/
IEEEJOURNALOFSOLID-STATECIRCUITS,VOL.30,NO.2,FEBRUARY1995 IEEEJOURNALOFSOLID-STATECIRCUITS,VOL.30,NO.2,FEBRUARY1995

IEEEJOURNALOFSOLID-STATECIRCUITS,VOL.30,NO.2,FEBRUARY1995 - PDF document

marina-yarberry
marina-yarberry . @marina-yarberry
Follow
377 views
Uploaded On 2016-03-16

IEEEJOURNALOFSOLID-STATECIRCUITS,VOL.30,NO.2,FEBRUARY1995 - PPT Presentation

abFig2MOSdevicestructuresaregularbringshaped a Fig3RingshapedNMOSdevicecharacteristicsafrom0to3Vin05Vstepsbfrom1Vto3Vin1VstepsFigs3and4depictthemeasuredIVcharacteristicso ID: 258075

(a)(b)Fig.2.MOSdevicestructures (a)regular (b)ring-shaped. (a) Fig.3.Ring-shapedNMOSdevicecharacteristics (a)from0to3Vin0.5Vsteps) (b)from1Vto3Vin1Vsteps).Figs.3and4depictthemeasuredIVcharacteristicso

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "IEEEJOURNALOFSOLID-STATECIRCUITS,VOL.30,..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

IEEEJOURNALOFSOLID-STATECIRCUITS,VOL.30,NO.2,FEBRUARY1995 (a)(b)Fig.2.MOSdevicestructures,(a)regular,(b)ring-shaped. (a) Fig.3.Ring-shapedNMOSdevicecharacteristics,(a)from0to3Vin0.5Vsteps),(b)from1Vto3Vin1Vsteps).Figs.3and4depictthemeasuredIVcharacteristicsofring-shapedNMOSandPMOSdeviceswithdrawndimensions m 0.1 m.Wenotethat mV, mV,andtheNMOSandPMOSsubthresholdslopesare85mV/decand90mV/dec,respectively.Whilethedevicesandcircuitshavebeensuccessfullycharacterizedforsupplyvoltagesashighas3V,long-termreliabilityissuessuchashotelectroneffectsandgatetunnelingcurrentstypicallylimittheoperatingvoltagetoapproximately2V. (a) Fig.4.Ring-shapedPMOSdevicecharacteristics,(a)3Vin0.5Vsteps),(b)1Vto3Vin1Vsteps).Sincethering-shapedgeometryofFig.2(b)suffersfromalargesourcejunctioncapacitance,itprovesbene cialifonlythedrainterminalappearsinthecriticalsignalpath.Thus,circuittopologiessuchaspasstransistorsorstackeddevicescannotbeusedef ciently.Thisobservationcanbesummarizedasadesignconstraintforcircuitsusingring-shapedstructures:nopathfromhigh-speednodestothesupplyrailsmayincludeseriesdevices.Inaddition,itisdesirabletoavoidthegate-channelcapacitanceofPMOStransistorsinthecriticalpathbecausethetrade-offbetweentheirtransconduc-tanceandinputcapacitancelimitsthemaximumachievableTheprincipalchallengeindesigningthecircuitsdescribedherehasbeentodeveloptopologiesthatperformtherequiredfunctionswhilecomplyingwiththeaboveconstraints.III.FA.ArchitectureThe1/2frequencydivideremploystwo -latchesinamaster-slavecon gurationwithnegativefeedback.Inhigh- RAZAVIetal.:DESIGNOFHIGH-SPEED,LOW-POWERFREQUENCYDIVIDERS (a) Fig.5.Master-slavedividerswith,(a)singleclock,(b)complementaryspeedmaster-slavedividers,itiscommonpracticetodesigntheslaveastheªdualºofthemaster[Fig.5(a)]sothattheycanbebothdrivenbyasingleclock[5].However,dualityrequiresoneofthelatchestoincorporatePMOSdevicesinthesignalpath,henceloweringthemaximumspeed.Toavoidthisdif culty,asshowninFig.5(b),thedividerutilizestwoidentical -latchesthataredrivenbycomplementary and .Inordertominimizetheskewbetween and ,thenoninvertedphaseisdelayedbymeansofacomplementarypassgatehavingdevicesidenticalwiththoseinthemaster.Althoughtheskewincreasesastheinputtransitiontimebecomescomparablewiththeperiod,simulationsindicatethatitislessthan10psfora13GHzsinusoidalinput.NotethatthepassgateusedhereisnotinthedividerloopandhencedoesnotviolatetheconstraintdescribedinSectionII.Thecapacitanceseenattheinputofthisgatesimplycontributeslatencytothecircuit.B.CircuitDetailsFig.6depictsthedividercircuit.Eachlatchconsistsoftwosensedevices( and inthemasterand and theslave),aregenerativeloop( and inthemasterand and intheslave),andtwopull-updevices( and inthemasterand and intheslave).When ishigh, and areoffandthemasterisinthesensemode,while and areonandtheslaveisinthestoremode.When goeslow,thereverseoccurs.Notethatthecircuitusesnostackedorpasstransistors.Also,thegate-channelcapacitanceofthePMOStransistorshardlyaffectsthecriticalpathbecausethesedevicesare(velocity)saturatedalmostfortheentirevoltageswingatnodes ,and .(Atmaximumspeed,theseswingsarenotrail-to-rail.)Incontrastwithconventionallatchtopologies,the circuitusedinthisdividerdoesdisableitsinputdeviceswhenitgoesfromthesensemodetothestoremode.Whilethiswouldposetimingproblemsinageneraldigitalcircuit, Fig.6.Dividercircuit. Fig.7.Dividersimulatedwaveforms.itdoesnotpreventthedividerfromfunctioningproperly.Toexplainthereason,wemaketwoobservations.First,sincetheinputdevicesofeachlatchare -type,theycanchangethestateonlyifoneoftheinputsgoesfromlowtohigh(andtheotherfromhightolow).Second,wheneachlatchisinthesensemode,neitherofitsoutputscangofromlowtohighbecausethePMOSpull-updevicesareoff.Thus,if,forexample,themasterisinthesensemodeandtheslaveinthestoremode,themaster'soutputscanonlygofromhightolowandhencecannotoverridethestatestoredintheslave.ShowninFig.7arethedivider'ssimulatedwaveformsat1GHzclockfrequency.WhenthePMOSdevicesareon,they IEEEJOURNALOFSOLID-STATECIRCUITS,VOL.30,NO.2,FEBRUARY1995 Fig.8.Simulatedspeedofthreedividertopologiesversussupplyvoltage. Fig.9.Dividerdiephotograph.slightlydegradethelogiclowlevelandalsoprovideacurrentpathfrom toground,therebydissipatingstaticpower.Notethatinthesensemode,bothoutputsofeachlatcharelow,onebeingpulledlowbyaninputdeviceandtheothermaintainingalowstatefromthepreviouscycle.UsingsimulationsbasedonourCMOSdevicemodels,wehavecomparedtheperformanceoftheproposeddividertopologywiththatoftwohigh-speeddividersreportedin[5]and[6].PlottedinFig.8isthemaximumclockfrequencyofeachcircuit, ,asafunctionofsupplyvoltage,indicatingatleastafactoroftwoimprovementinspeed.Thehigherspeedoftheproposeddividerisduetothestrongpositivefeedbackineachlatchaswellasfewerstagesinthecriticalsignalpath.Notethatifregular,ratherthanring-shaped,devicesareusedhere,thespeeddecreasesbyapproximately20%. (a) Fig.10.Measureddividerinput/outputwaveformsfor(a)=10C.ExperimentalResultsThedividerhasbeenfabricatedinour0.1 mCMOStechnology.Fig.9showsaphotographofthedie,whoseactiveareameasuresapproximately50 m m.Forinputtermination,three -wellresistorsareusedinparallelsothattheycanbedisconnectedonebyonetoprovideanapproximatevalueof50 .Thecircuithasbeentestedonwafer(atroomtemperature)usingahigh-speedPicoprobetoapplytheinputandaCascademulticontactprobetomeasuretheoutputaswellasprovidepowerandgroundconnections.Noattempthasbeenmadetogeneratelargeoutputswingsoffthechipasthesetupprovidessuf cientlyhighsignal-to-noiseratio,allowingdirectmeasurementofamplitudesinthemillivoltrange.Theoutputstageofthecircuitissimplya3 m 0.1 mNMOStransistordrivinga50 ShowninFig.10(a),(b),and(c)arethemeasuredinputandoutputwaveformsofthedividerat 5,10,and13.4GHz, RAZAVIetal.:DESIGNOFHIGH-SPEED,LOW-POWERFREQUENCYDIVIDERS Fig.10.=13GHz(inputamplitudenottoscale). Fig.11.Measureddividerspeedversussupplyvoltage. Fig.12.Dividerpower-speedtrade-off.respectively.Inthismeasurement,thesupplyvoltageis2.6Vandtheinputamplitudeisrail-to-rail.For 13.4GHz,thecircuitbeginstomisspulsesanddividesbythree.Inordertoassessthelow-voltageperformanceofthecircuit,thesupplyvoltagewasvariedfrom1.2to2.6V,yieldingthe variationdepictedinFig.11.Thedividerexhibitsan of5GHzat 1.2Vand10GHzat 2V.Asacomparison,the0.1 mSOIimplementationin[5]achievesan of2.6GHzat 2V.TheslightdifferencebetweensimulatedandmeasuredresultsofFigs.8and11isattributedtoinaccuraciesinthedevicemodelsusedinsimulations. Fig.13.Phase-lockedlooparchitecture. Fig.14.Current-controlledoscillator.Themeasuredspeed-powertrade-offoftheprototype(in-cludingI/Obuffers)isshowninFig.12.Thecircuitdissipates2.6mWat5GHz(with V)and28mWat13.6GHz(with Sincetheprimarygoalofthisdesignhasbeentoachieveahighspeed,allthedevicesarering-shapedandhencehaveaminimumwidthof8.8 m.Forclockfrequenciesbelow10GHz,adesignemployingsmallerdevicescanfurtherreducethepower.IV.PA.ArchitectureThePLLarchitectureisshowninFig.13.Itconsistsofaninputbufferandaloopcomprisingamixer,alow-pass lter(LPF),acurrentampli er,andacurrent-controlledoscillator(CCO).Theoscillatoroutputdrivesanopen-drainNMOSdevice,deliveringafewmilliamperesofcurrenttoanexternal TheinputbufferisdesignedsoastopresentthesamewaveformandimpedancetothemixerasdoestheVCO.Thisreducesthestaticphaseerrorbecauseathighspeeds,theoutputofmixersbecomessensitivetoboththewaveformandthedrivingimpedanceseenattheirinputs.WhileitisdesirabletoimplementthePLLindifferentialformsoastosuppresstheeffectofcommon-modenoise,lowsupplyvoltages( 3V)limittheheadroom,makingitdif culttoutilizedifferentialcontrolforCMOSoscillators.Thus,thePLLcircuitissingle-ended,butitemployscurrent-modecontrolsignalstolowerthesensitivitytosupplyandsubstratenoise.B.CircuitDetailsFig.14showsthecurrent-controlledoscillatorcircuit.Usingathree-stageringoscillatorwithcontrolledPMOScurrentsourcesasloads,theCCOachievesbothawidetuningrangeandamaximumspeedrelativelyindependentofPMOSdevice IEEEJOURNALOFSOLID-STATECIRCUITS,VOL.30,NO.2,FEBRUARY1995 Fig.15.Mixer-LPF-currentampli er.characteristics.SincethevoltageswingsintheCCOarenotrail-to-rail,thePMOSloadsareinsaturationforthemostpartandhencetheirgate-channelcapacitancehasnegligibleeffectonthespeed.Also,withasmallspeedpenalty,thetransconductanceofthePMOSransistorscanbeminimizedtoreducetheircontributiontotheCCOphasenoise.Notethatallthedevicesarering-shapedhere.Astheoscillatoremploysacurrent-modecontrolsignal,itachievesarelativelylowsensitivitytocommon-modeeffects.Simulationsindicatethatthesensitivityoftheoscillationperiodtothesupplynoiseis30timeslessthanthatofthecasewherethePMOSloadsarecontrolledbyavoltage.Fig.15depictsthemixer-LPF-ampli ercascade.Transistors ± constituteanexclusiveNOR(XNOR)gate, and formtheLPF,and ± operateasacurrentampli er.Thebiasvoltage isapproximatelyequalto and functionsascoarsefrequencycontrol.TounderstandtheoperationoftheXNORgate,notethatwhen islow,only and areactiveand .Similarly,when islow, .Thus, IncontrasttotheconventionalCMOSXOR[3],thepro-posedmixerhastwoadvantages:1)itisinherentlysymmetricwithrespecttoinputs and ,andhencefreefromsystematicphaseerror;2)itdoesnotrequirecomplementaryinputs,relaxingthedesignwithhigh-speedCMOSsignals.Thecircuitincorporatesthering-shapedgeometryforallthedevices,withtheirlow-capacitanceterminalsconnectedtonodes and EmployingonlyNMOStransistorsforhighspeedandhighmixinggain,thistopologydissipatessomestaticpowerwhen or ishigh,anonethelessminorissueatanoperatingspeedof3GHz.Aninterestingissuerelatedtomixingarisesindeepsub-micronCMOStechnologies.Whileforchannellengthsofapproximately1 mandabove,itispossibletodesignsmall-signalmixersbasedonthesquare-lawMOSI-Vcharacteristics[8],velocitysaturationinsubmicronCMOSmakesitdif- culttoachievesmall-signalmixing.Thisisbecausethesmall-signaltransconductanceofshort-channelMOSFET'sisrelativelyindependentoftheirbiascurrent[9]andhencecanhardlybemodulatedbysmall-signalvariationsinthatcurrent.Thus,short-channelMOSmixersrequirelargeinputsignalsatleastatoneoftheirinputs,animportantissueindesigningandinterfacingtheCCOandthemixer.(Incontrast,bipolartransistorscanperformsmall-signalmixingeveninhighlyscaledtechnologiesbecausetheircharacteristicsremainclosetoexponential.) Fig.16.SimulatedcontrolcurrentofPLLduringcapture.C.DesignConsiderationsAnimportantissueinthedesignofPLL'sisthechoiceoftheclosed-loopbandwidthandtheloop lter.Inadditiontothecapturerange,twosourcesofnoisemustbeconsideredinsettingthebandwidth:theinputphasenoiseandtheoscillatorphasenoise.Toreducetheinputphasenoise,thePLLmustoperateasanarrow-band lter,whereastosuppresstheoscillatorphasenoise,theloopmustbesuf cientlyfastsoitcancorrectrandomvariationsintheoscillatorperiod.Fromtheaboveobservation,wenotethatthechoiceoftheloopbandwidthdependsontheapplicationaswellasthetechnology.Forexample,iftheoscillatorincorporates resonantdevices,its(free-running)phasenoisecanbesmallandthePLLmaybedesignedasanarrow-band ltertominimizetheinputphasenoise.Ontheotherhand,fully-monolithicoscillatorswithouthigh- componentsexhibitsub-stantialphasenoise,demandingalargeloopbandwidth.Inthisdesign,a(simulated)closed-loopbandwidthofapproximately200MHzhasbeenchosentolowertheCCOnoise.Theloop lterdeterminesboththebandwidthandthesettlingbehaviorofthePLL.InthecircuitofFig.15,theloop ltertransferfunction,de nedasthesmall-signaldraincurrentof dividedbytheoutputcurrentofthemixer,isgivenby (1)where and (20MHz).ThesimulatedcapturebehaviorofthePLLisdepictedinFig.16.Sincethenondominantpolesofthelooparequitelarge,theyhavelittleeffectontheclosed-loopsettlingbehavior.Whilehigherorderpolescanbecancelledbyaddingzero(s)totheloop lter,thisPLLincludesnozerosbecause,atthetimeitwasdesigned,neitherresistorsnoraccuratedevicemodelswereavailable.D.ExperimentalResultsThePLLhasbeenfabricatedinour - mCMOSprocess.ShowninFig.17isadiephotograph.Theactivearea(exclud-ingtheloopcapacitor)isapproximately60 m 100 m.For RAZAVIetal.:DESIGNOFHIGH-SPEED,LOW-POWERFREQUENCYDIVIDERS Fig.17.PLLdiephotograph.inputtermination,thesamearrangementasthedividerhasbeenused.Thecircuithasbeentestedonwaferusinghigh-speedPicoprobestoapplytheinputandsensetheoutputandaCascademulti-contactprobetoprovidepowerandgroundconnections.Alltestsareperformedatroomtemperaturewithasupplyvoltageof2.8V.Fig.18(a)and(b)showsthe3GHzoutputwaveformanditsjitterhistogram,respectively.Thejitteris2.5psrmsand20pspeak-to-peak.ThePLL(includingtheI/Obuffers)dissipates25mWatthisfrequency.Fora1.5-V inputsignal,thetrackingrangeis andthecapturerangeis MHz.ThePLLspeedandtheupperendofthetrackingrangearelimitedbytheCCOmaximumfrequency.Asthecontrolcurrentincreases,thePMOSloadsenterthetrioderegionforagreaterpartoftheswing,theequivalentgainofeachstagedrops,andthecircuiteventuallyfailstooscillate.Fig.19plotsthemaximumachievableoperatingfrequencyofthePLLversusthesupplyvoltageandFig.20showsthecorrespondingpowerdissipation.Themeasuredcapturerangeat3GHzasafunctionoftheinputsignalpowerisdepictedinFig.21.ThePLLoutputhasalsobeenexaminedinthefrequencydomain.Fig.22illustratestheCCOfree-runningoutput,indi-catingarelativelywidespectrumandhighphasenoise.Theoutputisdramaticallyimprovedinthelockmode,asshowninFig.23,exhibitingasharpspectrallineat3GHz.ThephasenoisecanbemeasuredfromFig.24tobeapproximately 100dBc/Hzat40kHzoffset. (a) Fig.18.PLLoutputat3GHz,(a)time-domainwaveform,(b)jitterhis- Fig.19.MaximumachievableoperatingfrequencyofPLLversussupplyV.CDeepsubmicronCMOSdevicesexhibitpromisingcapabil-itiesforhigh-performancecommunicationcircuits.ThelowsupplyvoltageandlowpowerofCMOStechnologieshave IEEEJOURNALOFSOLID-STATECIRCUITS,VOL.30,NO.2,FEBRUARY1995 Fig.20.PLLpower-speedtrade-off. Fig.21.PLLcapturerangeversusinputsignalpowerat3GHz. Fig.22.PLLoutputspectrumwithfree-runningCCO(horizontalscaleMHz/div.,verticalscale=10dB/div.,resolutionbandwidthmadethemcontenderstosiliconbipolarandIII-Vdevicesevenatmulti-gigahertzspeeds.Wehavedemonstratedthispotentialina13.4GHz28mWfrequencydivideranda3GHz25mWphase-lockedloop.Usingamaster-slavecon guration,thedividercanoperatewithsupplyvoltagesaslowas1.2V,atwhichitsmaximumspeedis5GHz.ThePLLincorporatesacurrent-controlledoscillatorandafullysymmetricmixertoachieveatrackingrangeof MHzandanrmsjitterof2.5ps. Fig.23.PLLoutputspectruminthelockmode(horizontalscaleMHz/div.,verticalscale=10dB/div.,resolutionbandwidth=10 Fig.24.PLLoutputspectruminthelockmode(horizontalscale=50kHz/div.,verticalscale=10dB/div.,resolutionbandwidthTheauthorswishtothankR.Swartzforstimulatingdis-cussionsandD.Jeon,G.Chin,Y.Kim,E.Westerwick,andM.Morrisforfabricationsupport.[1]B.Razavi,K.F.Lee,andR.H.Yan,ªA13.4-GHzCMOSfrequencyISSCCTech.Dig.,pp.176±177,Feb.1994.[2]B.Razavietal.,ªA3-GHz25-mWCMOSphase-lockedloop,ºCircuitsSymp.Dig.,pp.131±132,June1994.[3]K.F.Leeetal.,ªRoomtemperature0.1-mCMOStechnologywith11.8psecgatedelay,ºIEDMTech.Dig.,pp.131±134,Dec.1993.[4]B.Razavi,R.H.Yan,andK.F.Lee,ªImpactofdistributedgateresistanceontheperformanceofMOSdevices,ºtobepublishedinIEEETrans.CircuitsSyst.ÐPartI,vol.41,pp.750±754,Nov.1994.[5]M.Fujishimaetal.,ªLow-power1/2frequencydividersusing0.1-CMOScircuitsbuiltwithultrathinSIMOXsubstrates,ºIEEEJ.Solid-StateCircuits,vol.28,pp.510±512,April1993.[6]J.YuanandC.Svensson,ªHigh-speedCMOScircuittechnique,ºJ.Solid-StateCircuits,vol.24,pp.62±70,Feb.1989.[7]K.M.Ware,H.S.Lee,andC.G.Sodini,ªA200-MHzCMOSphase-lockedloopwithdualphasedetectors,ºIEEEJ.Solid-StateCircuits,vol.24,pp.1560±1568,Dec.1989. RAZAVIetal.:DESIGNOFHIGH-SPEED,LOW-POWERFREQUENCYDIVIDERS[8]Z.Wang,ªACMOSfour-quadrantanalogmultiplierwithsingle-endedvoltageoutputandimprovedtemperatureperformance,ºIEEEJ.Solid-StateCircuits,vol.26,pp.1293±1301,Sept.1991.[9]S.M.Sze,PhysicsofSemiconductorDevices,2nded.NewYork:Wiley,1981. BehzadRazavi(S'87±M'91)receivedtheB.Sc.degreeinelectricalengineeringfromTehran(Sharif)UniversityofTechnology,Tehran,Iran,in1985,andtheM.Sc.andPh.D.degreesinelectricalengineer-ingfromStanfordUniversity,Stanford,CA,in1988and1991,respectively.HeworkedatTektronix,Inc.,Beaverton,OR,duringthesummerof1988onthedesignofhigh-speeddataacquisitionsystems,andwasaResearchAssistantattheCenterforIntegratedSystems,Stan-fordUniversity,from1988to1991.SinceDecember1991hehasbeenaMemberofTechnicalStaffatAT&TBellLaboratories,Holmdel,NJ,wherehisresearchinvolvesintegratedcircuitdesignforcommu-nicationsystems.Hiscurrentinterestsincludedataconversion,clockrecovery,frequencysynthesis,andlow-voltagelow-powercircuits.Dr.RazavihasbeenaVisitingLectureratPrincetonUniversity,Princeton,NJ,andStanfordUniversity.HeisalsoamemberoftheTechnicalProgramCommitteeoftheInternationalSolid-StateCircuitsConference.HehasservedasGuestEditortotheIEEEJOURNALOFTATEInternationalJournalofHighSpeedElectronicsandiscurrentlyanAssociateEditorofJSSC.HereceivedtheBeatriceWinnerAwardforEditorialExcellenceatthe1994ISSCC.HeistheauthorofthebookPrinciplesofDataConversionSystemDesign(IEEEPress,1995)andeditorofPhase-LockedLoopsandClockRecoveryCircuitstobepublishedbyIEEEPressin1995. KwingF.Lee(S'79±M'82)receivedtheB.S.de-greeinphysicsfromtheMassachusettsInstituteofTechnology,Cambridge,MA,in1976,andthePh.D.degreeinappliedphysicsfromStanfordUni-versity,Stanford,CA,in1982.In1982hejoinedtheHighSpeedElectronicsResearchDepartmentatBellLaboratories,Holmdel,NJ.HeiscurrentlywiththeULSITechnologyResearchDepartmentatBellLaboratories,MurrayHill,NJ.Hisresearchinterestisinhigh-speedsilicondevicesandtechnology. Ran-HongYanreceivedtheB.S.degreeinelec-tricalengineeringfromNationalTaiwanUniversityandthePh.D.degreeinelectricalandcomputerengineeringfromtheUniversityofCalifornia,SantaBarbarawherehewasinvolvedinoptoelectronicdevicesandmaterialstudiesforopticalcommuni-cationsandinformationprocessing.HejoinedtheMicrophysicsResearchDepartmentofAT&TBellLaboratoriesin1990wherehehasbeenworkingonvariousaspectsofSielectronicsresearchincludingMOStransistorscaling,highperformancedevices,novelprocessingtechniquesfordeepsubmicronCMOStechnology,andtechnology,circuit,andsoftware/systemimplicationsoflow-powerelectronics.Hehasauthoredorco-authoredmorethan80researchpapersincludingonebookchapter,andhas veissuedorpendingpatents.Dr.YanhasbeenaGuestEditorofProceedingsoftheIEEE,andservedonthetechnicalprogramcommitteeofBipolar/BiCMOSCircuitsandTechnologyMeetingandUltrafastElectronicsandOptoelectronicsConference.Hewastheorganizerfor1993IEEESolid-StateCircuitsandTechnologyCommitteeWorkshoponLowPowerElectronicsandthetechnicalprogramchairmanforthe1994SymposiumonLowPowerElectronics.HeisamemberoftheAmericanPhysicalSociety. IEEEJOURNALOFSOLID-STATECIRCUITS,VOL.30,NO.2,FEBRUARY1995DesignofHigh-Speed,Low-PowerFrequencyDividersandPhase-LockedLoopsinDeepSubmicronCMOSBehzadRazavi,Member,IEEE,KwingF.Lee,Member,IEEE,andRanH.YanAbstractÐDeepsubmicronCMOStechnologiesofferthehighspeedandlowpowerdissipationrequiredinmultigigahertzcommunicationsystemssuchasopticaldatalinksandwirelessproducts.Thispaperintroducesthedesignoftwocommunicationcircuits,namelya1/2frequencydividerandaphase-lockedloop,fabricatedinapartiallyscaled0.1 Fig.1.CrosssectionofanNMOSdeviceinpartiallyscaledCMOSprocess.experimentalresultsofthefrequencydivideraredescribed,andinSectionIVthePLLcircuitdetailsandmeasuredperformancearepresented.II.TVERVIEWANDScalingMOSFET'stodeepsubmicrondimensionsentails mandthegateoxidethicknessto40A.Theremainingdimensionsroughlycorrespondtoatypical1 mprocess,yieldingaminimumsource/drainareaof2.2 m 2.2 m[Fig.2(a)].Sincethecontributionofsource/drainjunctioncapacitanceissubstantial,theregularstructureofFig.2(a)doesnottakefulladvantageofthedrivecapabilityprovidedbypartialscaling.Toresolvethisissue,ring-shapedtransistorssuchasthatinFig.2(b)canbeused.Inthisgeometry,theratiooftheequivalentwidthandthedrainjunctioncapacitanceisapproximatelyfourtimesthatofFig.2(a).Also,theeffectofdistributedgateresistanceisreduced,animportantissueinwide,short-channelMOSFET's[4].1995IEEE