/
THE FAINT YOUNG SUN PROBLEM Georg Feulner Received  Se THE FAINT YOUNG SUN PROBLEM Georg Feulner Received  Se

THE FAINT YOUNG SUN PROBLEM Georg Feulner Received Se - PDF document

luanne-stotts
luanne-stotts . @luanne-stotts
Follow
408 views
Uploaded On 2015-06-16

THE FAINT YOUNG SUN PROBLEM Georg Feulner Received Se - PPT Presentation

For more than four decades scientists have been trying to find an answer to one of the most fundamental questions in paleoclimatology the faint young Sun problem For the early Earth models of stellar evolution predict a solar energy input to the cl ID: 87071

For more than

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "THE FAINT YOUNG SUN PROBLEM Georg Feulne..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

EarthSystemAnalysis,PotsdamInstituteforClimateImpactResearch,Potsdam,Germany.Correspondingauthor:G.Feulner,EarthSystemAnalysis,PotsdamInstituteforClimateImpactResearch,POBox601203,D-14412Potsdam,Germany.(feulner@pik-potsdam.de) Copyright2012bytheAmericanGeophysicalUnion.ReviewsofGeophysics,50,RG2006/20121of298755-1209/12/2011RG000375Papernumber2011RG000375 star.ApplyingtheseprinciplestotheSun,itbecameclearthattheluminosityoftheSunhadtochangeovertime,withtheyoungSunbeingconsiderablylessluminousthantodaytodayHoyle,1958;,1958].1958].6]Accordingtostandardsolarmodels,whennuclearfusionignitedinthecoreoftheSunatthetimeofitsarrivalonwhatiscalledthezero-agemainsequence(ZAMS)4.57Ga(1Ga=10yearsago),thebolometricluminosityoftheSun(thesolarluminosityintegratedoverallwavelengths)wasabout30%lowerascomparedtothepresentepochepochNewmanandRood,1977].Thelong-termevolutionofthebolometricsolarluminosity)asafunctionoftimecanbeapproximatedbyasimpleformula[,1981] ¼ 11þ 251 =3.85Wisthepresent-daysolarlumi-nosityand=4.57Gyr(1Gyr=10years)istheageoftheSun.Exceptforthefirst0.2GyrinthelifeoftheyoungSun,thisapproximationagreesverywellwiththetimeevolutioncalculatedwithmorerecentstandardsolarmodels[e.g.,Bahcalletal.,2001];seethecomparisoninFigure1.1.7]Notethatsolarmodelshadbeenunderintensescrutinyforalongtimeinthecontextofthesolarneutrinoprob-anapparentdeficiencyofneutrinosobservedinter-restrialneutrinodetectors[,1995]thatisnowconsideredtoberesolvedbyamodificationofthestandardmodelofparticlephysics[MohapatraandSmirnov,2006]ratherthantobeanindicationofproblemswithsolarmod-els.Furthermore,thetimeevolutionoftheSunsluminosityhasbeenshowntobeaveryrobustfeatureofsolarmodelsmodelsNewmanandRood,1977;Bahcalletal.,2001].ThusitappearshighlyunlikelythatthepredictionoflowluminosityfortheearlySunisduetofundamentalproblemswithsolarmodels.(Slightlymodifiedsolarmodelsinvolvingalargermasslossinthepastwillbediscussedinsection4.)4.)8]Inawaytherobustnessoftheluminosityevolutionofstellarmodelsisnotsurprising,sincethegradualriseinsolarluminosityisasimplephysicalconsequenceofthewaytheSungeneratesenergybynuclearfusionofhydrogentoheliuminitscore.Overtime,heliumnucleiaccumulate,increasingthemeanmolecularweightwithinthecore.Forastable,sphericaldistributionofmass,twicethetotalkineticenergyisequaltotheabsolutevalueofthepotentialenergy.Accordingtothisvirialtheorem,theSunscorecontractsandheatsuptokeepthestarstable,resultinginahigherenergyconversionrateandhenceahigherluminosity.Thereseemsnopossibilityforescape[,1981,p.28]:gradualincreaseinluminosityduringthecorehydrogenburningphaseofevolutionofastarisaninevitableconse-quenceofNewtonianphysicsandthefunctionaldependenceofthethermonuclearreactionratesondensity,temperatureandcomposition.composition.9]Inadditiontothisslowevolutionofthebolometricsolarluminosityovertimescalesofyears,theSunexhibitsvariabilityonshortertimescalesofuptotoFröhlichandLean,2004].Thisvariabilityinsolarradiationisamanifestationofchangesinitsmagneticactivityrelatedtothesolarmagneticfieldcreatedbyamagnetohydrody-namicdynamowithintheSun[WeissandTobias,2000].ThebolometricsolarluminosityisdominatedbyradiationinthevisiblespectralrangeoriginatingfromtheSunsloweratmospherethatshowsverylittlevariationwithsolaractivityactivityFröhlichandLean,2004].Forthepresent-daySun,for Figure1.EvolutionofsolarluminosityoverthefourgeologiceonsforthestandardsolarmodeldescribedinBahcalletal.[2001](solidline)andaccordingtotheapproximationformula[1981](dashedline)giveninequation(1).FEULNER:THEFAINTYOUNGSUNPROBLEM2of29 3.8Ga,althoughtheexactendofthatperiodisnotresolvedinthegeologicalrecord.Irrespectiveofthesemattersofdefinition,itisimportanttorealizethattheArchean,themainfocusofthisreview,spansaverylongperiodoftimeinthehistoryofEarth.Earth.20]TentativeevidenceforliquidwaterontheearlyEarthcanbefoundintheHadean.NorocksareknownfromtheHadeanduetotheexponentialdecreaseofpreservationwithage,yetsomeinformationonthesurfaceconditionsduringthoseearliertimescanbederivedfromthemineralzircon)preservedfromtheHadeaninyoungerrocksrocksHarrison,2009].Indeed,zircongrainsmayprovideevi-denceforliquidwaterevenbeforetheArchean,asearlyas4.2Ga[Mojzsisetal.,2001;Wildeetal.,2001;Valleyetal.,2009].2009].21]Note,however,thattheenvironmentinwhichthisHadeanoceanexistedwasconsiderablydifferentfromtheArchean(forareviewofthefollowingoutlineofeventssee,Zahnleetal.[2007]).TheEarthwasformedbygravi-tationalaccretionofsmallerbodies(planetesimals)formedinthenebulasurroundingtheyoungSun.ThelargeimpactformingtheMoonoccurredafter50Myrtowardtheendoftheaccretionperiod.Afterthisevent,Earthwasenshroudedinrockvaporfor1000years.Astronggreenhouseeffect(causedbylargeamountsofcarbondioxideandwatervapordegassingfromthemantle)andtidalheatingbythestilltightlyorbitingMoonkeptthesurfacecoveredbyamagmaoceanforafewmillionyearsaftertheMoon-formingimpact.Thenthecrustsolidifiedandahotwateroceanwithtemperaturesof500Kformedunderadenseatmosphere100barofcarbondioxide.Thecarbondioxideintheatmospherewasthensubductedintothemantleovertimescalesof10years,beforetheLateHeavyBombard-ment(3.8Ga)setthestagefortheArcheaneon.Itisthusclearthattheprocessesresultinginaliquid-wateroceanintheHadeanareconsiderablydifferentfromtheArchean,sotheywillnotbediscussedfurtherinthisreview.review.22]GeologicevidenceforliquidsurfacewaterduringtheArcheanismostlybasedonsedimentaryrocklaiddowninavarietyofaqueousconditionsupto3.5Gaandpossiblyasearlyas3.8Ga,andthereisnoevidenceforwidespreadglaciationsduringtheentireArchean(see(seeWalker[1982],andWalkeretal.[1983];formorerecentoverviewsofArcheangeologyingeneralsee,e.g.,Fowleretal.al.Erikssonetal.[2004],andBennetal.[2006]).Telltalesignsofliquidwaterincludepillowlavasthatareformedwhenlavaextrudesunderwater,ripplemarksresultingfromsedimentdepositionundertheinflu-enceofwaves,andmudcracks.cracks.23]Furthermore,thereisevidenceformicrobiallifeintheArcheanderivedfrommicrofossilsorstromatolites/microbialmatsinrocksofagesbetween2.5and3.5GyrGyrBarghoornandSchopf,1966;AltermannandKazmierczak,2006].AlthoughalllifeonEarthisbasedontheexistenceofliquidwater[e.g.,,2001],themereexistenceoflifeisonlyapoorcontraintonicecover.Theearlyevidenceofphotosyntheticcyanobacteriaandstroma-tolites,however,constitutesfurtherevidenceforanearlyEarthnotpermanentlycoveredbyice(oratleastforcontin-uouslyice-freeregionsintheoceans).Onecould,inprinci-ple,imaginephotosyntheticlifeunderathinicecoverinthetropicsofasnowballEarthaspostulatedbybyandinvestigatedinPollardandKasting[2005,2006].Laterstudieshaveindicated,however,thaticecoverwouldhavebeentoothickeveninthetropics[Warrenetal.,2002;,2006;WarrenandBrandt,2006],makingsuchascenariounlikely.unlikely.24]Insummary,therearemultiplelinesofindependentevidencesuggestingtheexistenceofliquidwateronEarthsurfaceduringtheArchean,whentheSunwasconsiderablyfainterthantoday.2.3.OceanTemperatureDuringtheArcheanArchean25]Itisoneofthekeycharacteristicsofwaterthatitremainsliquidoveraratherwiderangeoftemperatures,sothequestionarisesofhowwarmtheArcheanclimateactu-allywas.TheconstraintsonandestimatesofArcheanoceantemperaturesdiscussedbelowaresummarizedinFigure2.2.26]UpperlimitstoArcheanclimatetemperaturescanbemainlyderivedfromtwolinesofargument.First,evaporitemineralscanbefoundinthegeologicalrecordbackto3.5Ga,andsincemanyofthesewereoriginallyprecipitatedintheformofgypsum(CaSOO),whichisconvertedtoanhy-drite(CaSO)attemperaturesabove58Cinpurewater(andatlowertemperaturesinseawater),temperaturescannothavebeenhigherthanthisvalue[Holland,1978,1984;Walker1982].Second,thecontinuedpresenceoflifeandthetypicalheattoleranceoflivingorganismscanbeusedtoestimateanupperlimitintherangeof4040Walker,1982]..27]Inconflictwiththeseupperlimitsfromevaporitesandthecontinuedpresenceoflife,lowvaluesoftheisotoperatioin3.5to3.0Gachertswereinterpretedbysomeresearchersasevidenceofahotclimatewithoceanictemperatureof555KnauthandEpstein,1976;KarhuandEpstein,1986;KnauthandLowe,2003;RobertandChaussidon,2006].Thereisalotofdebate,however,abouthowstronglyoxygenisotoperatiosactuallyconstraintemperatures.Ithasbeenargued,forexample,thatthesedatacouldreflectalowOofancientseawaterratherthanahotclimate(see,e.g.,Walker[1982],KastingandOno[2006],KastingandHoward[2006],Kastingetal.[2006],andJaffrésetal.[2007]fordiscussions).AnalternativeexplanationforchangesinisotoperatiosduringthePrecam-brianhasbeenputforwardbyvandenBoornetal.[2007],whoarguethatthedatamightreflectmorewidespreadhydrothermalactivityontheancientseafloor..28]InlightofthisdiscussionthereappearstobenostrongargumentinfavorofahotArcheanclimate.Indeed,arecentanalysiscombiningoxygenandhydrogenisotoperatiosindicatesoceantemperaturesbelow40Cforasampleof3.4Gaoldrock[Hrenetal.,2009].Blakeetal.al.analyzedd18Oisotopecompositionsofphosphatesin3.23.5GyroldsedimentsandinterpretedthehighOfoundintheirsamplesasbeingindicativeoflowoceanictempera-turesintherange26C.ThesetemperaturesareclosetoFEULNER:THEFAINTYOUNGSUNPROBLEM4of29 48]Thesolarwind,however,isknowntohavebeenstrongerfortheyoungSunbecauseofthehighersolaractivityinthepast(seesection3).Dependingontheassumedmass-losshistory,ayoungSunwithaninitialmass4%higherthantodaywouldbebrightenoughtoexplainthepresenceofliquidwateronMars3.8Ga[Sackmannand,2003],andaninitialmassof6%higherthantodaymakestheSunasbrightastoday4.5Ga,althoughthesolarluminositywouldstilldropbelowtodayslevelsduringtheArchean[Guziketal.,1987;SackmannandBoothroyd2003].Inadditiontothedirectincreaseinenergyinputduetothehighersolarluminosity,EarthwouldalsobeclosertoamoremassiveSunonitsellipticalorbit,furtherenhancingthewarmingeffect,withthesemi-majoraxisattimeinverselyproportionaltothesolarmassmassWhitmireetal.,1995] 49]However,therearelimitstothemassoftheearlySun.AweakupperlimitcanbederivedfromthefactthatathighersolarluminositiesEarthwouldhaverunintoarun-awaygreenhouseeffect(seeGoldblattandWatsonWatsonforarecentreview).Ifthesolarluminositywerebeyondacertainthreshold,theincreasedevaporationofwaterwouldresultinacceleratingwarming.Eventually,alloceanwaterwouldbeevaporatedandlosttospacebyphotodissociationandhydrodynamicescape,aprocessthatisbelievedtoberesponsibleforthelackofwaterintheatmosphereofVenusVenusIngersoll,1969;RasoolanddeBergh,1970].1970].50]Ithasbeenestimatedthata10%increaseinsolarfluxcouldhaveledtorapidlossofwaterfromtheearlyEarth[,1988].Takingintoaccountthemass-luminosityrelationinequation(4),thechangeinEarthsemi-majoraxisduetosolarmasschangefromequation(5)andthesecularevolutionofsolarluminosityfollow-ingequation(1),thiscorrespondstoa7%increaseinsolarmass[Whitmireetal.,1995],sohighmasslosscouldmaketheArcheanunsuitableforlife.life.51]Furthermore,ithasbeensuggested[GuzikandCox1995]thatanextendedmasslossoftheearlySuncanberuledoutusinghelioseismology,thestudyoftheSuninteriorstructureusingresonantoscillations[Deubnerand,1984].SolvingthefaintyoungSunproblemwouldrequirethattheSunremainedatleastafewpercentmoremassivethantodayover1or2billionyears,whilehelio-seismologylimitstheenhancedmasslosstothefirst0.2GyroftheSunslife[GuzikandCox,1995].Amoreextendedperiodofmasslossleadstochangesinthedistributionofheavierelementsbelowthesolarconvectionzone,resultingindifferencesbetweencalculatedandobservedoscillationfrequencies.GuzikandCoxsmodeloftheinterioroftheSunhasbeencriticizedbySackmannandBoothroydBoothroydhowever,whoclaimthatmodelswithinitialmassesupto7%higherthantodayarecompatiblewithhelioseismologi-calobservations.observations.52]MuchmorestringentlimitstoamoremassiveyoungSuncanbeinferredfromobservationsofmasslossinyoungstarssimilartotheSun[,2004;Woodetal.,2005].Observationsofothercoolstarsshowthattheylosemostoftheirmassduringthefirst0.1Gyr[MintonandMalhotra2007].Mostimportantly,theobservedsolaranalogsexhibitconsiderablylowercumulativemass-lossratesthanrequiredtooffsetthelowluminosityoftheearlySunSunMintonandMalhotra,2007].ThesolutiontothefaintyoungSunproblemthereforeseemstolieintheotherparameterscontrollingEarthssurfacetemperature,forexample,theconcentrationofgreenhousegasesintheearlyatmosphere,ratherthaninamodificationofthestandardsolarmodelinvolvinghighermass-lossrates.5.ENHANCEDGREENHOUSEEFFECTEFFECT53]Intodaysclimate,thetemperatureofEarthstropo-sphereisincreasedduetotheabsorptionoflong-waveradiationfromthesurfacebyatmosphericgaseslikewatervapor,CO,andmethane(CH).ThisgreenhouseeffecteffectMitchell,1989]hasanaturalandananthropogeniccom-ponent.ThenaturalgreenhouseeffectisthecauseforglobalaveragetemperaturesabovethefreezingpointofwaterovermuchoftheEarthshistory,whiletheanthropogeniccom-ponentresultingfromthecontinuingemissionofgreenhousegasesbyhumanityisresponsiblefortheobservedglobalwarmingsincethe19thcentury[IntergovernmentalPanelonClimateChange,2007].2007].54]Therefore,oneobviouspossibilitytoexplainawarmearlyatmospheredespitealowerinsolationisanenhancedwarmingeffectduetoatmosphericgreenhousegaseslikeammonia(NH),CH,orCO5.1.AmmoniaAmmonia55]AmmoniaisaverypowerfulnaturalgreenhousegasgasWangetal.,1976]becauseithasastrongandbroadabsorptionfeatureatmcoincidentwiththepeakinblackbodyemissionfromEarthssurface.AmmoniaseemedanattractivesolutiontothefaintyoungSunprobleminearlystudiesforanumberofhistoricreasons.Indeed,intheiroriginalpaperonthefaintyoungSunproblem,Saganand[1972]suggestthatanammoniagreenhousecouldhavecompensatedthelowersolarirradiancetokeepEarthoceansfromfreezingover.over.56]Historically,thechoiceofgreenhousegaseslikeNH(andCHdiscussedinsection5.2)asgreenhousegaseswasmotivatedbythreearguments:theassumptionthattheearlyatmospherewasreducing,theapparentrequirementofareducingatmospherefortheproductionoforganicmole-cules,andthewidespreadglaciationsatthebeginningoftheProterozoic.Thesehistoricargumentswillbeexploredinthethe57]TheviewheldatthattimethatEarthsearlyatmo-spherewasreducingiscloselylinkedtotheoriesofplanetaryformation.Earthwasformedbyaccretionofsmallerbodies(planetesimals)formedinthesolarnebula[,1990]andmayhaveformedaprimaryatmospherefromgases(predominantlyhydrogen)presentinthenebula.ThisFEULNER:THEFAINTYOUNGSUNPROBLEM8of29 whichhadearlierbeennotedby[1966];usingmodelsforthephotochemistryofammonia,theydemon-stratedthattheSunsultravioletradiation(whichwasmuchmoreintenseduringtheArchean;seesection2.1)wouldhavedestroyedthisamountofNHviaphotodissociationinlessthanadecade.TheyconcludethatcontinuousoutgassingofammoniafromtheEarthsinteriorwouldhavebeenrequiredtomakeanNHgreenhouseduringtheArcheanwork.work.64]Investigatingthisbalancebetweenoutgassingandphotochemicaldestruction,[1982]estimatedsteadystateammoniaformationratesfortheearlyEarthandcon-cludedthatabioticsourcescouldhavebeensufficienttosustainmixingratiosofthathavebeenarguedtoberequiredfortheevolutionoflifeintheoceanbasedontherapiddecompositionofasparticacidintheabsenceofammonium(NH)andtheassumptionthatasparticacidisnecessaryforlifetooriginate[BadaandMiller,1968].However,theammoniumresupplyratesderivedin[1982]areinsufficienttoprovidesubstantialgreenhousegreenhouse65]ItshouldalsobenotedthatammoniaishighlysolublesolubleLevineetal.,1980]andthusquicklyrainedoutoftheatmosphereanddissolvedasNHintheoceans[,1982].Sustainingatmosphericpartialpres-suresofammoniaintherangerequiredtooffsetthefaintyoungSunrequires0.110%oftheatmosphericnitrogentobedissolvedintheocean(C.Goldblatt,privatecommuni-cation,2011).2011).66]Duetotheseproblems,ammoniahadfallenoutoffavorasthedominantgreenhousegasintheArcheanatmosphere.Morerecently,SaganandChybaChybarevivedtheideaofanArcheanammoniagreenhousebypointingoutthatanearlyatmospherecontainingnitrogen)andCHwouldformanorganichazelayerproducedbyphotolysis.ThislayerwouldblockultravioletradiationandthusprotectNHfromphotodissociation.Othersshowed,however,thattheexistenceofsuchalayerwouldleadtoaneffectbecauseitblockssolarradiationfromreachingthesurfacebutallowsthermalradiationtoescapetospace[McKayetal.,1991,1999].Highhumidityhasbeenshowninexperimentalstudiestofurtherenhancethiscoolingeffectofaerosols[Hasenkopfetal.,2011].Furthermore,thesizedistributionofthehazeparticlescouldhavelimitedthelayersshieldingfunctionagainstsolarultravioletradiation[Pavlovetal.,2001],althoughlabora-toryexperimentssuggestparticlesizesthatmakethehazeopticallythickintheultravioletyetopticallythinintheoptical[Traineretal.,2006].2006].67]Theammoniastorytookanunexpectedturnrecently,Uenoetal.[2009]suggestedthatcarbonylsulfide(OCS)atpartspermillionvolume(ppmv)levelscouldexplainthedistributionofsulfurisotopesingeologicalsam-plesfromtheArcheanandcouldshieldNHagainstultra-violetradiation.Detailedphotochemicalmodelingshows,however,thatsuchhighconcentrationsofOCSareunlikelybecauseOCSisrapidlyphotodissociatedintheabsenceofultravioletshieldingbyozone[Domagal-Goldmanetal.al.68]Asanadditionalargumentagainstthecoolingeffectsofhazelayers,WolfandToon[2010]demonstratedinageneralcirculationmodelwithsize-resolvedaerosolsthatthefractalstructureoftheaerosolparticlesformingthehazedrasticallydiminishestheantigreenhouseeffect.SuchfractalparticlesgiveagoodfittothealbedospectrumofTitan,thelargestmoonofSaturn,whichhasadenseatmospherewithanopaqueorganichazelayer[Danielsonetal.,1973;andPollack,1980,1983;McKayetal.,1991].Inaddition,Hasenkopfetal.[2011]showedthattheaerosolparticlesinthehazecouldhaveledtotheformationofshort-livedandopticallythincloudswithaloweralbedothantodayclouds,hencedecreasingtheircoolingandincreasingtheirwarmingeffect.(Note,however,thatcloudeffectsaloneareinsufficienttoeffectivelycounteractthefaintyoungSun;seesection6.)6.)69]Insummary,ammoniamaynotbecompletelyoutofthegameasapossiblesolutionofthefaintyoungSunproblemafterall,althoughpotentialproblemswiththehazeshieldingandthehighsolubilityofammoniaappeartomakeandCOmorelikelycandidates.5.2.MethaneMethane70]GiventheproblemswithammoniaasagreenhousegasintheArchean,someresearchersturnedtoCHasapotentialwarmingagentfortheArcheanclimate.climate.71]Themainadvantageofmethaneascomparedtoammoniadiscussedinsection5.1aboveisthatCHphotolyzedconsiderablyslowerthanNH,becauseitrequiresultravioletlightofmuchshorterwavelengths145nm)wheretheSunemitslessradiation.Indeed,pho-tochemicalmodelsshowthatevenunderthemoreintenseultravioletradiationemittedbytheyoungSun,thelifetimeofCHinaterrestrialatmospherelowinCOisoftheorderof10to10years[,1986],incontrasttolessthan10yearsforNHNH72]TherearetwoeffectsconstrainingtheallowedparameterspaceforamethanegreenhouseontheearlyEarth,though.First,dependingontheassumedatmosphericmeth-anepartialpressure,acontributionfromothergreenhousegasestothewarmingwillberequired,withcarbondioxidebeingthemostnaturalchoice.Asdiscussedinsection5.3below,geochemicaldatafromancientpaleosolssetanupperlimittotheatmosphericcarbondioxidepartialpressureofatmost0.03barduringtheLateArchean.Scenarioswithlowmethanepartialpressurescouldbeinconflictwiththisconstraint,unlessotherforcingscontributetowarming.warming.73]Second,photochemicalmodelsshowthatanorganichazestartstoformathighCHratios[Kastingetal.1983].Asdiscussedabove,anorganichazelayerexhibitsanantigreenhouseeffectbecauseitreflectssolarradiationbackintospacewhilebeingtransparenttooutgoinginfraredradiation[McKayetal.,1991,1999].Thishazewouldthuscooltheplanet,effectivelylimitingthegreenhousewarmingachievablebymethaneintheearlyatmosphere.EarlierphotochemicalmodelingindicatedthatorganichazeshouldformintheprimitiveatmosphereatCHratioslargerthan1[,1986;Pavlovetal.,2001].RecentlaboratoryFEULNER:THEFAINTYOUNGSUNPROBLEM10of29 parameterspacewheresufficientwarmingcanbeprovidedwithoutcoolingbyorganichazeandwithoutconflictwiththepaleosolconstraintson.Notethat,dependingontemperature,theupperlimitsoncarbondioxidepartialpressurecouldbeevenlower(seeFigure6andthediscus-sionbelow).Itislessclearhowtighttheconstraintfromhazeformationisinrealityas,ontheonehand,hazecouldbeformedatevenlowerCHmixingratios[etal.,2004,2006]butcouldexhibitadecreasedanti-greenhouseeffectduetothefractalnatureoftheaerosolparticlesformingthehazelayer[WolfandToon,2010];seethediscussioninsection5.1above.above.77]TherecentmodelcalculationsbyHaqq-Misraetal.[2008]takingintoaccounttheantigreenhouseeffectof(nonfractal)organichaze(whichstartstoformatCHmixingratiosof0.1intheirmodel,inagreementwiththelaboratoryresultsdiscussedabove)andadditionalwarmingbyethane(C)areshowninFigure4b.Accordingtothesesimulations,aLateArcheanCOsolutiontothefaintyoungSunproblemappearstobemorecomplicatedthanpreviouslythoughtbecauseorganichazeformationsetsinathighermethanepartialpressureswhilehighcarbondioxidepartialpressuresareruledoutbypaleosolconstraints,yieldinginsufficientwarmingtoexplaintheabsenceofglaciationintheLateArchean.Thisstronglydependsonthestillsomewhatobscurepropertiesoforganichazelayersintheearlyatmosphere,however,andothergasesbesidesCOandCHmighthavecontributedtothewarming.warming.78]Finally,althoughmethaneisconsiderablymorestablethanammonia,itiscontinuouslydepletedbyphotolysisandreactionswithhydroxyl(OH)radicals.ThusitisinterestingtoaskwhatconstraintsonArcheanmethanefluxesandatmosphericconcentrationscanbederived.derived.79]BeforediscussingestimatesofatmosphericmethaneconcentrationsduringtheArchean,wetakeabrieflookatthemethanebudgetoftodaysatmosphere.Themethanecon-centrationinthepresent-dayatmosphereisabout1.8ppmv,havingincreasedfrom0.7ppmvinpreindustrialtimesduetoanthropogenicmethaneemissionsfromagricultureandindustrialprocesses[Forsteretal.,2007].Methanesourcestodayamounttoamethanefluxofabout600Tgyr(1Tg=g)[Denmanetal.,2007].Intheliterature,estimatesforArcheanmethanefluxesareoftencomparedtothispresent-dayflux(frequentlyandinaccuratelyevencalledthebiologicalflux).Thisisofcourseavalidorder-of-magni-tudecomparisoninprinciple,butitshouldbekeptinmindthatmorethan60%oftodaysmethanefluxisfromanthro-pogenicsources(includingindustrialprocessesandemis-sionsrelatedtofossilfuels),andabout90%oftheremainingnaturalfluxoriginatesfromecosystemsthatwerenotpresentduringtheArchean,i.e.,wetlands,termites,wildanimals,andwildfires[Denmanetal.,2007].2007].80]Today,methaneispredominantlyproducedbiologi-cally.IntheArchean,threesourcesofmethanehavecon-tributedtotheatmosphericbudget:impactsfromspace,geologicalsources,andanaerobicecosystems[2005];seeFigure5foranoverview.overview.81]Veryhighmethanefluxesfromcometaryimpactsof500Tgyrat3.5Gaand5000Tgyrat3.8GahavebeenestimatedbyKressandMcKay[2004]basedonimpactratesderivedin[1990].However,moremodestCHproductionratesappearmorelikely.[2005]esti-matesanmethanefluxfromimpactsatthebeginningoftheArchean3.8Gaof20Tgyr.Usingthenonlinearrela-tionbetweenmethanesourcefluxandatmosphericconcen-trationbasedonphotochemicalmodelinggivenin[2005]andbasedonPavlovetal.[2001],thiscorrespondstoavolumemixingratio7ppmv.ppmv.82]Theorderofmagnitudeofgeologicalmethanesour-cesintheArcheancanbederivedfromthepresent-dayabiogenicmethaneflux.Thecurrentfluxfrommineralalterationatmid-oceanridges,emissionsfromvolcanoes,andgeothermalsourcesbasedonthemostrecentdatahasbeenestimatedtobe2.3TgyryrEmmanuelandAgue2007],sufficienttosustain1ppmvaccordingto[2005].IntheEarlyArchean,thisfluxcouldhavebeenafactorof5to10largerduetothefastercreationofseaflooronearlyEarth[,2005],resultinginanatmosphericmixingratioof7ppmv.ppmv.83]Therefore,lowconcentrationsoftheorderof10ppmvofmethaneintheatmospherecouldhavebeensustainedfromabiogenicsourcesintheEarlyArchean.Laterintime,aftertheoriginoflifeandbeforethefirstmajorriseinatmosphericoxygen,muchlargermethaneconcentrationscanbeachievedfrombiologicalsources.Biologicalmethaneproductiontodayisaccomplishedbymethanogenicbacteria(ormetha-nogensforshort)thatarebelievedtohavearisenveryearlyintheevolutionoflife[WoeseandFox,1977].Theirmetabo-lismisbasedonavarietyofmetabolicpathways[1998].ThetwomostimportantnetreactionsareOandand84]Assumingthatmethanogensconvertedmostofthehydrogenavailableintheatmosphere[Kraletal.,1998;Kastingetal.,2001]andusinganestimatedhydrogenmixingratioof(1,Archeanmethanemixingratiosof5001000ppmvcouldbeplausible.Moreelaboratesimulationswithacoupledphotochemistry-ecosystemmodelessentiallyconfirmtheseearlyestimates,withatmo-sphericmethanemixingratiosintherange1001000ppmvforreasonableatmospherichydrogenfractions[etal.,2005].ItshouldbenotedthatourunderstandingofArcheanecosystemsisnaturallyratherlimited,sotheseestimatesshouldbetakenwithagrainofsalt.salt.85]Nevertheless,fromtheseargumentsonecanconcludethatmethanemixingratiosintheArcheanatmosphereofupto1000ppmvappearplausible;seeFigure5.ComparingthistotheresultsfromclimatemodelsimulationsfortheLateArcheanpresentedinFigure4,itisobviousthattheseareinsufficienttoprovideenoughwarminggiventhepaleosolconstraintsoncarbondioxidepartialpressuresduringthattime.Evenifhighermethanefluxesshouldhavebeenachieved,hazeformationlimitsthewarminginaLateFEULNER:THEFAINTYOUNGSUNPROBLEM12of29 88]Thisprecipitatedcalciumcarbonateisthenpartlydepositedinsedimentsatthebottomoftheoceans.Thesedimentsontheseafloorarethentransportedviathemotionsofplatetectonics.Atsubductionzones,mostofthecarbondioxideisreturnedtotheatmosphereviaarcvolca-nism,whilesomeisincorporatedintotheEarthsmantle,dependingonthecompositionofthesedimentsandtem-perature[KerrickandConnolly,2001;,2002].Quiteremarkably,thebasicprinciplesoftheinorganiccarboncyclewerealreadydiscoveredbyseveralscientistsinthe19thcentury(see[1995]andBernerandMaasch[1996]fordiscussionsofthisearlyhistoryofideasabouttheinorganiccarboncycle).cycle).89]Thesilicate-weatheringcycleispartofanegativefeedbackloopbecausetheweatheringrateremovingCOfromtheatmosphereincreaseswithgrowingatmosphericconcentrationsandrisingtemperatures(andviceversa),whilethevolcanicemissionofCOcanbeassumedtoberoughlyconstantovergeologicaltime(whenaveragedoversufficientlylongtimescalestosuppressthelargevariationscausedbyindividualeruptions)orpossiblydecreasingovertimegovernedbychangesingeothermalheatflowandvolcanicactivity.activity.90]FollowingtheinitialworkoncarbondioxideintheArcheanatmosphere,one-dimensionalradiative-convectiveclimatemodelswereusedtoestimatetheamountofCOnecessarytokeepEarthfromfreezing(seealsoFigure6).Forsolarluminositiesof=0.75representativefortheEarlyArchean,thesemodelssuggestthatcarbondioxidepartialpressuresof0.3bar(ormorethan1000timesthepreindustrialvalueof0.00028bar)arerequiredtoreachglobalaveragesurfacetemperaturessimilartotoday,i.e.,288K,whereaspartialpressuresof0.1bar(about300timesthepresent-dayvalue)aresufficientfortheLateArchean[Owenetal.,1979;Kastingetal.,1984;KiehlandDickinson,1987;vonParisetal.,2008].2008].91]Atemperatureof288Kwouldpresumablycorre-spondtoaworldwithsmallicecapssimilartoourpresentclimate,thelimitofcompletefreezingisoftensetatameansurfacetemperatureof273K,thefreezingpointofwater.Carbondioxidevaluesrequiredtoreachthistemperatureare Figure6.ComparisonofempiricalestimatesofcarbondioxidepartialpressuresduringthePrecambrianandclimatemodelresultsforanaverageglobalsurfacetemperatureof288Kassumedtoberequiredtopreventglobalglaciationasafunctionofrelativesolarluminosity(solidblackline).Theresultsforaglobalmeantemperatureof273Kareindicatedbythedashedblackline.Calculationsarebasedonaone-dimensionalradiative-convectiveclimatemodel[vonParisetal.,2008].GeochemicalestimatesforatmosphericCOpartialpressuresatdifferentepochsareindicated[Ryeetal.,1995;Hessleretal.,2006;Rosingetal.,2010;Drieseetal.,2011];seethetextfordetails.Atemperatureof298Kisassumedincaseanexplicitdependenceoftheestimatesonenvironmentaltemperatureisavail-able.InadditiontotheArcheanandPaleoproterozoicestimates,fourMesoproterozoicestimatesareshownforcomparison:alowerlimitderivedfromacarbonisotopeanalysisofmicrofossilsdatingback1.4Ga[KaufmanandXiao,2003],a1.2Gaupperlimitinferredfrominvivoexperimentsofcyanobac-terialcalcification[KahandRiding,2007],andtwoestimatesfrom[2006].ThedottedlineshowsthepreindustrialCOpartialpressureof2.8bar.Theconversionfromsolarluminosity(bottomscale)toage(topscale)followstheapproximationgiveninequation(1).ModifiedandupdatedafterafterFEULNER:THEFAINTYOUNGSUNPROBLEM14of29 carbonatesrequiresCOpartialpressuresofabout10timespreindustriallevelsforthesameenvironmentaltemperatureof298KasintheRosingetal.[2010]study[Hessleretal.,2004].04].98]Despitetheuncertaintiesdiscussedabove,geochem-icaldatathereforesuggestthatCOpartialpressureswerelikelysmallerthanafewhundredtimespreindustriallevelsintheLateArcheanandEarlyProterozoic,meaningthatcarbondioxidealonewouldmostlikelyhavebeenunabletoprovideenoughwarmingduringthesetimes(seeagainFigure6).InthiscontextitshouldbekeptinmindthatallmodelingstudiesthatdeterminetheCOlimitnecessarytowarmtheearlyEarthrelyonone-dimensionalmodelsneglectingmanyimportantfeedbackmechanismsliketheice-albedofeedback.Afurthercomplicationarisesfromuncertaintiesinradiativetransfercalculationsforatmo-spheresrichincarbondioxide[Halevyetal.,2009;Wordsworthetal.,2010].Theproblemarisesbecausethewingsofabsorptionlineprofilesandtheparametersgov-erningthecontinuumabsorptionofCOarepoorlycon-strainedbyempiricaldataforthehighCOpartialpressuresusedincalculationsofthefaintyoungSunproblem.Wordsworthetal.[2010],forexample,suggestthattheradiativetransfercalculationsusedinmanyearlierstudiesoverestimatetheCOabsorptionintheearlyatmospherewhencomparedtoaparametrizationthatmostaccuratelyreflectspresentlyavailabledata.data.99]Itthereforeremainstobeseenwhethercarbondiox-ideconcentrationsinagreementwithgeochemicalevidencearesufficienttooffsetthefaintyoungSun.5.4.OtherGreenhouseGasesGases100]OthergreenhousegaseshavebeensuggestedtocontributetowarmingearlyEarth.Forexample,Cexpectedtoforminanatmospherecontainingmethaneandexposedtoultravioletradiation[Haqq-Misraetal.,2008].IthasbeenshownthatethanecancontributetoanArcheangreenhouse[Haqq-Misraetal.,2008],althoughtheeffectisnotlargeascanbeseeninFigure4.Warmingbynitrousoxide(NO)hasbeensuggested[,2007],butNOisrapidlyphotodissociatedintheabsenceofatmosphericoxygen[Robersonetal.,2011],makingitanunviableoptionfortheArchean.Furthermore,OCSatppmvlevelshasthepotentialtooffsetthefaintyoungSun[Uenoetal.2009],butitappearsveryunlikelythatOCSconcentra-tionshigherthanpartsperbillionvolume(ppbv)levelcouldhavebeenmaintainedduetophotodissociationlosseslossesDomagal-Goldmanetal.,2011].2011].101]Althoughnitrogenisnotagreenhousegasinitself,ahigherpartialpressureofatmosphericnitrogenduringtheArcheanwouldamplifythegreenhouseimpactofothergasesbybroadeningofabsorptionlines[Goldblattetal.2009].DespitethefactthatthisadditionalwarmingispartlycompensatedbyincreasedRayleighscatteringofshort-waveradiation[Halevyetal.,2009],modelcalcula-tionsshowthatitcouldcauseawarmingby4.4CforadoublingoftheNconcentration[Goldblattetal.,2009].NitrogenoutgassedquicklyonearlyEarth,sotheatmo-sphericnitrogencontentlikelyequaledatleastthepresent-dayvalue.Sinceallnitrogeninthemantletodaymusthavebeenprocessedthroughtheatmosphere,thereservoirsinthecrustandmantleappearsufficientlylargetoexplainhigheratmosphericconcentrationsandthusawarmerArcheanArcheanGoldblattetal.,2009].Notethatarecentstudyoffossilraindropimprintslimitstotalairdensity2.7Gatolessthantwicetodayslevel,withthemostlikelyvaluesimilartothepresent-daydensity[Sometal.,2012].5.5.SummarySummary102]Insummary,anenhancedgreenhouseeffectargu-ablystillseemsthemostlikelysolutiontothefaintyoungSunproblem.Carbondioxideandmethanearethemostobviouscandidates,althoughtheycouldfaceseverediffi-cultiesintermsofgeochemicalconstraintsandlowpro-ductionrates,respectively,andtheirrespectivecontributionremainsuncertain.AmmoniaappearslesslikelythanCOandCHbecauseitwouldhavetobeshieldedagainstpho-todissociationbyultravioletradiationandbecauseitwouldbewashedoutbyrain.rain.103]Afinalassessmentofgreenhousegaswarmingintheearlyatmosphere,however,iscomplicatedbyuncertaintiesintheradiativetransferfunctionsandthelackofspatiallyresolvedandfullycoupledclimatemodelsfortheearlyEarthcomprisingthefullrangeoffeedbacksintheEarthsystem.Finally,otherclimaticfactorslikechangesincloudcovercouldinprincipleatleasthavecontributedtoawarmingoftheArcheanEarth.6.CLOUDSINTHEARCHEANATMOSPHERETMOSPHERE104]Cloudsexhibittwocompetingeffectsontheclimate.Ontheonehand,clouds,andinparticularlowclouds,reflectsolarradiationbackintospace,thusincreasingthealbedoandcoolingtheclimate.Ontheotherhand,thewatervaporwithinthecloudsabsorbsandreemitslong-waveradiationfromthesurfaceandhencewarmstheplanet(see,e.g.,[1972,andreferencestherein],aswellas[2005],forarecentreview).review).105]Thewarmingeffectofadecreasedcloudcover(resultinginaloweralbedoandhenceanincreaseinabsorbedsolarradiation)ontheearlyatmospherehasbeensuggestedasapossibleoffsettothefaintyoungSunaspartofanegativefeedbackloopinwhichlowertemperaturesdecrease(low-level)cloudinessduetoareductionincon-vectiveheatingandthusincreasetheamountofabsorbedsolarradiation,counteractingtheinitialcooling[,1979;Rossowetal.,1982].ThishypothesishasbeenconsideredanunlikelysolutionforthefaintyoungSunproblemforalongtime,however,becausetheearlyEarthwasbelievedtobeevenwarmerthantoday(presumablyresultinginahighercloudcoverduetoincreasedevapora-tionandthushigherreflectivityoftheatmosphere),althoughmorerecentstudiesindicateamoretemperateArcheancli-mate(seethediscussioninsection2.3).Inanycase,thepreciseeffectofcloudfeedbackforwarmingorcoolingtheearlyEarthremainsuncertain.Morerecently,Rosingetal.[2010]arguedthattheArcheanwascharacterizedbylargerclouddropletsandshortercloudlifetimes,effectivelyFEULNER:THEFAINTYOUNGSUNPROBLEM16of29 obliquitynottoodifferentfromthepresentvaluesincetheformationofEarth.Earth.114]TidalfrictioncausesEarthsrotationtoslowdownandtheMoontomovefurtherawayfromEarthovertimetimeWilliams,2000].Forexample,Earthsrotationperiodat4Gahasbeenestimatedtobejust14h[Zahnleand,1987].Usingasimpleone-dimensional(zonallyaveraged)energybalancemodeltoestimatetheeffectsofashorterdaylengthonclimate,Kuhnetal.[1989]findthattheeffectisimportantforthePrecambrianclimatesinceitincreasesthetemperaturegradientbetweenequatorandpoles.Thisisduetothefactthatmidlatitudeeddiesthataremostlyresponsiblefortheheattransportstronglydependonrotationrate;atfasterrotationrates,theseeddiesbecomesmallerinsizeandthuslessefficientintrans-portingheatpoleward.Ithasbeenshownthattherateofmeridionalheattransportisproportionalto1/1/Stone,1972],whereistheCoriolisparameterdependingonEarthsrotationrateandlatitude.Thiseffectcould,inprinciple,preventlow-latitudeglaciation.Note,however,thatthereisarunawayeffectassociatedwithice-albedofeedbackthatpushestheplanetintoasnowballEarthregimeonceabouthalfofitssurfaceiscoveredwithice;seethediscussionbelow.below.115]Studiesusinganatmosphericgeneralcirculationmodelcoupledtoasimpleoceanwithoutheatcapacitysug-gestedthatfastrotationcoulddecreaseglobalcloudcoverbyabout20%foradaylengthof14handthusresultinariseoftheglobalmeanairtemperatureof2K[Jenkinsetal.,1993;,1993].Inthesemodelexperiments,thedecreaseincloudinessisduetoaweakerHadleycellandthusreducedconvectionandcloudformationinequatoriallatitudesandlargersubsidenceinmidlatitudesagainreducingcloudcover.Afollow-upstudywithfixedseasurfacetemperaturesfailedtoshowtheeffect,however,andfoundasmallincreaseinglobalcloudcover[,1996].1996].116]Sensitivitystudiescarriedoutwithatmosphericgen-eralcirculationmodelsfordifferentrotationperiodsdemon-stratetheimportanceoftherotationrateforthestructureandstrengthoftheatmosphericcirculation[,1988;NavarraandBoccaletti,2002]:withincreasingrotationrate,theHadleyandFerrelcellsbecomegenerallynarrowerandweaker,thepolarcelltendstosplitintosmallercells,andthetemperaturegradientbetweenthepolesandtheequatorincreases.Howthesechangesinteractwiththeocean,how-ever,hasstilltobedemonstratedwithfullycoupledmodelsusingageneralcirculationoceanmodule.7.2.ContinentalAreaArea117]AfurtherstrikingdifferencebetweentheArcheanworldandthepresent-dayEarthisthefractionofthesurfacecoveredbycontinents.DuringtheArchean,thelandareahasbeenestimatedtocompriseonlyabout10%oftodaycontinentalarea[,1981].Earliermodelsforconti-nentalgrowthyieldedwidelydiverginggrowthcurvesforcontinentalvolume(see,e.g.,[1985]and[2009]foranoverview),butrecentwork[Belousovaetal.Dhuimeetal.,2012]basedontheisotopiccomposi-tionofzirconsprovidesmuchbetterconstraintsontheevolutionofcontinentalvolume,whichisillustratedinFigure7.Whilecontinentalvolumehasgrownto70%bytheendoftheArchean,itappearslikelythatasmallerfractionofEarthssurfacewascoveredbylandduringtheEarlyArchean,whichaffectedboththealbedoandheattransportprocessesintheEarthsystem.system.118]TheloweralbedoduetothesmallercontinentalareahasbeensuggestedseveraltimesasanimportantfactorfortheenergybudgetoftheArcheanclimate[Schattenand Figure7.Examplesforrecentresultsonthegrowthofthevolumeofcontinentalcrustovertimederivedfromisotopicdata[Belousovaetal.,2010;Dhuimeetal.,2012].FEULNER:THEFAINTYOUNGSUNPROBLEM18of29 analyzedfluidinclusionsin3.2Gadepositsinterpretedasmid-Archeanhydrothermalventsandfoundchlorinecon-centrations1.65largerthantoday,buttheseformationshavelaterbeenreinterpretedasQuaternaryspringdeposits[andByerly,2003].2003].124]TotaloceansalinityisofinterestfortheArcheanclimatesystembecauseitcouldinprincipleinfluencethethermohalineoceancirculation[Kuhlbrodtetal.,2007].Hayetal.[2006]observedthatforpresent-daysali-nitiesofthedensityofseawaterchangesonlyweaklywithtemperaturewhenapproachingfreezingpoint,requiringanenhancementofthesaltcontentbyseaiceformationorevaporationtomakeseawaterdenseenoughtosinktothesinterior.Foranoceanwithsalinitiesabovethedensityincreaseswithfallingtemperature.Therefore,anenergy-consumingphasetransitionduringdeepwaterfor-mationwouldnotberequired,whichcouldyieldastrongerthermohalinecirculation.ThisclaimhasbeenrefutedinamodelingexperimentbyWilliamsetal.[2010],however,whichinfactshowsaweakermeridionaloverturninginanoceanmodelwithtwicethepresent-daysalinityandtodaytopography.Thephysicalreasonsfortheseconflictingassessmentsofcirculationstrengthforhigheraveragesalinityremainunclear,however,andtheinfluenceofglobalsalinityonoceancirculationcertainlymeritsfurtherstudy.study.125]TidalactivitywashigherduringtheArcheanduetothesmallerorbitoftheMoon,whichaffectsmixingintheoceanandthus,inturn,oceancirculationandmarineheattransport[MunkandWunsch,1998].Botheffectsshouldbeexploredinmoredetailwithstate-of-the-artoceangeneralcirculationmodels.7.4.SummarySummary126]RotationalandcontinentaleffectsarethusimportantforassessingthewarmingeffectsontheArcheanclimate.ItislikelythattheycannotsolvethefaintyoungSunproblemontheirown,forwhichanenhancedgreenhouseeffectonearlyEarthappearstoberequired.Theinfluencesoffasterrotationanddifferentcontinentalconfiguration,however,areimportantforunderstandingtheenergybudgetanddynamicsoftheArcheanclimatesystem,soanyconvincingdemonstrationsofsolutionsinvolvingenhancedlevelsofgreenhousegaseswillrequiresimulationswithfullycoupledstate-of-the-artclimatemodelsincludingtheseeffects.8.CONCLUSIONSANDFUTUREDIRECTIONSDIRECTIONS127]Afterfourdecadesofresearch,thefaintyoungSunproblemindeedrefusestogoawayawayKasting,2010,p.687].Toalargeextent,thisiscertainlyduetothestilllimitedknowledgeoftheconditionsonearlyEarth,althoughthelastdecadeshaveseenconsiderableprogress,andsomepara-metersarenowbetterconstrainedthantheyusedtobeinthepast.Nevertheless,improvedconstraintsonatmosphericcompositionduringtheArcheaneonwouldobviouslybeextremelyimportant,althoughcertainlychallengingtoobtain.Despitethedifficultiesinvolved,therehavecertainlybeenremarkableadvancesingeochemistryinrecentyears.Note,forexample,thatmostofthegeochemicalconstraintsonArcheanandProterozoiccarbondioxidepartialpressuresshowninFigure6werederivedwithinthelastdecade.Thereisthusreasontobehopefulincontinuedprogressinthisarea.area.128]Inadditiontobetterdata,however,improvementsintheeffortsonmodelingtheEarthsclimateduringtheArcheanareurgentlyneeded,asonotherimportantpro-blemsindeeptimepaleoclimatologylikeclimatechangesassociatedwithmass-extinctionevents[,2009]orgreenhouseclimatesofthepast[Huberetal.,1999].ManysuggestedsolutionstothefaintyoungSunproblem,espe-ciallythoseinvolvingcontinentaloralbedoeffects,requirespatiallyresolvedclimatesimulations,ratherthantheone-dimensionalorsimpleenergybalanceatmosphericmodelstraditionallyusedinstudiesofthefaintyoungSunproblem,andfullcouplingtostate-of-the-artoceanandseaicemod-els.Finally,thefullrangeoffeedbackmechanismshastobeexploredindetail.detail.129]ThereareseveralchallengesinallmodelingeffortsoftheArcheanclimate.First,therearestillconsiderableuncertaintiesinkeyclimatecharacteristicslikegreenhousegasconcentrationsorcontinentalconfiguration.TheseparameteruncertaintieshavetobeproperlyquantifiedusingensemblesimulationsoftheArcheanclimatesystem.Becauseoftheirhigherspeed,thisistraditionallythedomainofintermediate-complexityclimatemodels[Claussenetal.al.130]Second,essentiallyallofthemorecomprehensiveclimatemodelsaretosomeextenttunedtopresent-daycli-mateconditions.Tobeabletoapplythemtotheearlysclimateandobtainmeaningfulresults,theyhavetoproviderobustresultsforaclimatestatethatisconsiderablydifferentthantoday.Notonlyforthisreason,theemphasisinallclimatemodelingeffortsforthefaintyoungSunproblemshouldlieinimprovingourunderstandingofthephysicalprocessescharacterizingtheArcheanclimatesys-tem.Finally,itwouldbeadvisabletosimulatetheArcheanclimatewithseveralmodelsusingdifferentapproachestobeabletocomparemodelresults.results.131]Giventhecontinuedinterestthisimportanttopicenjoys,thenextdecademightbringusclosertofinallyansweringthequestionofhowwateronearlyEarthcouldhaveremainedliquidunderafaintyoungSun,certainlyoneofthemostfundamentalquestionsinpaleoclimatology.NOTATIONsemi-majoraxisofEarthsellipticalorbitcalciumcarbonateOgypsumOformaldehydeSdimethylsulfidecarbondioxideFEULNER:THEFAINTYOUNGSUNPROBLEM20of29 Proterozoic:GeologicaleonlastingfromtheendoftheArchean2.5yearsagoto542yearsago.Protoplanetarydisk:Rotatingdiskofdensegasanddustsurroundinganewlyformedstar.Geologicalperiodspanningthelast2.6Radiativeforcing:Changeinnetirradiance(downwardminusupward)attheupperlimitofthetroposphere,thuscharacterizingchangesintheenergybudgetofthesurface-tropospheresystem.Measureofthedissolvedsaltcontentofoceanwater,usuallyexpressedaspartsperthousand.Solaranalogs:Starswithphysicalandchemicalcharac-teristicssimilartotheSun.Solarconstant:TotalradiativeenergyperunittimeandunitareaincidentonaplaneperpendiculartothedirectiontotheSunandatthemeandistancebetweenSunandEarth.Solarluminosity:Radiativeenergyperunittimeemit-tedbytheSun.Solarwind:Streamofchargedparticles(mostlyelec-tronsandprotons)originatingintheSunsupperatmosphere.Standardsolarmodel:Numericalmodelofthestruc-tureandevolutionoftheSunbasedonfundamentalequa-tionsofstellarphysicsandconstrainedbytheobservedphysicalandchemicalcharacteristicsofthepresent-daySun.Stromatolites:Lithified,sedimentarystructuresgrow-ingviasedimenttrappingbymicrobialmats.Thesupernatantwatercolumnisthewateroverlyingsedimentedmaterial.Thermohalinecirculation:Large-scaleoceancurrentsdrivenbydensitygradientsduetoheatandfreshwaterfluxesattheoceansurface.Troposphere:ThelowermostlayerofEarthsatmosphere.Zero-agemainsequence(ZAMS):Positionofstarsinabrightness-colordiagramthathavejuststartednuclearfusionofhydrogentoheliumintheircores.cores.132]ACKNOWLEDGMENTS.Itisapleasuretothankthetworeviewers,ColinGoldblattandJamesKasting,aswellastheEditor,MarkMoldwin,fortheircommentsthathelpedtoimprovethisreviewpaperconsiderably.Furthermore,IwouldliketothankHendrikKienertfornumerousdiscussionsandhelpfulcommentsonearlierdraftsofthemanuscript.IamgratefultoAlisonSchlumsforproofreadingandtoGritSteinhöfel-Sasgenforbackgroundinformationonbandedironformations.ThisresearchhasmadeuseofNASAsAstrophysicsDataSystemBibliographicServices.Services.133]TheEditoronthispaperwasMarkMoldwin.Hethankstworeviewers,JamesKastingandColinGoldblatt.Abbot,D.S.,A.Voigt,andD.Koll(2011),TheJormungandglobalclimatestateandimplicationsforNeoproterozoicglaciations,J.Geophys.Res.,D18103,doi:10.1029/2011JD015927.Abelson,P.H.(1966),ChemicaleventsontheprimitiveEarth,Proc.Natl.Acad.Sci.U.S.A.,13651372,doi:10.1073/Altermann,W.,andJ.Kazmierczak(2003),Archeanmicrofossils:AreappraisalofearlylifeonEarth,Res.Microbiol.617,doi:10.1016/j.resmic.2003.08.006.Bada,J.L.,andS.L.Miller(1968),Ammoniumionconcentrationintheprimitiveocean,,423425,doi:10.1126/Bada,J.L.,C.Bigham,andS.L.Miller(1994),ImpactmeltingoffrozenoceansontheearlyEarth:Implicationsfortheoriginoflife,Proc.Natl.Acad.Sci.U.S.A.,1248Bahcall,J.N.,M.H.Pinsonneault,andS.Basu(2001),Solarmodels:Currentepochandtimedependences,neutrinos,andhelioseismologicalproperties,Astrophys.J.,990Barghoorn,E.S.,andJ.W.Schopf(1966),MicroorganismsthreebillionyearsoldfromthePrecambrianofSouthAfrica,,758763,doi:10.1126/science.152.3723.758.Barron,E.J.(1984),Ancientclimates:InvestigationwithclimateRep.Prog.Phys.,15631599,doi:10.1088/0034-Beerling,D.,R.A.Berner,F.T.Mackenzie,M.B.Harfoot,andJ.A.Pyle(2009),MethaneandtheCH-relatedgreenhouseeffectoverthepast400millionyears,Am.J.Sci.,97Bekker,A.,H.D.Holland,P.-L.Wang,D.Rumble,H.J.Stein,J.L.Hannah,L.L.Coetzee,andN.J.Beukes(2004),Datingtheriseofatmosphericoxygen,,117120,doi:10.1038/Belousova,E.A.,Y.A.Kostitsyn,W.L.Griffin,G.C.Begg,S.Y.OReilly,andN.J.Pearson(2010),Thegrowthofthecon-tinentalcrust:ConstraintsfromzirconHf-isotopedata,,457466,doi:10.1016/j.lithos.2010.07.024.Benn,K.,J.-C.Mareschal,andK.C.Condie(Eds.)(2006),ArcheanGeodynamicsandEnvironmentsGeophys.Monogr.,vol.164,320pp.,AGU,Washington,D.C.,doi:10.1029/Berner,R.A.(1995),A.G.Högbomandthedevelopmentoftheconceptofthegeochemicalcarboncycle,Am.J.Sci.495,doi:10.2475/ajs.295.5.491.Berner,R.A.,andK.A.Maasch(1996),ChemicalweatheringandcontrolsonatmosphericOandCO:FundamentalprincipleswereenunciatedbyJ.J.Ebelmenin1845,Geochim.Cosmochim.,16331637,doi:10.1016/0016-7037(96)00104-4.Berner,R.A.,A.C.Lasaga,andR.M.Garrels(1983),Thecarbonate-silicategeochemicalcycleanditseffectonatmo-sphericcarbondioxideoverthepast100millionyears,J.Sci.(7),641683,doi:10.2475/ajs.283.7.641.Blake,R.E.,S.J.Chang,andA.Lepland(2010),PhosphateoxygenisotopicevidenceforatemperateandbiologicallyactiveArchaeanocean,,10291032,doi:10.1038/Boothroyd,A.I.,I.Sackmann,andW.A.Fowler(1991),OurSun.Earlymasslossof0.1solarmassandthecaseofthemissingAstrophys.J.,318329,doi:10.1086/170361.Budyko,M.I.(1969),TheeffectofsolarradiationvariationsontheclimateoftheEarth,,611619,doi:10.1111/j.2153-Buick,R.(2007),DidtheProterozoicCanfieldOceancausealaughinggasgreenhouse?,,97100,doi:10.1111/Caldeira,K.,andJ.F.Kasting(1992),SusceptibilityoftheearlyEarthtoirreversibleglaciationcausedbycarbondioxideclouds,,226228,doi:10.1038/359226a0.Cameron,A.G.W.,andW.R.Ward(1976),TheoriginoftheLunarSci.,120Canfield,D.E.(2005),Theearlyhistoryofatmosphericoxygen:HomagetoRobertM.Garrels,Annu.Rev.EarthPlanet.Sci.36,doi:10.1146/annurev.earth.33.092203.122711.Canup,R.M.(2004),Dynamicsoflunarformation,Annu.Rev.Astron.Astrophys.,441475,doi:10.1146/annurev.astro.41.Carr,M.H.(1996),WateronMars,OxfordUniv.Press,NewYork.FEULNER:THEFAINTYOUNGSUNPROBLEM22of29 Goldblatt,C.,andA.J.Watson(2012),TheRunawayGreenhouse:Implicationsforfutureclimatechange,geoengineeringandplan-etaryatmospheres,Philos.Trans.R.Soc.A,inpress.Goldblatt,C.,andK.J.Zahnle(2011),CloudsandthefaintyoungSunparadox,Clim.Past(1),203220,doi:10.5194/cp-7-203-Goldblatt,C.,T.M.Lenton,andA.J.Watson(2006),BistabilityofatmosphericoxygenandtheGreatOxidation,686,doi:10.1038/nature05169.Goldblatt,C.,M.W.Claire,T.M.Lenton,A.J.Matthews,A.J.Watson,andK.J.Zahnle(2009),Nitrogen-enhancedgreenhousewarmingonearlyEarth,Nat.Geosci.,891896,doi:10.1038/Goldblatt,C.,K.J.Zahnle,N.H.Sleep,andE.G.Nisbet(2010),TheEonsofChaosandHades,SolidEarthGoodman,J.C.(2006),Throughthickandthin:Marineandmete-oriciceinasnowballEarthGeophys.Res.Lett.L16701,doi:10.1029/2006GL026840.Goodwin,A.M.(1981),Precambrianperspectives,61,doi:10.1126/science.213.4503.55.Gough,D.O.(1981),Solarinteriorstructureandluminosityvaria-Sol.Phys.,2134,doi:10.1007/BF00151270.Graedel,T.E.,I.Sackmann,andA.I.Boothroyd(1991),EarlysolarmasslossApotentialsolutiontotheweakSunparadox,Geophys.Res.Lett.,18811884,doi:10.1029/91GL02314.Gray,L.J.,etal.(2010),Solarinfluencesonclimate,Rev.Geo-,RG4001,doi:10.1029/2009RG000282.Güdel,M.(2007),TheSunintime:ActivityandenvironmentenvironmentLivingRev.SolarPhys.,3.Guzik,J.A.,andA.N.Cox(1995),Earlysolarmassloss,elementdiffusion,andsolaroscillationfrequencies,Astrophys.J.914,doi:10.1086/176019.Guzik,J.A.,L.A.Willson,andW.M.Brunish(1987),Acompar-isonbetweenmass-losingandstandardsolarmodels,,957965,doi:10.1086/165512.Halevy,I.,R.T.Pierrehumbert,andD.P.Schrag(2009),RadiativetransferinCO-richpaleoatmospheres,J.Geophys.Res.D18112,doi:10.1029/2009JD011915.Haqq-Misra,J.D.,S.D.Domagal-Goldman,P.J.Kasting,andJ.F.Kasting(2008),Arevised,hazymethanegreenhousefortheArcheanEarth,,11271137,doi:10.1089/Harrison,T.M.(2009),TheHadeancrust:Evidencefrom�4GaAnnu.Rev.EarthPlanet.Sci.,479505,doi:10.1146/annurev.earth.031208.100151.Hartmann,D.L.,andM.L.Michelsen(2002),Noevidenceforiris,Bull.Am.Meteorol.Soc.,249254,doi:10.1175/1520-0477Hartmann,W.K.,andD.R.Davis(1975),Satellite-sizedplanete-simalsandlunarorigin,,504514,doi:10.1016/0019-Hartmann,W.K.,G.Ryder,L.Dones,andD.Grinspoon(2000),Thetime-dependentintensebombardmentoftheprimordialEarth/Moonsystem,inOriginoftheEarthandMoon,editedbyR.M.CanupandK.Righter,pp.493512,Univ.ofAriz.Press,Tucson.Hasenkopf,C.A.,M.A.Freedman,M.R.Beaver,O.B.Toon,andM.A.Tolbert(2011),PotentialclimaticimpactoforganichazeonearlyEarth,,135149,doi:10.1089/ast.Haxton,W.C.(1995),Thesolarneutrinoproblem,Ann.Rev.Astron.Astrophys.,459504,doi:10.1146/annurev.aa.33.Hay,W.W.,A.Migdisov,A.N.Balukhovsky,C.N.Wold,S.Flögel,andE.Söding(2006),EvaporitesandthesalinityoftheoceanduringthePhanerozoic:Implicationsforclimate,oceancirculationandlife,Palaeogeogr.Palaeoclimatol.Palaeoecol.46,doi:10.1016/j.palaeo.2006.03.044.Held,I.M.,andM.J.Suarez(1975),Simplealbedofeedbackmodelsoftheicecaps,,613629,doi:10.1111/j.2153-Henderson-Sellers,A.(1979),Cloudsandthelong-termstabilityoftheEarthsatmosphereandclimate,,786Henderson-Sellers,A.,andB.Henderson-Sellers(1988),EquableclimateintheearlyArchaean,,117Hessler,A.M.,D.R.Lowe,R.L.Jones,andD.K.Bird(2004),Alowerlimitforatmosphericcarbondioxidelevels3.2billionyearsago,,736738,doi:10.1038/nature02471.Hoffman,P.F.,andD.P.Schrag(2002),ThesnowballEarthhypothesis:Testingthelimitsofglobalchange,TerraNova155,doi:10.1046/j.1365-3121.2002.00408.x.Holland,H.D.(1978),TheChemistryoftheAtmosphereand,Wiley,NewYork.Holland,H.D.(1984),TheChemicalEvolutionoftheAtmosphereandOceans,PrincetonUniv.Press,Princeton,N.J.Holland,H.D.(2006),TheoxygenationoftheatmosphereandPhilos.Trans.R.Soc.B(1470),903Hoyle,F.(1958),RemarksonthecomputationofevolutionaryRic.Astron.,223Hren,M.T.,M.M.Tice,andC.P.Chamberlain(2009),Oxygenandhydrogenisotopeevidenceforatemperateclimate3.42bil-lionyearsago,,205208,doi:10.1038/nature08518.Huber,B.T.,K.G.MacLeod,andS.L.Wing(Eds.)(1999),ClimatesinEarthHistory,CambridgeUniv.Press,Cambridge,U.K.Hunten,D.M.(1973),TheescapeoflightgasesfromplanetaryJ.Atmos.Sci.,14811494,doi:10.1175/1520-Hyde,W.T.,T.J.Crowley,S.K.Baum,andW.R.Peltier(2000),NeoproterozoicsnowballEarthsimulationswithacou-pledclimate/ice-sheetmodel,Nature405,425429,doi:10.1038/35013005.Ikeda,T.,andE.Tajika(1999),Astudyoftheenergybalancecli-matemodelwithCO-dependentoutgoingradiation:ImplicationfortheglaciationduringtheCenozoic,Geophys.Res.Lett.352,doi:10.1029/1998GL900298.Ingersoll,A.P.(1969),TheRunawayGreenhouse:AhistoryofwateronVenus,J.Atmos.Sci.,11911198,doi:10.1175/IntergovernmentalPanelonClimateChange(2007),Change2007:ThePhysicalScienceBasis:WorkingGroupIContributiontotheFourthAssessmentReportoftheIPCC,edi-tedbyS.Solomonetal.,CambridgeUniv.Press,NewYork.Jaffrés,J.B.D.,G.A.Shields,andK.Wallmann(2007),Theoxygenisotopeevolutionofseawater:Acriticalreviewofalong-standingcontroversyandanimprovedgeologicalwatercyclemodelforthepast3.4billionyears,EarthSci.Rev.,83122,doi:10.1016/j.earscirev.2007.04.002.Jenkins,G.S.(1993),Ageneralcirculationmodelstudyoftheeffectsoffasterrotationrate,enhancedCOconcentration,andreducedsolarforcing:ImplicationsforthefaintyoungSunJ.Geophys.Res.,20,80320,811,doi:10.1029/Jenkins,G.S.(1995a),EarlyEarthsclimate:Cloudfeedbackfromreducedlandfractionandozoneconcentrations,Geophys.Res.,15131516,doi:10.1029/95GL00818.Jenkins,G.S.(1995b),Erratum:EarlyEarthsclimate:CloudfeedbackfromreducedlandfractionandozoneconcentrationsGeophys.Res.Lett.,20772078,doi:10.1029/95GL02193.Jenkins,G.S.(1996),AsensitivitystudyofchangesinEarthrotationratewithanatmosphericgeneralcirculationmodel,GlobalPlanet.Change,141154,doi:10.1016/0921-8181FEULNER:THEFAINTYOUNGSUNPROBLEM24of29 Kuhn,W.R.,andS.K.Atreya(1979),AmmoniaphotolysisandthegreenhouseeffectintheprimordialatmosphereoftheEarth,,207213,doi:10.1016/0019-1035(79)90126-X.Kuhn,W.R.,andJ.F.Kasting(1983),EffectsofincreasedCOconcentrationsonsurfacetemperatureoftheearlyEarth,,5355,doi:10.1038/301053a0.Kuhn,W.R.,J.C.G.Walker,andH.G.Marshall(1989),TheeffectonEarthssurfacetemperaturefromvariationsinrota-tionrate,continentformation,solarluminosity,andcarbonJ.Geophys.Res.,11,12911,136,doi:10.1029/Laskar,J.,F.Joutel,andP.Robutel(1993),StabilizationofthesobliquitybytheMoon,,615Lean,J.(1987),SolarultravioletirradiancevariationsAreview,J.Geophys.Res.,839868,doi:10.1029/JD092iD01p00839.Levine,J.S.,J.M.Hoell,andT.R.Augustsson(1980),Theverti-caldistributionoftroposphericammonia,Geophys.Res.Lett.320,doi:10.1029/GL007i005p00317.Lin,B.,B.A.Wielicki,L.H.Chambers,Y.Hu,andK.-M.Xu(2002),Theirishypothesis:AnegativeorpositivecloudJ.Clim.7,doi:10.1175/1520-0442(2002)Lindzen,R.S.,andB.Farrell(1977),Somerealisticmodificationsofsimpleclimatemodels,J.Atmos.Sci.,1487Lindzen,R.S.,M.-D.Chou,andA.Y.Hou(2001),DoestheEarthhaveanadaptiveinfrarediris?,Bull.Am.Meteorol.Soc.417432,doi:10.1175/1520-0477(2001)0820417:DTEHAA&#x-18.; 2.3.Lissauer,J.J.,J.W.Barnes,andJ.E.Chambers(2012),ObliquityvariationsofamoonlessEarth,,7787,doi:10.1016/Locarnini,R.A.,A.V.Mishonov,J.I.Antonov,T.P.Boyer,H.E.Garcia,O.K.Baranova,M.M.Zweng,andD.R.JohnsonWorldOceanAtlas2009,vol.1,,inAtlasNESDIS,vol.68,NOAA,SilverSpring,Md.Longdoz,B.,andL.M.François(1997),ThefaintyoungSuncli-maticparadox:Influenceofthecontinentalconfigurationandoftheseasonalcycleontheclimaticstability,GlobalPlanet.,97112,doi:10.1016/S0921-8181(96)00006-9.Lowe,D.R.(1980),Archeansedimentation,Annu.Rev.EarthPlanet.Sci.,145167,doi:10.1146/annurev.ea.08.050180.Lowe,D.R.,andG.R.Byerly(2003),IronstonepodsintheArcheanBarbertongreenstonebelt,SouthAfrica:EarthsoldestseafloorhydrothermalventsreinterpretedasQuaternarysubaerial,909912,doi:10.1130/G19664.1.Marshall,H.G.,J.C.G.Walker,andW.R.Kuhn(1988),Long-termclimatechangeandthegeochemicalcycleofcarbon,J.Geophys.Res.,791801,doi:10.1029/JD093iD01p00791.Marshall,J.,D.Ferreira,J.-M.Campin,andD.Enderton(2007),Meanclimateandvariabilityoftheatmosphereandoceanonanaquaplanet,J.Atmos.Sci.,42704286,doi:10.1175/Martin,W.,J.Baross,D.Kelley,andM.J.Russell(2008),Hydrothermalventsandtheoriginoflife,Nat.Rev.Microbiol.,805814,doi:10.1038/nrmicro1991.McKay,C.P.(2000),ThicknessoftropicaliceandphotosynthesisonasnowballEarth,Geophys.Res.Lett.,2153McKay,C.P.,J.B.Pollack,andR.Courtin(1991),Thegreen-houseandantigreenhouseeffectsonTitan,1121,doi:10.1126/science.253.5024.1118.McKay,C.P.,R.D.Lorenz,andJ.I.Lunine(1999),Analyticsolu-tionsfortheantigreenhouseeffect:TitanandtheearlyEarth,,5661,doi:10.1006/icar.1998.6039.nik,Y.P.(1982),PrecambrianBandedIron-FormationsPhysicochemicalConditionsofFormation,Elsevier,Amsterdam.Miller,S.L.(1953),AproductionofaminoacidsunderpossibleprimitiveEarthconditions,,528529,doi:10.1126/Miller,S.L.,andH.C.Urey(1959),OrganiccompoundsynthesisontheprimitiveEarth,,245251,doi:10.1126/Milne,E.A.(1922),LXXIV.Radiativeequilibrium:Theinsolationofanatmosphere,Philos.Mag.,Ser.6,872896,doi:10.1080/Minton,D.A.,andR.Malhotra(2007),AssessingthemassiveyoungSunhypothesistosolvethewarmyoungEarthpuzzle,Astrophys.J.,17001706,doi:10.1086/514331.Mischna,M.A.,J.F.Kasting,A.Pavlov,andR.Freedman(2000),InfluenceofcarbondioxidecloudsonearlyMartianclimate,,546554,doi:10.1006/icar.2000.6380.Mitchell,J.F.B.(1989),Thegreenhouseeffectandclimatechange,Rev.Geophys.,115139,doi:10.1029/RG027i001p00115.Mohapatra,R.N.,andA.Y.Smirnov(2006),Neutrinomassandnewphysics,Annu.Rev.Nucl.Part.Sci.,569Mojzsis,S.J.,T.M.Harrison,andR.T.Pidgeon(2001),Oxygen-isotopeevidencefromancientzirconsforliquidwateratthessurface4,300Myrago,,178Molnar,G.I.,andW.J.GutowskiJr.(1995),ThefaintyoungSun:Furtherexplorationoftheroleofdynamicalheat-fluxfeedbacksinmaintainingglobalclimatestability,J.Glaciol.,87Munk,W.(1968),OnceagainTidalfriction,Q.J.R.Astron.Soc.,352Munk,W.,andB.Bills(2007),Tidesandtheclimate:Somespec-J.Phys.Oceanogr.,135147,doi:10.1175/Munk,W.,andC.Wunsch(1998),AbyssalrecipesII:Energeticsoftidalandwindmixing,DeepSeaRes.,PartI2010,doi:10.1016/S0967-0637(98)00070-3.Navarra,A.,andG.Boccaletti(2002),Numericalgeneralcircula-tionexperimentsofsensitivitytoEarthrotationrate,,467483,doi:10.1007/s00382-002-0238-8.Newman,M.J.,andR.T.Rood(1977),Implicationsofsolarevo-lutionfortheEarthsearlyatmosphere,,1035Nisbet,E.,andC.Fowler(2011),TheevolutionoftheatmosphereinthearchaeanandearlyProterozoic,Chin.Sci.Bull.Nisbet,E.G.,andN.H.Sleep(2001),Thehabitatandnatureofearlylife,,10831091,doi:10.1038/35059210.Ohmoto,H.,Y.Watanabe,andK.Kumazawa(2004),EvidencefrommassivesideritebedsforaCO-richatmospherebefore1.8billionyearsago,,395399,doi:10.1038/Orgel,L.E.(1998),TheoriginoflifeAreviewoffactsandspec-TrendsBiochem.Sci.(12),491495,doi:10.1016/Owen,T.,R.D.Cess,andV.Ramanathan(1979),EnhancedCOgreenhousetocompensateforreducedsolarluminosityonearly,640642,doi:10.1038/277640a0.Pace,N.R.(2001),Theuniversalnatureofbiochemistry,Natl.Acad.Sci.U.S.A.(3),805808,doi:10.1073/pnas.Papaloizou,J.C.B.,andC.Terquem(2006),PlanetformationandRep.Prog.Phys.,119180,doi:10.1088/0034-Pavlov,A.A.,andJ.F.Kasting(2002),Mass-independentfrac-tionationofsulfurisotopesinArcheansediments:Strongevi-denceforananoxicArcheanatmosphere,41,doi:10.1089/153110702753621321.Pavlov,A.A.,J.F.Kasting,L.L.Brown,K.A.Rages,andR.Freedman(2000),GreenhousewarmingbyCHintheFEULNER:THEFAINTYOUNGSUNPROBLEM26of29 Taylor,S.R.,andS.M.McLennan(2009),PlanetaryCrusts:TheirComposition,OriginandEvolution,CambridgeUniv.Press,Cambridge,U.K.Tera,F.,D.A.Papanastassiou,andG.J.Wasserburg(1974),Isoto-picevidenceforaterminallunarcataclysm,EarthPlanet.Sci.(1),121,doi:10.1016/0012-821X(74)90059-4.Thauer,R.K.(1998),Biochemistryofmethanogenesis:AtributetoMarjoryStephenson,(9),2377Tian,F.,O.B.Toon,A.A.Pavlov,andH.DeSterck(2005),Ahydrogen-richearlyEarthatmosphere,1017,doi:10.1126/science.1106983.Tian,F.,O.B.Toon,andA.A.Pavlov(2006),Responsetocom-mentonAhydrogen-richearlyEarthatmosphere,38,doi:10.1126/science.1118412.Tomaschitz,R.(2005),FaintyoungSun,planetarypaleoclimatesandvaryingfundamentalconstants,Int.J.Theor.Phys.218,doi:10.1007/s10773-005-1492-4.Trainer,M.G.,A.A.Pavlov,D.B.Curtis,C.P.McKay,D.R.Worsnop,A.E.Delia,D.W.Toohey,O.B.Toon,andM.A.Tolbert(2004),HazeaerosolsintheatmosphereofearlyEarth:MannafromHeaven,,409419,doi:10.1089/Trainer,M.G.,A.A.Pavlov,H.L.Dewitt,J.L.Jimenez,C.P.McKay,O.B.Toon,andM.A.Tolbert(2006),OrganichazeonTitanandtheearlyEarth,Proc.Natl.Acad.Sci.U.S.A.,18,03518,042,doi:10.1073/pnas.0608561103.Ueno,Y.,M.S.Johnson,S.O.Danielache,C.Eskebjerg,A.Pandey,andN.Yoshida(2009),GeologicalsulfurisotopesindicateelevatedOCSintheArcheanatmosphere,solvingfaintyoungSunparadox,Proc.Natl.Acad.Sci.U.S.A.14,789,doi:10.1073/pnas.0903518106.Ulrich,R.K.(1975),Solarneutrinosandvariationsinthesolar,619Valley,J.W.,W.H.Peck,E.M.King,andS.A.Wilde(2002),AcoolearlyEarth,,351354,doi:10.1130/0091-7613vandenBoorn,S.H.J.M.,M.J.vanBergen,W.Nijman,andP.Z.Vroon(2007),DualroleofseawaterandhydrothermalfluidsinEarlyArcheanchertformation:Evidencefromsiliconisotopes,,939942,doi:10.1130/2FG24096A.1.vonParis,P.,H.Rauer,J.LeeGrenfell,B.Patzer,P.Hedelt,B.Stracke,T.Trautmann,andF.Schreier(2008),WarmingtheearlyEarthPlanet.SpaceSci.1259,doi:10.1016/j.pss.2008.04.008.Walker,J.C.G.(1976),ImplicationsforatmosphericevolutionoftheinhomogeneousaccretionmodeloftheoriginoftheEarth,TheEarlyHistoryoftheEarth,editedbyB.F.Windley,pp.537546,JohnWiley,Chichester,U.K.Walker,J.C.G.(1977),EvolutionoftheAtmosphere,Macmillan,NewYork.Walker,J.C.G.(1982),ClimaticfactorsontheArcheanEarth,Palaeogeogr.Palaeoclimatol.Palaeoecol.11,doi:10.1016/0031-0182(82)90082-7.Walker,J.C.G.,andK.J.Zahnle(1986),LunarnodaltideanddistancetotheMoonduringthePrecambrian,602,doi:10.1038/320600a0.Walker,J.C.G.,P.B.Hays,andJ.F.Kasting(1981),Anegativefeedbackmechanismforthelong-termstabilizationoftheEarthsurfacetemperature,J.Geophys.Res.,9776Walker,J.C.G.,C.Klein,M.Schidlowski,J.W.Schopf,D.J.Stevenson,andM.R.Walter(1983),EnvironmentalevolutionoftheArchean-earlyProterozoicEarth,insEarliestBio-sphere:ItsOriginandEvolution,editedbyJ.W.Schopf,pp.290,PrincetonUniv.Press,Princeton,N.J.Wang,W.C.,Y.L.Yung,A.A.Lacis,T.Mo,andJ.E.Hansen(1976),Greenhouseeffectsduetoman-madeperturbationsoftracegases,,685690,doi:10.1126/science.194.Warren,S.G.,andR.E.Brandt(2006),CommentonEarth:Athin-icesolutionwithflowingseaglaciersbyDavidPollardandJamesF.Kasting,J.Geophys.Res.,C09016,Warren,S.G.,R.E.Brandt,T.C.Grenfell,andC.P.McKay(2002),SnowballEarth:Icethicknessonthetropicalocean,J.Geophys.Res.(C10),3167,doi:10.1029/2001JC001123.Watson,A.J.,T.M.Donahue,andJ.C.G.Walker(1981),ThedynamicsofarapidlyescapingatmosphereApplicationstotheevolutionofEarthandVenus,,150Weiss,N.O.,andS.M.Tobias(2000),Physicalcausesofsolaractiv-ity,SpaceSci.Rev.,99112,doi:10.1023/A:1026790416627.Wetherill,G.W.(1975),LateheavybombardmentoftheMoonandterrestrialplanets,LunarSci.,1539Wetherill,G.W.(1990),FormationoftheEarth,Annu.Rev.EarthPlanet.Sci.,205256,doi:10.1146/annurev.ea.18.050190.Whitmire,D.P.,L.R.Doyle,R.T.Reynolds,andJ.J.Matese(1995),AslightlymoremassiveyoungSunasanexplanationforwarmtemperaturesonearlyMars,J.Geophys.Res.5464,doi:10.1029/94JE03080.Wigley,T.M.L.,andP.Brimblecombe(1981),Carbondioxide,ammoniaandtheoriginoflife,,213Wilber,A.C.,D.P.Kratz,andS.K.Gupta(1999),Surfaceemis-sivitymapsforuseinsatelliteretrievalsoflongwaveradiation,Tech.Rep.NASA/TP-1999-209362,NASA,Hampton,Va.Wilde,S.A.,J.W.Valley,W.H.Peck,andC.M.Graham(2001),EvidencefromdetritalzirconsfortheexistenceofcontinentalcrustandoceansontheEarth4.4Gyrago,178,doi:10.1038/35051550.Wildt,R.(1966),Thegreenhouseeffectinagrayplanetaryatmo-,2433,doi:10.1016/0019-1035(66)90005-4.Williams,G.E.(2000),GeologicalconstraintsonthePrecambrianhistoryofEarthsrotationandtheMoonsorbit,Rev.Geophys.,3760,doi:10.1029/1999RG900016.Williams,G.P.(1988),Thedynamicalrangeofglobalcircula-Clim.Dyn.,205260,doi:10.1007/BF01371320.Williams,P.D.,E.Guilyardi,G.Madec,S.Gualdi,andE.Scoccimarro(2010),Theroleofmeanoceansalinityinclimate,Dyn.Atmos.Oceans,108123,doi:10.1016/j.dynatmoce.Woese,C.R.,andG.E.Fox(1977),Phylogeneticstructureoftheprokaryoticdomain:Theprimarykingdoms,Proc.Natl.Acad.Sci.U.S.A.,50885090,doi:10.1073/pnas.74.11.5088.Wolf,E.T.,andO.B.Toon(2010),FractalorganichazesprovidedanultravioletshieldforearlyEarth,,1266Wood,B.E.(2004),Astrospheresandsolar-likestellarwindswindsLivingRev.SolarPhys.,2.Wood,B.E.,H.-R.Müller,G.P.Zank,J.L.Linsky,andS.Redfield(2005),Newmass-lossmeasurementsfromastrosphericLyAstrophys.J.Lett.,L143L146,doi:10.1086/Wordsworth,R.,F.Forget,andV.Eymet(2010),Infraredcolli-sion-inducedandfar-lineabsorptionindenseCO,992997,doi:10.1016/j.icarus.2010.06.010.Young,G.M.,V.V.Brunn,D.J.C.Gold,andW.E.L.Minter(1998),Earthsoldestreportedglaciation:PhysicalandchemicalevidencefromtheArcheanMozaanGroup(2.9Ga)ofSouthJ.Geol.,523538,doi:10.1086/516039.Zahnle,K.J.(1986),Photochemistryofmethaneandtheformationofhydrocyanicacid(HCN)intheEarthsearlyatmosphere,J.Geophys.Res.,28192834,doi:10.1029/JD091iD02p02819\FEULNER:THEFAINTYOUNGSUNPROBLEM28of29