuk Ko. PhD Student, Department of Electrical and Computer Engineering. Carnegie Mellon University. November. 14, 2016. *some slides were borrowed from . Anupam. . Datta’s. MIT Big . Data@CSAIL. Ryan Ma . Background and Purpose of the Project. Aerodynamic analysis is one of the most crucial traits of a vehicle. It affects the fuel consumption of a car. . The shape of the car significantly affects the aerodynamic performances, which includes the lift and the drag. .

Download Document

Here is the link to download the presentation.
"5 . Machine Learning"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents