PPT-Scaling Up Deformable Parts Models (DPMs)
Author : luanne-stotts | Published Date : 2016-10-08
for Object Detection Forrest Iandola Ning Zhang Ross Girshick Trevor Darrell and Kurt Keutzer Deformable Parts Model DPM state of the art algorithm for object
Presentation Embed Code
Download Presentation
Download Presentation The PPT/PDF document "Scaling Up Deformable Parts Models (DPMs..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
Scaling Up Deformable Parts Models (DPMs): Transcript
for Object Detection Forrest Iandola Ning Zhang Ross Girshick Trevor Darrell and Kurt Keutzer Deformable Parts Model DPM state of the art algorithm for object detection 1 Several attempts to accelerate multicategory DPM detection such as 2 3. Felzenszwalb University of Chicago pffcsuchicagoedu Ross B Girshick University of Chicago rbgcsuchicagoedu David McAllester TTI at Chicago mcallestertticedu Abstract We describe a general method for building cascade clas si64257ers from partbased de Felzenszwalb University of Chicago pffcsuchicagoedu Ross B Girshick University of Chicago rbgcsuchicagoedu David McAllester TTI at Chicago mcallestertticedu Abstract We describe a general method for building cascade clas si64257ers from partbased de Divvala Alexei A Efros and Martial Hebert Robotics Institute Carnegie Mellon University Abstract The Deformable Parts Model DPM has recently emerged as a very useful and popular tool for tackling the intracategory diversity problem in object detecti Alan Yuille (UCLA & Korea University). . Leo Zhu. . (NYU/UCLA) & . Yuanhao Chen (UCLA). Y. Lin, C. Lin, Y. Lu (Microsoft Beijing). . . A. . . Torrabla. and W. . Freeman . (MIT). Pedro F. . Felzenszwalb. & Daniel P. . Huttenlocher. - A Discriminatively Trained, . Multiscale. , Deformable Part Model. Pedro . Felzenszwalb. , David . McAllester. Deva. . Ramanan. Presenter: . Based on "Segmentation . of carpal bones from CT images using . skeletally coupled . deformable . models” by . Thomas B. . Sebastian, . Hüseyin. . Tek. , . Joseph J. . Crisco, . Benjamin B. . Kimia. PhysicallybaseddeformablemodelshavebeenwidelyembracedbytheComputerGraphicscommunity.ManyproblemsoutlinedinaprevioussurveybyGibsonandMirtich[ 1.IntroductionPhysicallybaseddeformablemodelshavetwodecades DeformableModelsinMedicalImageAnalysis:ASurveyTimMcInerneyandDemetriTerzopoulosDepartmentofComputerScience,UniversityofToronto,Toronto,ON,CanadaM5S3H5Thisarticlesurveysdeformablemodels,apromisingandvi Marco Pedersoli Andrea Vedaldi Jordi Gonzàlez. [Fischler Elschlager 1973]. Object detection. 2. 2. Addressing the computational bottleneck. branch-and-bound . [Blaschko Lampert 08, Lehmann et al. 09]. Monday, Feb . 21. Prof. Kristen . Grauman. UT-Austin. Recap so far:. Grouping and Fitting. Goal: move from array of pixel . values (or filter outputs) . to a collection of regions, objects, and shapes.. 2015. 2. 12.. Jeany Son. References. Bottom-up Segmentation for Top-down . Detection, CVPR 2013. Segmentation-aware Deformable Part Models, CVPR 2014. 2. Prior Works on Segmentation & Recognition. Pedro F. . Felzenszwalb. & Daniel P. . Huttenlocher. - A Discriminatively Trained, . Multiscale. , Deformable Part Model. Pedro . Felzenszwalb. , David . McAllester. Deva. . Ramanan. Presenter: . . Shape. . Retrieval. . with . Missing. . Parts. Organizers: . Emanuele . Rodolà. , Or Litany, Michael Bronstein, Alex Bronstein. Motivation. Existing retrieval techniques do not deal well with . Marco Pedersoli Andrea Vedaldi Jordi Gonzàlez. [Fischler Elschlager 1973]. Object detection. 2. 2. Addressing the computational bottleneck. branch-and-bound . [Blaschko Lampert 08, Lehmann et al. 09].
Download Document
Here is the link to download the presentation.
"Scaling Up Deformable Parts Models (DPMs)"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.
Related Documents