/
BRICSLS-98-2C.Butz:RegularCategoriesandRegularLogic BRICSLS-98-2C.Butz:RegularCategoriesandRegularLogic

BRICSLS-98-2C.Butz:RegularCategoriesandRegularLogic - PDF document

luanne-stotts
luanne-stotts . @luanne-stotts
Follow
360 views
Uploaded On 2016-07-21

BRICSLS-98-2C.Butz:RegularCategoriesandRegularLogic - PPT Presentation

BRICS BasicResearchinComputerScienceRegularCategoriesandRegularLogicCarstenButzBRICSLectureSeriesLS982 ISSN13952048October1998 1998BRICSDepartmentofComputerScienceUniversityofAarhusAllrightsrese ID: 413249

BRICS BasicResearchinComputerScienceRegularCategoriesandRegularLogicCarstenButzBRICSLectureSeriesLS-98-2 ISSN1395-2048October1998 1998 BRICS DepartmentofComputerScienceUniversityofAarhus.Allrightsrese

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "BRICSLS-98-2C.Butz:RegularCategoriesandR..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

BRICSLS-98-2C.Butz:RegularCategoriesandRegularLogic BRICS BasicResearchinComputerScienceRegularCategoriesandRegularLogicCarstenButzBRICSLectureSeriesLS-98-2 ISSN1395-2048October1998 1998,BRICS,DepartmentofComputerScienceUniversityofAarhus.Allrightsreserved.Reproductionofallorpartofthisworkispermittedforeducationalorresearchuseonconditionthatthiscopyrightnoticeisincludedinanycopy.SeebackinnerpageforalistofrecentBRICSLectureSeriespublica-tions.Copiesmaybeobtainedbycontacting:BRICSDepartmentofComputerScienceUniversityofAarhusNyMunkegade,building540DK–8000AarhusCTelephone:+4589423360Telefax:+4589423255Internet:BRICS@brics.dkBRICSpublicationsareingeneralaccessiblethroughtheWorldWideWebandanonymousFTPthroughtheseURLs:Thisdocumentinsubdirectory RegularCategoriesandRegularLogic CarstenButz CarstenButzDepartmentofComputerScienceUniversityofAarhusNyMunkegadeDK-8000AarhusC,DenmarkOctober1998 asicesearchomputerCentreoftheDanishNationalResearchFoundation. NoteshandedouttostudentsattendingthecourseonCategoryTheoryattheDepartmentofComputerScienceinAarhus,Spring1998.ThesenotesweresupposedtogivemoredetailedinformationabouttherelationshipbetweenregularcategoriesandregularlogicthaniscontainedinJaapvanOosten'sscriptoncategorytheory(BRICSLecturesSeriesLS-95-1).Regularlogicistherecalledcoherentlogic.IwouldliketothankJaapvanOostenforsomecommentsonthesenotes. ContentsPrefacev1Prologue12RegularCategories23RegularLogic114ASoundCalculus185TheInternalLogicofaRegularCategory226TheGenericModelofaRegularTheory257Epilogue31 RegularCategoriesandRegularLogic 1PrologueInthesenoteswedescribeindetailtherelationbetweenregularcategoriesandregularlogic,thelatterbeingthefragmentof rstorderlogicthatcanexpressstatementsoftheform)),wherearebuiltupusingatomicformulae,thetruthconstant,binarymeetsandexistentialquanti cation.Aregularcategoryisacategorywithall nitelimitsinwhicheveryarrowcanbefactoredasaregularepimorphismfollowedbyamonomorphism.Intuitively,theobjectarisinginthisfactorisationistheofthemap.Aregularfunctorbetweensuchcategoriesisafunctorthatpreservesallthisstructure.ThisgivesthecategoryRegCatsmallregularcategories.Insucharegularcategorywecaninterpretsignaturesandextendsuchinterpretationstoallregularformulae,i.e.,tothoseformulaebuiltupusingatomicformulae,binarymeetsandexistentialquanti cation.Thenaninter-pretationisamodelofasequent))iftheinterpretationof)factorsthroughtheinterpretationof)(necessarilyasamonomor-phism).Withtheappropriatenotionofmapsbetweenmodelsthisgivesforeachtheory(i.e.,foreachsetofsequents)andforeachregularcategoryacategoryMod )ofmodelsof.Thisconstructionisnaturalinbecausearegularfunctorpreservesmodels,sothatwehaveafunctor,foreachtheoryMod RegCatCatfromsmallregularcategoriestosmallcategories.Animportantpointisthatthisfunctorisrepresentable(inaweaksense)byasmallregularcategory),thatis,thereareequivalencessuchthatforeachfunctorC!DthediagramMod Mod T;F =// RegCat Mod (D)=// RegCatcommutes.Therepresentingobjectisconstructedwiththehelpofasmallcalculusforregularlogic,soundforinterpretationsinregularcategories.Inparticular,applyingtheaboveequivalencetotheidentityfunctor,thisrep-resentingcategorycontainsamodel,genericinthesensethat RegularCategoriesandRegularLogic asequentissatis edbyifandonlyifitisderivablefrominthecalcu-lus.Hencewehaveacompletenesstheoremforregularlogicwithrespecttoregularcategories.Ourtreatmentofthematerialisfairlydetailed,butwehopethatthereaderdoesnotgetbored.Weincludedallthoseminorfacts,almosttrivial,thatonereallyhastocheck.Forthelogicianamongthereadersweshouldstressthattheresultsofthisnoteareanoftherelationshipbetweenlogicandcategorytheory.Theypresentthekindofresultsonecanget.2RegularCategoriesbeacategory,anobjectofsubobjectisanequivalenceclassofmonomorphismswhereareisomorphicover,i.e.,thereshouldbeanisomorphismsothat commutes.Wewritetoindicatethatisasubobjectof,leavingoftenunspeci edalthoughitisanimportantpartofthedata.Sub(denotestheclassofsubobjectsof,beingpartiallyorderedbyandonlyiffactorsthrough.Thispartiallyorderedclasshasalargestelement,representedbytheidentitymapidDe nition2.1Wesaythatwell-poweredSub(isasetforallobjectsSupposenowthathaspullbacks.ThenforalltheclassSub()isameet-semilattice,themeetofbeingrepresentedbythecompositionarisinginthepullbacksquare _ B_  A // X Ofcourse,regularlogiciscompletewithrespecttomodelsintheregularcategoryofsets,thankstoGodel'scompletenesstheoremfor rst-orderlogic.Butsimilarresultsasinthisnoteholdforotherpairsoflogics/categories,whereonecannotappealtoknownresultsoflogic. 2.RegularCategories Moreover,foreacharrow,pullbackalonginducesameet-preservingmap:Sub(Sub((Sometimesonewritesinsteadof.)Theobjectiscalledtheinverseimageof.Ifiswell-poweredtheresultingfunctorSub((orthefunctorSub(tothecategoryofmeet-semilattices)iscalledthesubobjectfunctorDe nition2.2Acategoryiscalledifithasall nitelimits,ifco-equalisersofkernelpairsexist,andifregularepimorphismsarestableunderpullbacks.Herethekernelpair()ofanarrowconsistsofthetwoprojectionsTheimportantpointtonoteaboutregularcategoriesisthatanyar-rowcanbefactoredasaregularepimorphismfollowedbyamonomorphism.Moreover,thisfactorisationisunique(uptoisomorphism).Beforeprov-ingthiswecollectsomeminorfactsaboutregularepimorphismsinsuchacategory:Lemma2.3Letbearegularcategory.(i)Anyregularepimorphismisthecoequaliserofitskernelpair.(ii)Aregularepimorphismwhichismonoisanisomorphism.(iii)Thecompositeoftworegularepimorphismsisagainaregularepimor-(iv)Ifarearrowssuchthatbothareregularepimorphisms,soisProof.Forthe rstparttakesomecoequaliser g/ Be// ,constructthekernelpairoftogetf;g BEB2/ 1/ Be// E Wenotethattheliteratureknowsmanydi erent`de nitions'ofregularcategories.Buttheyallgivethesameclassofcategoriesprovidedtherequestfor nitelimitsis RegularCategoriesandRegularLogic anddenotebythecoequaliserof.Sinceisauniquemapsatisfying.Sincecoequalisesitsatis es,sothatwe ndamapsuchthatClearly,areinversesofeachother.ForthesecondpartnotethatsinceisthecoequaliserofitskernelpairandsinceismonothatTherefore,theidentitymapidcoequalisesthemandisinfactasplitmonomorphismandanepimorphism,henceanisomorphism.Nowletbetworegularepimorphisms.We rstlookatthepullbackdiagram  EE0B/  Be BE0E//   EE0E/  Ee0 Be// Ee0// toseethatthecanonicalmapisepi,asitisthecompositeoftwo(regular)epimorphisms.Nextweusethediagram BE0BeE0e/// q1 q2 EE0Ep1 p2 Be// Ee0// toshowthatisthecoequaliserofthetwoparallelarrows(projections).Notethat.Moreover,)isthekernelpairofand(q;q)isthekernelpairofissuchthatcoequalisesthekernelpairofsowe ndauniquesatisfying.Usingthatisepiandcommutativityofthediagramaboveweseethat,sothatthereisauniquearrowthatsatis es.Thus,isthecoequaliserofFinally,letbetwoarrowssuchthatbothareregularepimorphisms.Writeforthekernelpairforthekernelpairof.(Notethat,asabove, 2.RegularCategories )andsimilarforthesecondprojections.)Ifamapsuchthatcoequalises,sothatwe ndasatisfyinghgf.Sinceisepi,Proposition2.4Inaregularcategoryeacharrowcanbefactoredasaregularepimorphismfollowedbyamonomorphism.Moreover,foreachcom-mutativediagram e Ym X0g// witharegularepimorphismandamonomorphismthereexistsa(unique)makingbothtrianglescommute.Inparticular,theregularepi{monofactorisationisuniqueuptoisomorphism.Proof.Forthefactorisationletbearbitraryandcoequaliserofthekernelpair.Inparticular,thereexistsauniquearrowsuchthat.Wehavetoshowthatismono.bethekernelpairof.Sincethereexistsauniquearrowsuchthatasin p2/ b&MMMMMMMMMMXf// e????????YEYEq1/ q2/ AsintheproofofLemma2.3weobservethatisanepimorphism.Butbecause,whichimpliesthatisamonomorphism:Indeed,fortwoparallelarrowsg;hwiththearrowg;hexists,andg;hg;hToshowthesecondpartconsiderthekernelpair()of.Sincemfpmfpismonowededuce,andthereexistsauniquemapsuchthat.Thenmdebecauseisepi. RegularCategoriesandRegularLogic beanarrowinaregularcategory.Themonomorphismarisinginthefactorisationofiscalledthe(direct)imagedenotedIm().SometimeswealsosaythatistheimageofTheimageisonlyuniqueuptoisomorphism,butdeterminesauniquesub-objectofwhichisdenoted).WeoftenconfuseIm()andtheobjectMoregenerally,forasubobjectwede ne):=Im(whichgivesawell-de nedmap:Sub(Sub(Lemma2.5Letbeanarrow.(i)Themapismonotoneandleft-adjointtothepullbackfunctorthatis,:Sub((ii)Ifisanotherarrowthen:Sub(Sub(Proof.FormonotonicityoftakeinSub().Wefactorise rstandthen(!)togetthediagram YB? OO // 9fB?OO B0// ?OO J* 0GG ?OO Thefactorisationisaregularepi{monofactorisationofrepresentsForadjointnesswetakesubobjectsandlookatthesolidarrowsin Yf�1B?OO / B? OO A3 FF /// ={{{{{9fA��}}}}3 FF 6 2.RegularCategories thenthedashedmapexistsandtheoutersquarecommutes,hencethedashedarrowexists(beingamonomorphismis),and.Conversely,ifwecanjustfactorisethemaptogettheimageof,inparticular,thisimagethenfactorsthroughFinally,theidentityholdssinceitjuststateshowleft-adjointscompose.AsaconsequenceweobservethatpreservesallmeetswhichexistinSub().Nextweprovetheso-calledFrobeniusidentityLemma2.6Letbearegularcategory,anarrowandtwosubobjects.Then,assubobjectsofProof.Note rstthatisobtainedasthepullbackof,whichfactorsasasinthetoppartof 9fX// YA( 55kkkkkkkkkk/// 9fA(55kkkkkkkkA^f�1B?OO / 9fA^B?OO // ? OO Thus,pullingbackwe rstget(asasubobjectofandthen.Themapisaregularepimorphism,sinceitisthepullbackofone,soistheregularepi{monofactorisationofandwegettheequalityofthelemma.Nextweshowhowwecancodeanarrowbyitsgraphsubobjectof.Wede neastheimageofthemap(observethatthecanonicalmap)isanisomorphism).Letdenotetheprojectionsrespectively. RegularCategoriesandRegularLogic Lemma2.7Letbeasubobjectof.ThenLogically,thelemmasaysthat,forapredicateoftheinterpretationofProof.Againthisisamatteroflookingattherightdiagram,whereallsquaresarepullbacksquares,constructedfromrighttoleft(weendupwiththemonomorphismsincethecompositehorizontalmaptheidentity): f)// XYX/ YO XA? OO // �1XA^graph(f)?OO // �1XA?OO / ? OO Themap)isaregularepimorphism,sowegettheimagefactorisationofastheimagefactorisationofthemapcomposedwith)(hereweuseLemma2.3(iii)).Inparticular,theidentityofthelemmaholds.Wenotethatwecanrecoverfromitsgraph:Asubobjectmaybeseenasarelationbetween`elements'of.Calltotal(whichmeansintuitivelythatthesetofallsuchthatthereexistssomewithxRyequals);andfunctionalifthecanonicalarrowfactorsthroughtheinclusionid.(Sincerepresentsthe`object'oftriples(x;y)suchxRyxRythismeansintuitivelythatfromxRyxRyshouldbeabletodeduceThegraphofanarrowisatotalandfunctionalrelationon(ExerciseE.3).Lemma2.8Foreachtotalandfunctionalrelationthereexistsauniquearrowsuchthat=graph( 2.RegularCategories Proof.istotalthecompositeisaregularepimor-phismwhichisthecoequaliserofitskernelpair()constructedin _ p2' p1 'OOOOOOYXR/  R_r P=XYXY(QQQQQQQRXY//  XYY1;3/ 1;2 XYX Y5555555555555555Rr// XYX/ (Thedashedfactorisationexistssinceisfunctional.)Thetwowaysfromarejusttheprojectionontothesecondcoordinate,hencewededucecoequalisessothatthereexistsauniquesatisfyingToshowthat=graph()welookatthefollowingdiagramwheretherightpartisjustthede nitionofgraph( $$$ XYX/ X// hX;fi& f4iiiiiiiiiiiiiiiiiiiiiiiiUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUf)// XYYO X Thecompositeisaregularepimorphismandwecanobtain)aswellastheregularepi{monofactorisationofthecomposite.ButthismapistheuniquesuchmapwhencomposedwithgivesandwhencomposedwithgivesSothismaphastobethemono,theimageofwhichisAnotherimportantfactonehastoknowisthebehaviourofimagesofmapsthatarerelatedbyapullbacksquare: RegularCategoriesandRegularLogic Lemma2.9Let f0 Xf Zg/ beapullbacksquare.Then:Sub(Sub(Proof.Forasubobjectwelookatthefollowingcube,wherethefrontisourpullbacksquare,theleftsideisapullbacksquareobtainedfrompullingback,thebottomfactistheimagefactorisationsof,whiletherightsideandthebacksideareagaintwopullbacksquares: // ?????????f�19gA  ?????????ZYXf0 / Xf A // ??????????9gAo?????????Zg// )thefactorisationregularepi{monofactorisationof,sowegettheequalityasstatedinthelemma.CallafunctorC!Dbetweenregularcategoriesregularifitpreserves nitelimitsandcoequalisersofkernelpairs(thelattermakessensesincepreserves nitelimits).WedenotebyRegCatthecategorywithobjectsthesmallregularcategoriesandarrowsregularfunctors.Sinceinacategorywithpullbacksanarrowismonoifandonlyif id f f/  3.RegularLogic isapullbacksquare,anyregularfunctorC!Dinduces,foreachobject,amap(orjust:Subwhichpreserves nitemeetsandthetopelement.Inparticular,itismono-tone.Moreover,ifandifbecausepreservespullbacks.OnewaytosumthisupistosaythatinducesanaturaltransformationInaddition,preservesbyde nitionaswellimages:Ifisgiven)).Forthisjustrememberthatwasde nedasthecoequaliserofthekernelpairof.Fortherecord:Lemma2.10Aregularfunctorbetweenregularcategoriespreservesbothinverseimagesand(direct)images.3RegularLogicRegularlogicisroughlyspeakingthe{fragmentofmany-sorted rst-orderlogic.Althoughwedonotprovethisherewementionthatthereisnodi erencebetweentheintuitionisticandtheclassicalversion.A(typed)signatureconsistsofasetofbasicsorts(basictypes)sort ,andofsetsconst ,funct andrel oftypedconstants,functionandrelationsymbols.WewriteexpressionslikeX;fY;Rtoindicatethetypingofthesesymbols.(Notethatisjustaformalexpressionthatshouldsupportourintuition!)WeusuallyabbreviateGivenasignature,the)(orbetter),wherethesuperscriptstandsforregular)consistsofthesignature,foreachsort Therearesomeconventionsonhowtodenotelogics.Herethe rstsubscriptstandsforthefactthatthereareonly niteconjunctions,i.e.,conjunctionsoversetsofcardinalitylessthen.Thesecondstandsforthefactthatthereareonly niteblocksofquanti ers(inourcase,ofexistentialquanti ers). RegularCategoriesandRegularLogic acountablelistofvariables(wewritetoindicatethatisavariableoftype,aswell,hasitsobviousmeaning),andthesetsof(typed)termsandformulaede nedasfollows:(T1)isatermoftype,providedthatisavariableoftype(T2)Similarly,aconstantisatermoftype(T3)If;:::;taretermsoftype;:::;Xrespectivelyandifisafunctionsymbolthen;:::;t)isatermoftype(F1)Ifaretermsoftype(orbetter:)isaformula.(F2)If;:::;taretermsoftype;:::;Xrespectively,andifisarelationsymbol,then;:::;t)isaformula.(thelogicalconstant`true')isaformula.(F4)Ifareformulaesoareavariableofsometype).Foraformula,FV()denotesthethesetoffreevariablesoftheory(formulatedin))isasetofsequentswhereare(regular)formulae.ThelatterisshorthandedtoBelowwewillde neinterpretationsofalanguage)inaregularcategory.Thenwillbeamodelofassubobjectsof(andthesetofvariablesoccurringfreeineither).Inthisisequivalenttosaythatisamodelof),andindeed,thisistheintuitiononeshouldhaveaboutasequentRemark3.1Inwhatfollowswewillalwaysassumethataregularcategorycomesequippedwithachoiceofaterminalobject,ofbinaryproductsandofequalisers.Usingbracketingfromlefttoright,asequencemeans(.Ofcourse,tomakesuchchoiceswehavetousetheAxiomofChoice.Tobeprecise,aninterpretation)inaregularcategoryconsists|anobjectforeachbasicsortsort S; 3.RegularLogic |anarrowforeachconstant|anarrowforeachfunctionsymbolinfunct |andasubobjectforeachrelationsymbolWewritefortheproduct.Thisinterpretationofthesignatureisextendedtoalltermsandallformulae.Toatermoftypewithfreevariablesamongweassignanarrow,toaformulawithfreevariablesamongweassignasubobjectasfollows:(T1)Ifisavariableoftypeisthecomposite.(Hereweareveryspeci c:isinterpretedbytheidentity,theprojectionisneededtohandlethe`dummy'variablesoccurringin.Notethat,byassumption,thefreevariablesoftheterm(i.e.,thevariable)arecontainedinthelist(T2)Ifisaconstantthenisthecomposite(T3)Letbeafunctionsymbol,termsoftype.Byinduction,thetermsareinterpretedbyarrows;:::;t))isinterpretedbythecomposite;:::;t;:::;t X(M)f(M)/ istheequaliserof t2(z)(M)/ ;:::;tisthesubobjectofde nedbythepullback  ;:::;t R(M)// �jg;and nally,,whereistheprojectionAninterpretationiscalledamodelofasequent)ifassubobjectsof,where RegularCategoriesandRegularLogic isthetuple(orset)ofthosevariablesoccurringfreeeitherinorin.Theinterpretationisamodelofatheory)ifitisamodelofeachsequentinExample3.2bethesignaturewithsortsX;Y;Zandthreefunctionsymbols.Aninterpretationinaregularcategoryisamodelof))ifandonlyif.Indeed,isthesubobjectdeterminedbytheequaliserofthetwoarrows g(M)f(M)/ ;and))i Inthenextsectionwewillgiveasound(andcomplete)calculusforregularlogic.Herewehavetoprovetwotechnicallemmaswhichgiveinformationaboutdummyvariablesandaboutsubstitution.Lemma3.3Letbeaformulawithfreevariablesamongthetuple.Writemoreoverfortheprojectionto.ThenProof.We rstnotethatfortermsoftypeoneprovesbyinductionthatThenweproceedagainbyinduction,thistimeon.Thecasetrivial,while)followssincewehavethediagram  Y(M)Z(M) / Y(M) fzjR(t)g(M)//  Z(M)ht(M)i / 1R// whereallsquaresarepullbacks.Thecaseholds(byinduction)becausepreservesbinarymeets.Forwecalculatey;x;(byde nition)(byinduction)(byLemma2.9) 3.RegularLogic whereweusedthepullbacksquare XZ Y(M)Z(M)Z X(M)Z(M)q// Thecaseholdssincetakingtheequaliseroftwoarrowscommuteswithtakingproducts.Asaconsequenceoftheproofwecanalwayswriteinsteadofsincethesearrowsareuniquelydeterminedprovidedweknowwhattheyareinthecase=FV(Lemma3.4Letbeaformulawithfreevariablesamongz;yandletatermoftype(withfreevariablesamong)whichissubstitutablefor,i.e.,aftersubstitutionnofreevariableofbecomesboundin;thatis,thereisapullbacksquare // Z(M)hb(M);Z(M)i f(z)j g(M)// Proof.Weprovethisbyinductionon,but rstwenotethatforatermoftypewithfreevariablesamong(b=y;(Theproofisbyinductionaswell.)ThenthecasefollowsfromExerciseE.1,whilethecases,andareeithertrivialoreasy.Finally,suppose).Byassumption(issubstitutablein)wehaveFV().Theproofofthiscaseiscontainedinthefollowingcube,whereweassumedforsimplicitythatistheemptysequence.Herethefrontsquareisjustthepullbacksquare,asistheleftside.Thenthemapx;yx;yisfactoredasaregularepimorphismfollowed RegularCategoriesandRegularLogic byamonomorphism,withtheimagebyde nition.Thisyieldsthebottomofthecube.Finally,therightsideandthebacksideareobtainedaspullbacksoftheregularepi{monofactorisationalongthemapx;b // ???????????????????(b(M))�1fyg(M)  ????????????????????X(M)h;b(M)i / 1b(M) x;y // ???????????????????fyg(M)???????????????????X(M)Y(M)// Wededucethatthefactorisationx;bx;yistheregularepi{monofactorisationofx;b1,sothatwegettheequalityfj9x;bx;yWewanttomaketheclassofmodelsofatheoryinaregularcategoryintoanothercategoryMod ).Abetweentwomodelsisafamilyofmapssort whichcommutewiththeinterpretationsofthebasicoperationsinourlanguage,i.e.,for 3.RegularLogic aconstant,afunctionsymbolthediagrams c(N)!CCCCCCCCCX(M)hX X(M)f(M)/  Y(M)hY X(N)X(N)f(N)/ commute;whileforarelationsymbolthecomposite(shouldfactorthroughtheinclusionByinductiononeprovesthatforallterms)oftype hZ Y(M)hY Z(N)t(N)/ commutes(beingtheproduct);andforeachformulathecompositefactorsthroughC!Dbearegularfunctorbetweenregularcategories.Ifisamodelofatheory(formulatedin))wegetaninterpretation)of)inasfollows:Wede ne|forasortinsort |foraconstant):1|foranarrowinsort |andforarelationsymbol,Astraightforwardinductionshowsthatforalltermsoftypewithfreevariablesamongand nally,againbyinduction,oneprovesthatforallregularformulaetheunderlyinglanguage Strictlyspeaking,doesnotpreservethechosenterminalobjects,thebinaryproductsandtheequalisers.But,forexample,thereisacanonicalisomorphism(1)1.Wesuppressedmentioningexplicitlytheseisomorphisms,butforbeingprecisetheyshouldbepresent.Thepointisthattheydonoharmbecausetheyareunique. RegularCategoriesandRegularLogic Itfollowsthat)isamodelof,sinceforasequenthavepreservestheorderofsubobjects.Moreover,ifisamapinMod )wecanapplypointwisetogetamapsort betweenthemodels)and).Fortherecord:Lemma3.5AregularfunctorC!Dbetweenregularcategoriesinduces,foreachregulartheory,afunctorMod :Mod Mod InparticularwehaveafunctorRegCatCat,fromsmallregularcategoriestosmallcategories.Ontheotherside,ifisa xedmodelofinaregularcategorygetforeachregularcategoryafunctorRegCatMod whichonobjectssendsafunctorE!Dtothemodel)innaturaltransformationissenttothemapbetweenmodelssort Moreover,ifD!CisaregularfunctorthediagramoffunctorsRegCat F(�) Mod (D)FT RegCat Mod commutes.4ASoundCalculusHerewe xalanguage)andde neasequenceofentailmentrelations(ordeductionrelations)betweenformulae,therelationsbeingindexedby nitesetsof(typed)variables.Thesequentisonlyde nedifboththefreevariablesofarecontainedinthe.Writingdownexpressionslikethatitisalwaysassumedthatthissideconditionisful lled. 4.ASoundCalculus Thereasonforthesubscriptsisasfollows:Eveninthesimplestcasewhereisaclosedregularformulathereisanessentialdi erencebetweenthetwointerpretationsfj1andsomeinterpretationinaregularcategory).Fromthe rstwecanalwaysgetthesecondbypullbackalong!1,buttheseconddoesnotdeterminethe rst.Thisisonlythecaseif!isaregularepimorphism,inwhichcasefj.Thus,ifwewouldhaverestrictedourselvestointerpretationsinwhicheachsortisinterpretedbyanobjectwith`globalsupport'(i.e.,objectssuchthat!isaregularepimorphism),thenwecouldgetridofthesesubscripts.Weremarkaswellthathasglobalsupportifandonlyif,i.e.,ifitistrueinWegrouptheaxiomsandrulesofinferenceforourentailmentrelationsasfollows:1.Structuralrules p`Fr;p`Fq p`Fygq;'(y)`F (y) whereisavariable,isatermoftype,andissubstitutableonbothsides,thatis,nofreevariableofbecomesboundin)and)aftersubstitution.Aswell,implicitlyitisassumedthatFV(2.Logicalrules2.2if;andifboth Inintuitionisticlogicbeinginhabitedisapositivewaytoexpressnon-emptiness. RegularCategoriesandRegularLogic 2.3iffygp;andconverselyififygpthen9y (y)`Fp.3.Rulesforequality3.4foreachfunctionsymbolinthelanguage.(Herestandsofcoursefor3.5foreachrelationsymbolinthelanguage.Wewrite.GivenatheorywewriteT;',wheredenotesentailmentinthecalculusaboveextendedbytheaxiomsFV((FV(Togivethewholeamoresymmetricoutlookwewriteaswellforthefactthat(modulo.ThenstandsforthefactthatmodulotheformulaisprovablyequivalenttotheformulaLemma4.1Letbeatheory,andamodelofinaregularcategory.IfT;'then,assubobjectsProof.Weprovethislemmabyinductionoveraderivationof.Incaseofanaxiomthisispartofthede nitionofbeingamodel.Thecaseoftheaxiom1.1istrivial,while2.1holdssince�jgFortheinductionstepsrule1.2issoundsincetheorderonistran-sitive,while1.3issoundbecausepullbackalongtheprojectioninducesamonotonemapSub(Sub((NotethatLemma3.3entersheredescribing 4.ASoundCalculus Rule2.2issoundbecauseSub(while2.3issoundsinceifandonlyif,fortheprojection(hereweuseLemma3.3again).Soundnessofrule1.4followsfromLemma3.4.Itremainstoprovesoundnessoftherulesforequality.Rule3.1issoundistheequaliserofid,which;rule3.2issoundbecausetheequaliseroffactorsthrough(infact,isequalto)theequaliserofTheinterpretationofisthepullback _p E2;3_i2;3 E1;2i1;2/ X(M)X(M)X(M)1// 2/ 3 2 thecanonicalmapfactorsthroughtheequaliserof,theinterpretationofRule3.4issoundsincethediagonal,theinterpre-tationof,equalises))= X(M)X(M)1// f2/ 2 1 YX(M)O'44iiiiiiiiiiiiiiiiiiii// Finally,forrule3.5,theleftside)isthepullback _p X(M)_ R(M)X(M) r(M)/ X(M)X(M)1 R(M)r(M)/ X(M): RegularCategoriesandRegularLogic Itfollowsthatfactorsthrough,inparticularthrough,theinterpretationofLetusmentionthatclassical rst-orderlogicisconservativeoverregularlogic(providedoneallowsemptydomainsaswell),sothatintuitivelyallclausesofthefollowinglemmaaretrue.Weleavetheproofasanexercise,butmentiontheconnectionbetween(i)andLemma2.6.Lemma4.2provideddoesnotoccurfreein5TheInternalLogicofaRegularCategorybearegularcategory.Toitweassociateasignatureandlanguageasfollows:hasasbasicsortstheobjectsofthecategory.Againwe xaterminalobjectandforeach nitelistofobjectsofonespeci edproductofthis nitesetofobjects.Thenoursignaturehasforeacharrowoneconstantsymbol,foreacharrowonefunctionsymbol,andforeachsubobjectonerelationsymbol.Obviously,thelanguage)hasacanonicalinterpretation.Wede netobethetheoryofthisinterpretation,i.e.,thesetofallsequentsinthelanguage)whicharetrueundertheinterpretation.Insteadofonewritesusuallyjust.Inwhatfollows,wedonotdistinguishbetweenasymbol,sayafunctionsymbol,inourlanguageanditsinterpretationinthecategoryWewill rstshowhowdi erentcategoricalnotionsarecapturedbytheinternallanguageofthecategory.Lemma5.1Letbearegularcategory.(i)Letbetwoarrowsand.Thenifandonlyif,whereisafreevariableoftype(ii)Anarrowismonoifandonlyif(iii)Thearrowisaregularepimorphismifandonlyif.(Oneshouldreadthisas` 5.TheInternalLogicofaRegularCategory Proof.The rstpartisasinExample3.2.Forthecharacterisationofmonomorphismswelookat XX1/ 2/ Xm thatis,thetoplineisanequaliserdiagramandistheequaliserof.Ifisamonomorphismthentheinclusionequalises,sofactorsthrough.Conversely,ifwehavethisfactorisationthenfortwoparallelarrowsf;gsuchthemapf;gfactorsthrough,inparticularthroughtheinterpretationof.Hencef;gf;gisamonomorphism.Forthelastpartwenote rstthatgraph(istheequaliser(ExerciseE.4),theinterpretationof.ThenwecanapplyLemma2.3tothediagram f*UUUUUUUUUUUUUUUUUUUUUUUUf)// &MMMMMMMMMMMXY2 toseethatisaregularepimorphismi graph(is,whichholdsifandonlyifThefollowinglemmacharacterises nitelimitsinaregularcategorywiththehelpoftheinternallogic.Lemma5.2Letbeagainaregularcategory.(i)Anobjectisterminali (ii)Twomapsaproductofifandonlyif(iii)Inadiagram Xf/ g/ suchthat,theobjectistheequaliserofifandonlyifisamonoand.Thiscanbeexpressedusingthepredicateassociatedtothesubobject RegularCategoriesandRegularLogic Proof.Foranobjectifandonlyif:isanisomorphism,whichisequivalenttosaythat!1isamonomorphism.Combiningthiswiththefactthat)ifandonlyif!1isaregularepimorphismwegetthe rstpartofthelemma.Forthesecondpartnote rstthattheinterpretationof)istheequaliseroff;gf;Gasin ZZ1/ 2/ f;g Then,wehaveseenargumentslikethisbefore,factorsthroughthediagonal(theinterpretationof)ifandonlyiff;gisaMoreover,fromthefollowingdiagramofpullbacks,constructedby rstpullingbacktherightverticalmapalong1andthenpullingbacktheresultingmap,wededucethatgraph(graph(),theinterpretationofistheimageofthemap   // XZ / Z g)// _ x;z;y _ graph( _ g)_ ZY// graph( XZY/ Thereforef;gisaregularepimorphismifandonlyif f;g %KKKKKKKKKKKXZY Finally,theequaliserof,andbecausethereisafactorisation fxj=g(C)// Xf/ g/ ZOOOO e3gggggggggggggggggggggggggggggg 6.TheGenericModelofaRegularTheory isamonoifandonlyifisamonomorphism(whichisequivalenttobeinganisomorphismsincethismapisaregularepimorphism),ifandonlyifthemonomorphismisaregularepimorphism.ThesetwoconditionsareclearlyequivalenttobeingthecoequaliserofInthepreviouslemmaswesawthatwecancharacteriseallthoseprop-ertiesofacategorywhichmakeitaregularcategory.Thereforeitshouldbenosurprisethatwecandescriberegularfunctorsintermsoflogicaswell.C!Disafunctorbetweenregularcategories(notnecessarilyreg-ular)wegetaninterpretationofthe(functionalpartofthe)signatureasfollows:),forsort ),foranarrowinProposition5.3ThefunctorisregularifandonlyifTobeprecisewehavetorestrictourselvestothosesequentswhichinvolveonlyfunctionsymbols.Proof.OnedirectionisjustpartofLemma3.5.Fortheother,ifisaterminalobjectthen).Then),i.e.,usingtheinternallogicofweseethatisaterminalobject(byLemma5.2again).Inthesamewayoneprovespreservesproductsandequalisers,whichcanbede nedusingthefunctionalpartoftheinternallanguageofacategory.Aswell,preservestheimagefactorisationofamap,henceinparticularthoseregularepimorphismsarisingasthecoequaliserofthekernelpairofanarrow(andthiskernelpair,beingapullback,ispreservedaswell).6TheGenericModelofaRegularTheoryTheaimofthissectionistoshowthatthereisaregularcategory)andequivalencesofcategoriesMod RegCat RegularCategoriesandRegularLogic naturalin.(ThisjustmeansthatthefunctorMod RegCatCatrepresentableinaweaksense.)Inparticular,)willcontainaconserva-tivemodelof,amodelinwhichprovabilityinthecalculusforregularlogicandsatis abilitycoincide.We x,andconstruct)asasortofLindenbaum{Tarski-category:Objectsareequivalenceclassesofpairs(X;p))whereisa nitelistofsorts,andisaregularformula.(Hereiscalledthecontext.)Onlyformulaeinthesamecontextcanbeequivalent.ThenX;p))and(X;p))areequivalentifwhereisasetoffreshvariablesoftype.Wedenoteequivalenceclassesbyandassumethatthecontextisunderstood.(Notethatthisnotionsomehowbindsthevariablesoccurringinisanequivalenceclassofregularformulae{in{context(Y; ))whereisprovablyfunctional:(Intuitivelythissaysthat)isthegraphofafunction.)Again,twosuchformulae{in{contextareequivalentiftheyareprovablyequivalent.Herewedenoteequivalenceclassesbyorsimply|Thecompositionoftwoarrowsg!fisgivenbytheequivalenceclassoftheformula(Weleaveitasanexercisetoshowthatthisisindeedwell-de ned.)SummingupthisconstructionwegetasmallcategoryLemma6.1Thecategoryhas nitelimits:(i)Theobjectfj�g(theequivalenceclassoftheformula{in{context)istheterminalobjectin 6.TheGenericModelofaRegularTheory (ii)Theproductofisgivenbytheobjectwithprojectiontotheequivalenceclass,andsimilarfortheotherprojection.(Hereweusethecommaintoseparatesourceandtarget!)(iii)Theequaliseroftwoparallelarrowsistheobject,withinclusionthe(iv)Giventwoarrowsg!fg!ftheirpullbackistheobjectwithcanonicalprojections.Wenotethatinourcategory)objectsliketheterminalobjectortheproductoftwogivenobjectsareactuallyunique,andnotjustuniqueuptoisomorphism.Thereasonistheequivalencerelationweincorporatedinthede nitionoftheobjectsof).Strictlyspeaking,thiswasnotnecessary(seeExerciseE.13),butitfacilitatesourproofs.Proof.WeargueinformallyandmakeextensiveuseofthepropertiesoftheprovabilityrelationObviously,givenanarbitraryobjectthereisatleastonearrowg!f�jgnamelytheoneinducedbytheformula{in{context(Iftherearetwoofthem,say,thenbyde nitionofbeingarrows,)and).Thelatterisequivalenttosothatbymonotonicityofthedeductionrelation.Byasimilarargumentfortheotherdirectionweconcludethatmoduloisprovablyequivalenttosothattheinducedarrowsareidentical.Forproducts x,andthetwoprojections f1g whereforexampleisgivenby.(Weleaveittothereadertocheckthatbothareindeedarrows).)Ifg!farearrowsin)wede ne RegularCategoriesandRegularLogic andclaimthatinducestheuniquearrowsuchClearly,))since.Thenshowsthatistotal.Itisfunctionalbecausewededuce(modulo)from) rst)andthen,andsimilarfor.SummingupweseethatisindeedamapThecompositeisgivenbywithfreevariablesand.Sincewecangetridoftheexistentialquanti er,andtheformulaisequivalent(modulo)to)).Because)wededucethatgfisinducedbyaformulaprovablyequiv-alentto,andthisarrowthusequals.Byasimilarargumenttheothertrianglecommutes.Itremainstoshowuniqueness:Thisweprovebyshowingthatif.Theassumptionsforthe rsttrianglesaythatmodulotheformula)isequivalenttothatis,)andsimilarfor.Thus,againmodulo)isequivalentto)),whichinturnisequivalentto)becauseisfunctionalandtheimageof,i.e.,thetuple()suchthat)isprovablyunique.Weleavethecaseofequalisersasanexercise(ExerciseE.10)andnotethatthedescriptionofpullbacksfollowsfromtheconstructionofpullbacksusingproductsandequalisers(seeExerciseE.2).Theproofofthefollowinglemmaisleftasanexercise:Lemma6.2Anarrowg!f(i)amonomorphismifandonlyif(ii)andaregularepimorphismifandonlyif(iii)Amapisamonomorphismifandonlyif 6.TheGenericModelofaRegularTheory Proposition6.3isaregularcategory.Proof.�FromLemma6.1weknowthat)has nitelimits.Inapullback fg fxjpgf'g fyjqgf g/ themapisinducedbySupposeisaregularepimorphism,i.e.,).Thenfrom)wededuce),whichisequivalentto)).Modulowecandeducefurther(usingtheassumption))).ByLemma4.2thisisprovablyequivalentto))(weinter-changedtheexistentialquanti ers),aswewanted.Soregularepimorphismsarestableunderpullbacks.Thecategory)containsanaturalinterpretationoftheunderlyingwhereissomevariableoftypef�jg!foreachconstantintheunderlyinglanguage.x;yforeachfunctionsymbolinfunct .WenotethatthisisindeedanarrowinourcategorybyExerciseE.12.FurthermoreweusewhichiseasilyseentobeasubobjectofAneasyinductionshowsthatforterms)oftypez;yanarrow;andforregularformulae)that RegularCategoriesandRegularLogic Itfollowsthatisamodelof:Ifisasequentinisamonomorphismfrom,sothatindeed.Themodelhastheadditionalpropertythatitisconservative,i.e.,forallsequentsIndeed,ifisamodelofthenin)thereisamonomorphismg!f,sobyLemma6.2(iii),.Fortherecord:Proposition6.4Thecanonicalinterpretationintheregularcategoryisaconservativemodelof.Inparticular,thecalculusgivenaboveiscom-pletewithrespecttointerpretationsin(small)regularcategories.Wearenowreadytode nethefunctorsinvolvedintheequivalenceMod RegCat),naturalinThefunctorRegCatMod )isthefunctortheendofSection3,whichsendsafunctortothemodel,andanaturaltransformationtothefamilysort Thefunctor:Mod RegCat)sendsamodeltothefunctorg7!fg!fg7!`theuniquearrowsuchthatgraph((ThemapinthearrowpartexistsbyLemma2.8.Uniquenessofthismapensuresthatwereallygotafunctor.)Soundnessofthecalculusandthefactthatbeingamodelisde nedusingtheinternallogicofprovesthatisaregularfunctor.Amorphismbetweenmodelsgivesrisetoafamilyofmaps(seethediscussionattheendofSection3)whichisnaturalbecauseifwehaveamapthen,sincebothsquaresbelowcommute, 7.Epilogue theouterdoesaswellandthatisjustthenaturalitysquare: hfxjpg/ fxjpg(N) fyy)g(M)hfyy)g/ _ fyy)g(N)_ fyjqg(M)hfyjqg/ Thisfunctorisagainnaturalin:IfD!CisaregularfunctorthenMod (D)FD/ FT RegCat Mod (C)FC/ RegCatcommutes.Weconcludewiththefollowingtheorem:Theorem6.5ThefunctorsinduceanequivalenceofcategoriesMod RegCatnaturalin.Uptoequivalenceanysmallregularcategoryarisesthiswayasthe`classifyingcategory,ofaregulartheorysinceProof.Itisstraightforwardfromtheexplicitde nitionthatbothwaysroundareisomorphictotheidentity.ThesecondpartfollowsfromProposition5.3.7EpilogueInthesenoteswesawacloseconnectionbetweenafragmentof rst-orderlogicandaparticularclassofcategories.Thematerialofthesenotesistreatedmoreorlessdetailed(more`lessdetailed')in[12,2,4].Similarresultsholdforthefollowingpairs: RegularCategoriesandRegularLogic geometric(coherent)logicgeometriccategoriesintuitionistic rst{orderlogicHeytingcategoriesclassical rst{orderlogicBooleancategorieshigher{orderlogic(elementary)toposestyped{calculuscartesianclosedcategories-partofMartin-Loftypetheorieslocallycartesianclosedcategories.Goodreferencesareforgeometriclogic[8],for rst-orderlogic[4],forhigher{orderlogicandforthe{calculus[7],andforMartinLoftypetheoriesthepaper[11].ThereisanaturalGrothendiecktopologyonaregularcategory,andtheshea edYonedaembeddingintothesheaftoposoverthissitepreservesandre ectsalltheregularstructure(andmore).Thisexplainssimilarresultsasinthisnotefor(in nitary)geometriclogicandGrothendiecktoposes,theclassicaltreatmentofwhichiscontainedin[9].Thesituationfor rst{orderlogicandGrothendiecktoposesisnotasgood,butstilltherearestrongresults(likecompleteness,etc),seethereferences[6,3,10].TheexistenceofclassifyingtoposesforgeometrictheoriesisalreadyimplicitinthethesisofM.Hakim[5].SheshowedamongotherthingsthattheZariskitoposclassi eslocalrings,andtheassociatedetaletoposclassi eshenselianlocalrings.Finally,thereisacompletelydi erentapproachtocategoricallogic,basedsketches.Roughlyspeaking,asketchisacategoryequippedwithtwoclassesofdiagrams.Amodelofsuchasketchisafunctorintosomecategorysendingthe rstclassofarrowstolimit-diagrams,andthesecondtocolimit-diagrams.Thus,asketchissomethinglikeatheory,andrestrictionsontheclassofdiagramsallowed( nite,or niteandonlylimit-diagrams,...)specifyinwhichlanguagethistheoryisformulated.Hereonecouldstartreadingin[2,1].ExercisesLetbeacategorywith nitelimitsand Xp1/ p2/ anequaliserdiagram.Foranarbitraryobjectwegettheequaliserofthetwoparallel Geometriclogicisobtainedbyreplacingregularformulaebythosebuiltfromatomicformulae,thelogicalconstantsand,thebinaryoperationsandandexistentialquanti cation 7.Epilogue arrows p2idZ/ .ShowthatfortheprojectionShowthatthepullbackandg:canbecon-structedasthepullbackofalongthediagonalasin  XYfg ZZ// (HereistheuniquemapProvethatthegraphofanarrowgivesatotalandfunctionalrelationon(subobjectof)Showthatforanarrowthemonomorphismgraph(istheequaliserofthetwoparallelarrowsProvethatthecategoryofgroupsisregular.Canyoudothesameforthecategoryofrings?Anabeliangrouptorsion-freeifforallnaturalnumbers1andallelements=0implies=0.Showthatthecategoryoftorsion-freeabeliangroups(whichisafullsub-categoryofthecategoryofabeliangroups)isregular.ShowthatTop,thecategoryoftopologicalspaces,hasall nitelimitsandallcoequalisers.Givenanexampleofaregularepimorphismthatisnotstableunderpullbacks.ConcludethatTopisnotregular.Letbea(small)regularcategory,a(small)category.Showthatthefunctorcategory[]isregular.Letbearegularcategory.ProvethattheslicecategoryisagainregularforeachobjectE.10CompleteintheproofofLemma6.1thedescriptionofequalisers.E.11ProvidetheproofofLemma6.2. RegularCategoriesandRegularLogic E.12Verifythatifisafunctionsymbolinsomelanguagethenx;yisamorphismin)from.(Heresome xedtheoryformulatedintheunderlyinglanguage.)E.13De neacategory)similaras),butusingasobjectsformulae{in{contextsinsteadofequivalenceclassesthereof.Provethat)isequivalent).Canyouuseforarrowsaswellformulae{in{contextsinsteadofequiva-lenceclasses?Inthenextcoupleofexerciseswedevelopsomeforcingsemanticsforregularlogic.We xtheinternallogic)ofaregularcategory.Forasortgeneralisedelementatstageisanarrow.Foraformula)withfreevariableandageneralisedelementwesaythatforces)(insymbols:factorsthrough,i.e.,ifinSub().Thisde nitionextendsimmediatelytoformulaewithmorefreevariables.ForanarrowwewriteforthegeneralisedelementatstageE.14Provethefollowingtwopropertiesoftheforcingrelation:(i)(Monotonicity.)If)thenforany,also(ii)(Localcharacter.)Ifisaregularepimorphismandthen).[Hint:Show rstthatpulledbackalongisanisomorphismanddeducethenthatpulledbackalongisalreadyanisomorphism.]E.15Showthattheforcingrelationinaregularcategoryobeysthefollowingrules:alwaysholds.)ifandonlyif)andy; )ifandonlyifthereexistsaregularepimorphismandageneralisedelementsuchthat ; (iv)Supposethatandaretermsoftypewithfreevariable.Showthat)ifandonlyifE.16Extendtheforcingrelationtosequents)ifforallarrows,if)then(i)Showthat)ifandonlyifforallandallgeneralisedelements(ii)Concludethatforasequenti foralland,if)then REFERENCES [1]M.BarrandC.Wells.CategoryTheoryforComputingScience.PrenticeHall,NewYork1990.[2]F.Borceux.HandbookofCategoricalAlgebra.Vol.1,2and3.CambridgeUniversityPress,Cambridge1994.[3]C.ButzandP.T.Johnstone.Classifyingtoposesfor rst-ordertheories.Ann.PureAppl.Logic,91:33-58,1998.[4]P.FreydandA.Scedrov.Categories,Allegories.North{Holland,Ams-terdam1990.[5]M.Hakim.ToposAnnelesetSchemasRelatifs.Springer{Verlag,Berlin[6]P.Johnstone.Openmapsoftoposes.ManuscriptaMath.31:1980,no.1-3,217{247.[7]J.LambekandP.J.Scott.IntroductiontoHigherOrderCategoricalLogic.CambridgeUniversityPress,Cambridge1986.[8]S.MacLaneandI.Moerdijk.SheavesinGeometryandLogic.Verlag,NewYork1992.[9]M.MakkaiandG.Reyes.FirstOrderCategoricalLogic.Verlag,Berlin1977.(LectureNotesinMathematics611.)[10]E.Palmgren.Constructivesheafsemantics.Math.LogicQuart.no.3,321{327.[11]R.A.G.Seely.LocallyCartesianclosedcategoriesandtypetheory.Math.Proc.CambridgePhilos.Soc.95:1984,no.1,33{48.[12]J.vanOosten.BasicCategoryTheory.BRICSLectureSeries,LS-95-1,January1995. RecentBRICSLectureSeriesPublicationsLS-98-2CarstenButz.RegularCategoriesandRegularLogic.OctoberLS-98-1UlrichKohlenbach.ProofInterpretations.June1998.LS-97-1JanChomickiandDavidToman.TemporalLogicinInforma-tionSystems.November1997.viii+42pp.FullversionappearsinChomickiandSaake,editors,LogicsforDatabaseandInfor-mationSystems,3:31–70,KluwerAcademicPublishers,1998.LS-96-6TorbenBrauner.IntroductiontoLinearLogic.December1996.iiiv+55pp.LS-96-5DevdattP.Dubhashi.WhatCan'tYouDoWithLP?1996.viii+23pp.LS-96-4SvenSkyum.ANon-LinearLowerBoundforMonotoneCircuitSize.December1996.viii+14pp.LS-96-3KristofferH.Rose.ExplicitSubstitution–Tutorial&SurveySeptember1996.v+150pp.LS-96-2SusanneAlbers.CompetitiveOnlineAlgorithms.September1996.iix+57pp.LS-96-1LarsArge.External-MemoryAlgorithmswithApplicationsinGe-ographicInformationSystems.September1996.iix+53pp.LS-95-5DevdattP.Dubhashi.ComplexityofLogicalTheories.September1995.x+46pp.LS-95-4DanyBreslauerandDevdattP.Dubhashi.CombinatoricsforComputerScientists.August1995.viii+184pp.LS-95-3MichaelI.Schwartzbach.PolymorphicTypeInference.June1995.viii+24pp.LS-95-2SvenSkyum.IntroductiontoParallelAlgorithms.June1995.viii+17pp.SecondEdition.LS-95-1JaapvanOosten.BasicCategoryTheory.January1995.vi+75

Related Contents

Next Show more