/
Chapter Compactly Supp orted Radial Basis unctions As Chapter Compactly Supp orted Radial Basis unctions As

Chapter Compactly Supp orted Radial Basis unctions As - PDF document

marina-yarberry
marina-yarberry . @marina-yarberry
Follow
411 views
Uploaded On 2015-05-18

Chapter Compactly Supp orted Radial Basis unctions As - PPT Presentation

The compact supp ort automatically ensures that is strictly ositiv de57356nite Another observ ation as that compactly supp orted radial functions can strictly ositiv de57356nite on only for 57356xed max imal v alue It is not ossible for function to ID: 69314

The compact supp ort

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Chapter Compactly Supp orted Radial Basi..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Chapter4CompactlySupportedRadialBasisFunctionsAswesawearlier,compactlysupportedfunctionsthataretrulystrictlycondition-allypositivede niteoforderm�0donotexist.Thecompactsupportautomaticallyensuresthatisstrictlypositivede nite.Anotherobservationwasthatcompactlysupportedradialfunctionscanbestrictlypositivede niteonIRsonlyfora xedmax-imals-value.Itisnotpossibleforafunctiontobestrictlypositivede niteandradialonIRsforallsandalsohaveacompactsupport.Thereforewefocusourattentiononthecharacterizationandconstructionoffunctionsthatarecompactlysupported,strictlypositivede niteandradialonIRsforsome xeds.Accordingtoourearlierwork(Bochner'sTheoremandgeneralizationsthereof),afunctionisstrictlypositivede niteandradialonIRsifitss-variateFouriertransformisnon-negative.Theorem2.1.2givestheFouriertransformof='(kk)as^(x)=Fs'(r)=r(s2)=2Z10'(t)ts=2J(s2)=2(rt)dt:4.1OperatorsforRadialFunctionsandDimensionWalksSchabackandWu[564]de nedanintegraloperatoranditsinversedi erentialoperator,anddiscussedanentirecalculusforhowtheseoperatorsactonradialfunctions.Theseoperatorswillfacilitatetheconstructionofcompactlysupportedradialfunctions.De nition4.1.11.Let'besuchthatt7!t'(t)2L1[0;1),thenwede ne(I')(r)=Z1rt'(t)dt;r0:2.Foreven'2C2(IR)wede ne(D')(r)=1r'0(r);r0:Inbothcasestheresultingfunctionsaretobeinterpretedasevenfunctionsusingevenextension.37 Remark:NotethattheoperatorIdi ersfromtheoperatorIintroducedearlierbyafactortintheintegrand.However,thetwooperatorsarerelated.Infact,wehaveI'(2=2)=I'(),i.e.,Z1rt'(t2=2)dt=Z1r2=2'(t)dt:Themostimportantpropertiesoftheseoperatorsare(see,e.g.,[564]or[627]):Theorem4.1.21.BothDandIpreservecompactsupport,i.e.,if'hascompactsupport,thensodoD'andI'.2.If'2C(IR)andt7!t(t)2L1[0;1),thenDI'='.3.If'2C2(IR)isevenand'02L1[0;1),thenID'='.4.Ift7!ts1'(t)2L1[0;1)ands3,thenFs(')=Fs2(I').5.If'2C2(IR)isevenandt7!ts'0(t)2L1[0;1),thenFs(')=Fs+2(D').TheoperatorsIandDallowustoexpresss-variateFouriertransformsas(s2)-or(s+2)-variateFouriertransforms,respectively.Inparticular,adirectconsequenceoftheabovepropertiesandthecharacterizationofstrictlypositivede niteradialfunc-tions(Theorem2.4.1)isTheorem4.1.31.Suppose'2C(IR).Ift7!ts1'(t)2L1[0;1)ands3,then'isstrictlypositivede niteandradialonIRsifandonlyifI'isstrictlypositivede niteandradialonIRs2.2.If'2C2(IR)isevenandt7!ts'0(t)2L1[0;1),then'isstrictlypositivede niteandradialonIRsifandonlyifD'isstrictlypositivede niteandradialonIRs+2.Thisallowsustoconstructnewstrictlypositivede niteradialfunctionsfromgivenonesbya\dimension-walk"techniquethatstepsthroughmultivariateEuclideanspaceinevenincrements.4.2Wendland'sCompactlySupportedFunctionsIn[627]Wendlandconstructedapopularfamilyofcompactlysupportedradialfunctionsbystartingwiththetruncatedpowerfunction(whichweknowtobestrictlypositivede niteandradialonIRsfors2`1),andthenwalkingthroughdimensionsbyrepeatedlyapplyingtheoperatorI.De nition4.2.1With'`(r)=(1r)`wede ne's;k=Ik'bs=2c+k+1:Itturnsoutthatthefunctions's;kareallsupportedon[0;1]andhaveapolynomialrepresentationthere.Moreprecisely,38 Theorem4.2.2Thefunctions's;karestrictlypositivede niteandradialonIRsandareoftheform's;k(r)=ps;k(r);r2[0;1];0;r�1;withaunivariatepolynomialps;kofdegreebs=2c+3k+1.Moreover,'s;k2C2k(IR)areuniqueuptoaconstantfactor,andthepolynomialdegreeisminimalforgivenspacedimensionsandsmoothness2k.Wendlandgaverecursiveformulasforthefunctions's;kforalls;k.Weinsteadlisttheexplicitformulasof[195]Theorem4.2.3Thefunctions's;k,k=0;1;2;3,havetheform's;0(r)=(1r)`;'s;1(r):=(1r)`+1+[(`+1)r+1];'s;2(r):=(1r)`+2+(`2+4`+3)r2+(3`+6)r+3;'s;3(r):=(1r)`+3+(`3+9`2+23`+15)r3+(6`2+36`+45)r2+(15`+45)r+15;where`=bs=2c+k+1,andthesymbol:=denotesequalityuptoamultiplicativepositiveconstant.Proof:Thecasek=0followsdirectlyfromthede nition.Applicationofthede nitionforthecasek=1yields's;1(r)=(I'`)(r)=Z1rt'`(t)dt=Z1rt(1t)`+dt=Z1rt(1t)`dt=1(`+1)(`+2)(1r)`+1[(`+1)r+1];wherethecompactsupportof'`reducestheimproperintegraltoade niteintegralwhichcanbeevaluatedusingintegrationbyparts.TheothertwocasesareobtainedsimilarlybyrepeatedapplicationofI.Examples:Fors=3wegetsomeofthemostcommonlyusedfunctionsas'3;0(r)=(1r)2;2C0\SPD(IR3)'3;1(r):=(1r)4(4r+1);2C2\SPD(IR3)'3;2(r):=(1r)635r2+18r+3;2C4\SPD(IR3)'3;3(r):=(1r)832r3+25r2+8r+1;2C6\SPD(IR3):39 4.3Wu'sCompactlySupportedFunctionsIn[656]Wupresentsanotherwaytoconstructstrictlypositivede niteradialfunctionswithcompactsupport.Hestartswiththefunction (r)=(1r2)`;`2IN;whichisstrictlypositivede niteandradialsinceweknowthatthetruncatedpowerfunction (p)ismultiplymonotone.Wuthenconstructsanotherfunctionthatisstrictlypositivede niteandradialonIRbyconvolution,i.e., `(r)=(  )(2r)=Z11(1t2)`(1(2rt)2)`+dt=Z11(1t2)`(1(2rt)2)`dt:Thisfunctionisstrictlypositivede nitesinceitsFouriertransformisessentiallythesquareoftheFouriertransformof .JustliketheWendlandfunctions,thisfunctionisapolynomialonitssupport.Infact,thedegreeofthepolynomialis4`+1,and `2C2`(IR).Now,afamilyofstrictlypositivede niteradialfunctionsisconstructedbyadi-mensionwalkusingtheDoperator,i.e., k;`=Dk `:Thefunctions k;`arestrictlypositivede niteandradialinIRsfors2k+1,arepolynomialsofdegree4`2k+1ontheirsupportandinC2(`k)intheinteriorofthesupport.OntheboundarythesmoothnessincreasestoC2`k.Example:For`=3wecancomputethethreefunctions k;3(r)=Dk 3(r)=Dk((12)3(12)3)(2r);k=0;1;2;3:Thisresultsin 0;3(r):=539r2+143r4429r6+429r7143r9+39r115r13+:=(1r)7(5+35r+101r2+147r3+101r4+35r5+5r6)2C6\SPD(IR) 1;3(r):=644r2+198r4231r5+99r733r9+5r11+:=(1r)6(6+36r+82r2+72r3+30r4+5r5)2C4\SPD(IR3) 2;3(r):=872r2+105r363r5+27r75r9+:=(1r)5(8+40r+48r2+25r3+5r4)2C2\SPD(IR5) 3;3(r):=1635r+35r321r5+5r7+:=(1r)4(16+29r+20r2+5r3)2C0\SPD(IR7):Remarks:1.ForaprescribedsmoothnessthepolynomialdegreeofWendland'sfunctionsislowerthanthatofWu'sfunctions.Forexample,bothWendland'sfunction'3;2andWu'sfunction 1;3areC4smoothandstrictlypositivede niteandradialinIR3.However,thepolynomialdegreeofWendland'sfunctionis8,whereasthatofWu'sfunctionis11.40 10.40.8r0.51-1-0.50010.60.80r10-10.20.5-0.510.80.600.2r10.50-1-0.5Figure4.1:PlotofWendland'sfunctions(left),Wu'sfunctions(center),andBuhmann'sfunction(right)listedasexamples.2.Whilebothfamiliesofstrictlypositivede nitecompactlysupportedfunctionsareconstructedviadimensionwalk,Wendlandusesintegration(andthusobtainsafamilyofincreasinglysmootherfunctions),whereasWuneedstostartwithafunctionofsucientsmoothness,andthenobtainssuccessivelylesssmoothfunctions(viadi erentiation).4.4Buhmann'sCompactlySupportedFunctionsAthirdfamilyofcompactlysupportedstrictlypositivede niteradialfunctionsthathasappearedintheliteratureisduetoBuhmann(see[84]).Buhmann'sfunctionscontainalogarithmicterminadditiontoapolynomial.Hisfunctionshavethegeneralform(r)=Z10(1r2=t)t (1t)dt:Here012,1,andinordertoobtainfunctionsthatarestrictlypositivede niteandradialonIRsfors3theconstraintsfortheremainingparametersare0,and1 12.Example:Anexamplewith ==12,=1and=2islistedin[85]:(r):=12r4logr21r4+32r312r2+1;0r1;2C2\SPD(IR3):Remarks:1.WhileBuhmann[85]claimsthathisconstructionencompassesbothWendland'sandWu'sfunctions,Wendland[634]givesanevenmoregeneraltheoremthatshowsthatintegrationofapositivefunctionf2L1[0;1)againstastrictlyposi-tivede nite(compactlysupported)kernelKresultsina(compactlysupported)strictlypositivede nitefunction,i.e.,'(r)=Z10K(t;r)f(t)dt41 isstrictlypositivede nite.Buhmann'sconstructionthencorrespondstochoosingf(t)=t (1t)andK(t;r)=(1r2=t).2.MultiplymonotonefunctionsarecoveredbythisgeneraltheorembytakingK(t;r)=(1rt)k1+andfanarbitrarypositivefunctioninL1sothatd(t)=f(t)dtinWilliamson'scharacterizationTheorem2.6.2.Also,functionsthatarestrictlypositivede niteandradialinIRsforalls(orequivalentlycompletelymonotonefunctions)arecoveredbychoosingK(t;r)=ert.42