/
RESEARCH Open Access HTLVinfected CD Tcells display alternative exon usages that culminate RESEARCH Open Access HTLVinfected CD Tcells display alternative exon usages that culminate

RESEARCH Open Access HTLVinfected CD Tcells display alternative exon usages that culminate - PDF document

marina-yarberry
marina-yarberry . @marina-yarberry
Follow
462 views
Uploaded On 2015-03-13

RESEARCH Open Access HTLVinfected CD Tcells display alternative exon usages that culminate - PPT Presentation

We hypothesized that besides these quantitative transcriptional effects HTLV1 qualitatively mo difies the pattern of cellular gene expression Results Exon expression analysis shows that patients untransformed and malignant HTLV1 CD4 Tcells exhibit m ID: 44872

hypothesized that besides

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "RESEARCH Open Access HTLVinfected CD Tce..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

RESEARCHOpenAccess HTLV-1-infectedCD4+T-cellsdisplayalternative exonusagesthatculminateinadultT-cell leukemia MorganThénoz 1 ,CélineVernin 1 ,HusseinMortada 2 ,MarounKaram 1 ,ChristianePinatel 2 ,AntoineGessain 3 , ThomasRWebb 4 ,DidierAuboeuf 2 ,EricWattel 1,5,6* andFranckMortreux 1,6* Abstract Background: ReprogrammingcellulargenetranscriptionsustainsHTLV-1viralpersistencethatultimatelyleadsto thedevelopmentofadultT-cellleukemia/lymphoma(AT LL).Wehypothesizedthatbesidesthesequantitative transcriptionaleffects,HTLV-1qualitativelymo difiesthepatternofcellulargeneexpression. Results: Exonexpressionanalysisshowsthatpatients ’ untransformedandmalignantHTLV-1 + CD4 + T-cellsexhibit multiplealternateexonusage(AEU)events.Theseaffectei thertranscriptionallymodifiedorunmodifiedgenes, culminateinATLL,andunveilnewfuncti onalpathwaysinvolvedincancerandc ellcycle.Unsupervisedhierarchical clusteringofarraydatapermittedtoisolateexonexpressi onpatternsof3977exonsthat discriminateuninfected, infected,andtransformedCD4 + T-cells.Furthermore,untransformedinfectedCD4+clonesandATLLsamples shared486exonmodificationsdistributedin320 genes,therebyindicatingaroleofAEUsinHTLV-1 leukemogenesis.Exposingcellstosplicingmodulatorsre vealedthatSudemycinEredu cescellviabilityofHTLV-1 transformedcellswithoutaffectingprimarycontrolCD4+ cellsandHTLV-1negativecelllines,suggestingthatthe ewstargetsfortreatingATLL. Conclusions: Takentogether,thesedatarevealthatHTLV-1sig nificantlymodifiesthestructureofcellular transcriptsandunmasknewputativeleukemogeni cpathwaysandpossibletherapeutictargets. Keywords: HTLV-1,AdultT-cellleukemia,Alternativesplicing Background HTLV-1causeschronicinfectionthatreliesonthe persistentclonalexpansionofinfectedCD4 + andCD8 + T-cells.Reprogrammingofge netranscriptionsustains HTLV-1viralpersistenceandultimatelyleadstothe developmentofadultT-cellleukemia/lymphoma (ATLL)fromaCD4 + -infectedcloneinaminorityof carriersafteraprolongedlatency[1].Transcriptome analysesusingmicroarraytechnologyhasprovidedkey insightsintothebiologicalprocessesinvolvedinthe pre-malignantandmalignantexpansionofinfectedcells [2-14].HTLV-1hasbeenfoundtoderegulatetheexpres- sionofnumerousgenesinvolvedinkeycellularpathways suchasthecellcycle,apoptosis,telomeres/telomerase, DNArepair,andimmuneandinflammatoryresponses throughexpressionofthe Tax oncoprotein[2-6]. Recentworkshavehighlightedthatinadditionto theirquantitativeeffectsongeneexpression,numerous pathogenicprocesses,suchas persistentviralinfections [15]ortumordevelopment[16,17],relyonacquired ruses,alternativesplicingplaysapivotalroleinHTLV-1 expression.Fromits5 ’ LTR,HTLV-1transcribesasingle polycistronicpre-mRNAthatcodesforstructuraland enzymaticproteinsrequiredforviralparticleproduction. Thispre-mRNAalsoundergoesmultiplealternativespli- cingeventsthatgeneratemono-splicedtranscriptscoding *Correspondence: eric.wattel@ens-lyon.fr ; franck.mortreux@ens-lyon.fr 1 UniversitédeLyon1,CNRSUMR5239,OncovirologieetBiothérapies, LaboratoiredeBiologieMoléculairedelaCellule,FacultédeMédecineLyon Sud,PierreBénite,France 6 OncovirologieetBiotherapies,LaboratoiredeBiologieMoléculairedela Cellule,UMR5239CNRS/ENS,Lyon/UCBL/HCL;Ecolenormalesupérieurede Lyon,46,alléed ’ Italie;69364,Lyoncedex07,France Fulllistofauthorinformationisavailableattheendofthearticle ©2014Thénozetal.;licenseeBioMedCentral.ThisisanOpenAccessarticledistributedunderthetermsoftheCreative CommonsAttributionLicense(http://creativecommons.org/licenses/by/4.0),whichpermitsunrestricteduse,distribution,and reproductioninanymedium,providedtheoriginalworkisproperlycredited.TheCreativeCommonsPublicDomain Dedicationwaiver(http://creativecommons.org/publicdomain/zero/1.0/)appliestothedatamadeavailableinthisarticle, unlessotherwisestated. Thénoz etal.Retrovirology (2014) 11:119 DOI10.1186/s12977-014-0119-3 fortheregulatoryproteinsp21Rex,p12andp13,anddouble-splicedtranscriptscodingforTax,p27Rexandp30[18,19].Similarly,minus-strandtranscriptioninitiatedfromthe3LTRgeneratessplicedandunsplicedRNAisoformsofHBZthatsynthesizeHBZproteinswithdistinctpropertiesoncellproliferation[20-22].HowHTLV-1intervenesinal-ternativesplicingprocessesisstillincompletelyunderstood.IthasbeenreportedthattheRNA-bindingproteinRexregulatesviralsplicingthroughinteractingwithhostspli-cingmachinerytoinhibitviralRNAsplicingandexportunsplicedandsingle-splicedtranscripts[23-25].Gene-by-geneanalyseshavefurthershownthatHTLV-1mayaffectalternativesplicingofcellulargenesincludingCD44[26]andIL-6-andIL-2-receptors[27,28],proposingthatHTLV-1-inducedAEUsmightcontributetomolecularmechanismsthatunderlietheclonalexpansionandthema-lignanttransformationofinfectedcells.However,nosys-tematicstudyhasbeenhithertoconductedtoascertaintheextentofalternativesplicingmodificationsuponHTLV-1infection.Here,byusingintegrativeanalysisofexonexpres-sionprofilesandgeneontologyofCD4T-cellsderivedfrominfectedindividualswithandwithoutmalignancy,weshowthatHTLV-1inducesmultipleAEUalterationsthatunmasknewputativeleukemogenicpathwaysandpossibletherapeutictargets.ResultsanddiscussionComparativemicroarrayanalysisofexonexpressionpro-fileswasperformedwiththreeATLLsamplesand12untransformedCD4T-cellclones(sixinfected)derivedfromHTLV-1-infectedindividualswithnoclinicalsignsofmalignancy.ATLLsampleswereobtainedfrompatientswithanacuteformofATLL�(95%circulatingmalignantcells).CD4cloneswereobtainedthroughcloningbylimit-ingdilutionofperipheralbloodmononuclearcells(PBMCs)derivedfromthreeHTLV-1-infectedindividualswithtrop-icalspasticparaparesis/HTLV-1-associatedmyelopathywithadiseasedurationof6,11,and�26years.ThisstudywasconductedaccordingtotheprinciplesoutlinedintheDec-larationofHelsinki,andapprovedbytheInstitutionalRe-viewBoardoftheHospicesCivilsdeLyon(France).Aspreviouslydescribed[29,30],CD4clonesweresubmittedtoexvivocultureforonemonthpriortoHTLV-1screeningandRNAextraction.Atthistime,infectedanduninfectedcellsremainednon-immortalizedandrequiredIL-2forcon-tinuedgrowth.GiventhatinvitroT-cellactivationisknowntomodifyAEU[31,32],exonarrayanalysisofuntrans-formedCD4cloneswascarriedoutwithRNAsextractedfromunstimulatedandphytohemagglutinin(PHA)-stimu-latedCD4T-cells(Additionalfile1:TableS1).Bythisapproachthattakeintoaccounttheinvitrocellculture,weassumedthatsignificantchangesinexonexpressionbe-tweeninfectedanduninfectedclonesmainlyresultedfromtheglobalimpactofHTLV-1infection,irrespectiveofactivationstatus.Themicroarraydatahavebeendepos-itedintotointotheGeneExpressionOmnibusdatabaseandareavailableunderrecordnumberGSE52244.HTLV-1expressionwasassessedbyquantitativeRT-PCR(qRT-PCR)ofTaxtranscripts.Inaccordancewithpreviousreports,Taxtranscriptswereweaklydetectedin2outof3ATLLsamples(Additionalfile2:FigureS1)[33-35].Incomparison,therewasawiderangeofTaxbetweenclones(0.16-2.20;median,1.2;mean±standarddeviation[SD],1.172±0.799).Fromthesedata,weas-sumedthatHTLV-1samplesexhibitedtypicalfeaturesofuntransformed-andtransformed-infectedCD4T-cellsinvivo.Computationalanalysesof15exonarraysandannotationofexoneventswereachievedasdetailedinFigure1.Figure1Arepresentsthedistributionofquantita-tiveandqualitativegenemodificationsinuntransformedHTLV-1-infectedCD4clonesandATLLcells.Atotalof18/20(90%)array-predictedexonusageswerevalidatedbyexon-specificRT-PCR(Figures1CandD).Amongthose,wefoundalternativesplicingchangesinandCD44transcripts(Figure1C).ThesedataconfirmedandextendedpreviousobservationsindicatingthatIL2-RandCD44vari-antisoformsaredetectedinthePBMCofinfectedindivid-uals[26,28].Array-predictedchangesintranscriptabundancewerevalidatedbyqRT-PCRfor8/9(88%)genes(Additionalfile3:FigureS2).ToexaminetheglobalimpactofHTLV-1onAEUofT-cells,weinvestigatedAEUinuntransformedT-cellsbycomparingthepatternofexonexpres-sionininfectedversusuninfectedclones(Figure1A;Additionalfile1:TableS1).Overall,2201AEUeventswereidentifiedin1271genes,ofwhichonly656(51%)werefoundalteredatthelevelofwholegeneexpression.Thisdemonstratedthatinuntransformedcells,HTLV-1significantlymodifiestheexoncontentofmultipletran-scripts,consideringhalfofthesegenesweretranscrip-tionallyunmodified.Secondly,whenATLLsampleswerecomparedwithuninfectedclones,theoverallnumberofAEUeventswasfoundtobe11-fold(23504versus2201)higherthanthatdistinguishingHTLV-1-positivefrom-negativeuntransformedCD4T-cells(Figure1A).Inadditiontothisquantitativedifference,theproportionofAEUeventsfoundindifferentiallyexpressedgeneswassignificantlyhigherinATLLsamples(72%versus51%inuninfectedclones;p0.0001,PearsonsChi-squaredtest;Figure1A).Togethertheseresultsindicatethatthedis-tributionofAEUalterationswassignificantlydifferentbetweenATLLandHTLV-1-positiveuntransformedcells.ThecomparativeanalysisofAEUbetweenthetwocat-egoriesofinfectedcellsrevealedthatinfectedCD4clonesandATLLsamplesshared486AEUsin329genes(p=1.83×10,Hypergeometrictest),suggestingthat22%ofAEUsarisingatthechronicstageofinfectionmightpertaintoATLLdevelopment.ThenumberofAEUsetal.Retrovirology (2014) 11:119 Page2of9 pergenerangedfromoneto20(median,1;mean±SD, 1.47±1.42;Additionalfile4:TableS2).GOenrichment analysis(DAVIDresources,http://david.abcc.ncifcrf.gov/) performedwiththissetofgene sidentifiedseveralenriched termsthatfitwellwithHTLV-1infectionandrelated diseases,suchaspathwaysincancer(foldenrichment [FE]:2.71),endocytosis(F E:4.45),antigenprocessing andpresentation(FE:7.23),celladhesionmolecules (CAMs;FE:4.56),andnaturalkillercell-mediatedcyto- toxicity(FE:4.46;Figure1B;Additionalfile5:TableS3). Figure1 DistributionofAEUinATLLcellsandclonedCD4 + T-cellsderivedfromHTLV-1-infectedindividuals.(A) Distributionofquantitative andqualitativeHTLV-1modificationsinuntransformedHTLV-1-positiveCD4 + clonesandATLLsamples. TheVenn-diagramsshowthedistributionofgenes modifiedatthewholegeneexpressionlevel(white),AEU(darkgrey),orboth(lightgrey)inATLLsamples(bottom)anduntransformedinfectedclones (top;sixindependentdatasetsincludingthreePHA-activatedandthree unactivatedclones)versusuninfectedclones(sixindependentdata setsincludingthreePHA-activatedandthreeunactivatedclones).Grap hspresentthedistributionofeachclassofAEUannotatedaccordingto theFASTERDBdatabase[41].Acceptor:alternativeacceptorsite;deletio n:exondeletion;donor:alternativedonorsite;exon:exonskipping; intron-ret:intronretention;polya: alternativepolyadenylationsite;prom:alternativep romoter.Thetotalnumberofeachclassofexoneventis indicatedonthehistogrambar. (B) GOanalysisofgenes(n=329)presentingcommonAEUsinuntransformed-infectedclonesandinATLLsamples (comparedwithuninfectedclones). Thecompletesetofgenesfeaturedinmicroarrays(42304EnsemblgeneIDs)wasusedasareferencebackground. GeneannotationsarepresentedinAdditionalfile5:TableS3. (C) RT-PCRvalidationofmicroarray-predictedexoneventsinCD4 + T-cellsderived fromHTLV-1carrierscomparedwithuninfectedT-cellclones. Exon-specificRT-PCRwasperformedwithpooledRNAsamplesderivedfromsixinfected (I)andsixuninfected(UI)clones,therebyreflectingthedistributionofsplicevariantsinallclonesirrespectiveofactivationstatus.Numbers indicatethe expectedband(bp)ofPCRproducts,andtheSIandp-valueareindicatedforeachexonevent;aSI  1.2wasconsideredtobeasignificantchangein exonexpressionandusedforcomparisons. (D) RT-PCRvalidationofmicroarray-predictedexoneventsinATLLcells(array)andexon-specificRT-PCRofsix additionalATLLsamplescomparedtouninfectedT-cellclones . Thénoz etal.Retrovirology (2014) 11:119 Page3of9 Hierarchicalclusteringofexonarraydatashowed thatalternativeexpressionof3977exons(2218genes) permittedsamplegatheringinthreedistinctclusters, includinguntransformed-uninfectedandinfectedCD4 + clones,aswellasATLLsamples(p0.05,Kruskal-Wallis ANOVA;Figure2A).Foruntransformedcells,theseexon expressionprofileswereirrespectiveofPHAstimulation, implyingadirectroleofHTLV-1intheserecurrent alternativesplicingmodific ations.ATLLcellsexhibited markedchangesinAEUcomparedtountransformed HTLV-1-positiveor-negativeCD4 + clones.Suchdistri- butionsuggeststhatsomeAEUeventscouldrepresent anATLLmolecularsignature.Therefore,weusedexon- specificRT-PCRtoanalyzesixadditionalsampleshar- vestedfrompatientswithacuteformsofATLL.Over the11eventsidentifiedinFigure1D,theexpressionof 4AEUswasfoundtoberecurrentinATLL(Figure1D). WhethertheAEUsshowninFigures1B,D,and2Aare involvedinATLLdevelopmentandpossessdiagnosticand/ orprognosticimplicationsdeservesfurtherinvestigation. AGOanalysiswasperformedtogaininsightintothe functionalsignificanceoftheexonexpressionprofiles (3977exons)thatdiscriminatebetweenthethreegroups ofsamplespresentedinFigure2A.Significantenrich- mentwasdetectedforgenesinvolvedinimportant biologicalprocesses,su chasthoserelatedtocancer (50genes,FE=1.9;p=6.6×10  6 ),MAPKsignaling (46genes,FE:2.2;p=6.1×10  7 ),focaladhesion(34 genes,FE:2.2;p=5.5×10  5 ),cytokine-cytokinere- ceptorinteractions(34genes,FE:1.7;p=0.003), andendocytosis(32genes,FE:2.2;p=3.2×10  5 ; Figure2B).Officialsymbolannotationofgeneswith AEUsthatareenrichedinthesepathwaysarepre- sentedin(Additionalfile6:TableS4).Secondly,GO analysisofAEUeventsdetectedinATLLsamples (7616genes)anduntransformedHTLV-1-positiveCD4 + Figure2 Exon-basedhierarchicalclustering. HierarchicalclusteringanalysiswasperformedwithMev4.0software(http://www.tm4.org/)using thegene-normalizedexonintensities. (A) Theselectionofexonsusefulfordifferentiatingbetweenthe15cellsampleswasstatisticallyanalyzed usingaKruskal-WallisANOVAwithp0.05rep resentingstatisticalsignificance. (B) GOanalysis .Toppathwaysarepresented.Thegeneset correspondedto2000genesthatdisplayedthehighestsplicingindex(S I)values.Thecompletesetofgenesfeaturedinmicroarrays(42304 EnsemblgeneIDs)wasusedasareferencebackground.Officialge nesymbolannotationsarepresentedinAdditionalfile5:TableS3. Thénoz etal.Retrovirology (2014) 11:119 Page4of9 T-cellclones(1271genes)showeddistinctbiologicalchanges(Additionalfile7:FigureS3).Forexample,genesencodingspliceosomecomponentsappearedexclusivelyenrichedinATLLcells,whilecellcycle-relatedgeneswerefoundenrichedinuntransformedandtransformedHTLV-1positivesamples.Moreover,AEUontologicalenrichmentsweredifferentfromthoseofdifferentiallyexpressedgenes(Additionalfile7:FigureS3).Together,theseresultssuggestthatHTLV-1-relatedtranscriptionalandpost-transcriptionalchangesmightposedistinctfunctionalimpactsonuntransformedandmalignantcells.Theplethoraofsplicingeventsfoundintransformedanduntransformed-infectedcellssuggeststhatspliceo-somecomponentsmightconstitutenewtherapeutictargetsinthemanagementofHTLV-1infection.Thus,weexaminedwhetherthespliceosomemodulatorsSudemycinEandD1[36]exertedanti-proliferativeactivityagainstHTLV-1T-celllines.Tothisend,cellviabilityupondrugexposurewascomparedbetweenHTLV-1-transformedcelllines(MT2andHUT-102)anduninfectedcells,includingprimaryCD4T-cellsandtheHTLV-1-negativeacutelymphoblasticleukemiacellline,MOLT4.Figure3AshowsthatincreasingtheconcentrationofSudemycinD1ledtoarapiddecreaseintheviabilityofhumancelllineswhethertheycarriedHTLV-1provirusesornot,whilegrowthofprimaryT-cellswasinhibitedathigherdrugconcentra-tions.Incontrast,asimilarSudemycinEconcentrationrangewasfoundtosignificantlydecreasetheviabilityofHTLV-1celllines,whiledisplayingweakeffectsonprimaryCD4andMOLT4cells.HighconcentrationofSudemycinE�(5M)affectedcellviabilityofalltestedcells,carryingornotHTLV-1(notshown).Thesedatasuggestthat,comparedtobothtransformedanduntransformed-uninfectedcells,HTLV-1tumoralcellsarehighlysensitivetodrugsthattargetsplicingma-chinery.Time-courseanalysisconfirmedtheseresultsandfurtherrevealedthattheanti-proliferativeeffectofSudemycinEwaspersistentinMT2andHUT-102HTLV-1-positivecellsrelativetoHTLV-1-negativeCD4andMOLT4cells(Figure3B).FurtheranalysesexaminedtheimpactofSudemycinEontheexpressionofviralandcellulargenes.Figure3CshowsthatSudemycinEdose-dependentlyinducedtheexpressionofshortspliceoformsofMDM2andcaspases2and9thathavebeenpreviouslycorrelatedwithapop-tosisinduction[37,38].Incontrast,theexpressionofubiquitin,resultingfromconstitutivesplicingofintron3,remainedunaffected.ThisindicatesthatSudemycinEonlyaffectedalternativesplicing,ratherthanwholegenetranscription,ofapoptoticregulatorygenes.Inparallel,asTaxissynthetizedbydouble-splicedviraltranscripts,weexaminedwhetherSudemycinEcouldaffectTaxproteinlevels.AsshowninFigure3D,westernblotanalysisofMT2andHuT102celllinesrevealedthatincreasingtheconcentrationofSudemycinEledtoreducedTaxexpression.BecauseATLLcellsbarelyexpressTaxbutregularlyshowhighlevelsofHBZmRNA,wenextaimedattestingtheeffectsofSudemy-cinEonHBZexpression.IncontrasttoTax,HBZexpressionisnotstrictlydependentonsplicingevents.Infact,HTLV-1minusstrandencodesspliced(sHBZ)andunsplicedisoforms(unHBZ)ofHBZ,yetsHBZisthemostabundantinHTLV-1transformedcelllinesandinfreshATLLsamples[20,39].Incontrasttoitsunsplicedcounterpart,sHBZpromotescellproliferationinvitrotherebylikelyexplainingthepositivecorrelationbetweensHBZexpressionandHTLV-1proviralloadsinvivo[21,39].Thesedatapromptedustoassesstheex-pressionlevelsofbothsHBZandusHBZRNAisoformsinSudemycinEexposedcellsusingexon-specificquan-titativeRT-PCRanalysis.TheresultsillustratedintheFigure3EshowthatbothMT2andHUT102cellsexhibitedreducedratiosofsHBZ/unHBZuponSude-mycinEtogetherwithadramaticdecreaseintheoveralllevelofunHBZexpression,whichisconsistentwiththetransactivatingfunctionsofsHBZonHBZgeneexpres-sion[40].GiventhecrucialroleofbothTaxandsHBZinconferringproliferativeandanti-apoptoticproperties,thesedatahelpexplaintheheightenedsensitivityofHTLV-1-infectedcellstotheanti-proliferativepropertiesofSudemycinEcomparedtotheiruninfectedcounter-parts.Takentogether,ourresultsindicatethatbyimpair-ingsplicingand,inturn,geneexpressionofHTLV-1oncogenes,splicingmodulatorssuchasSudemycinEmightconstitutepromisingtoolsforATLLtreatment.ConclusionsOurinvestigationrevealedthatHTLV-1significantlyqualitativelymodifiesgenetranscripts,aswellasun-masksnewputativeleukemogenicpathwaysandpos-sibletherapeutictargets.BecausealternativesplicingcanresultinmRNAisoformscodingforproteinswithdifferentbiologicalactivity,ourresultssuggestthatexcessivesplicingalterationsinHTLV-1-positivecellsmightunderlietheirphenotypicplasticity.Futurestudiesareneededtoaddressthemolecularmechanismsunder-lyingHTLV-1-inducedAEUandtheirinvolvementinclonalpersistence,immuneescape,and/orcellulartrans-formationofinfectedCD4cells,aswellastheirputativeroleintreatmentresistanceandrelapseofATLL.TcelllimitingcloningPeripheralbloodmononuclearcells(PBMCs)wereob-tainedbyFicollseparationofwholebloodofHTLV-1in-fectedindividuals.ForT-celllimitingdilutioncloning,etal.Retrovirology (2014) 11:119 Page5of9 Figure3 Anti-proliferativeeffectofSudemycinEonHTLV-1-transformedcelllines.(A) CellviabilitywasdeterminedbyMTTassay(CellTiter96® Non-RadioactiveCellProliferationAssay,Promega)72hafterSudemycin(D1orE)exposure.Datarepresentnormalizedmean±SD;*p0.05was consideredstatisticallysignificantusingaMann – WhitneyU-test. (B) Time-courseanalysisover96husing1  MofSudemycin. Experimentswere performedtwice,intriplicateforeachcelltype,withDMSOusedascontrol.Datarepresentthenormalizedmean±SD. (C) SudemycinE-induced expressionofshortspliceoformsencodingcaspases2and9andMDM2. Exon-specificRT-PCRwascarriedout72hafterSudemycinEexposure. Theoligonucleotidesusedhavebeenpreviouslydescribed[36]. (D) SudemycinEreducesTaxexpression. Westernblotanalysisof Tax expression wascarriedoutwithamousemonoclonalanti-Taxantibody(clone474)72hafterSudemycinEexposure.Histogramsrepresentthequantificationof Taxsignalsnormalizedagainstbeta-actin. (E) SudemycinEdecreasesgeneexpressionlevelofHBZandtherelativeratiosHBZ/unHBZ. Isoform-specific qRT-PCRanalysiswascarriedoutafter72hofSudemycinexposure.HBZisoformexpressionswerenormalizedto hprt-1 transcriptsusedas internalcontrol. Thénoz etal.Retrovirology (2014) 11:119 Page6of9 PBMCswereseededat0.1cell/wellinTerasakiplatesafterremovalofadherentcells.T-lymphocyteswereculturedinRPMI1640containingpenicillinandstrep-tomycin,sodiumpyruvate,non-essentialaminoacids,2-mercaptoethanol,10%filteredhumanABserum,100U/mLrecombinantIL-2(ChironCorporation),andMHTLV-1integraseinhibitorL-731,988[30].T-lymphocyteswerere-stimulatedevery14dayswithPHA(1g/mL)andfreshfeedercells(5.10cells/mL)thatwerecomposedoflethallyirradiatedPBMCsfromthreedistinctallogenicHTLV-1-negativedonors.CloneswerephenotypedbyflowcytometryusingantibodiesagainstCD4andCD8(DakoCytomation)andisotype-matchedcontrolsonaFACScansystemusingCellQuestsoftware(BectonDickinson).HTLV-1-positivecloneswereassessedbyPCRusinglong-terminalrepeatre-specificprimersaspreviouslydescribed[29].Foreachclone,RNAextractionwasperformedbeforeand24hafterPHAstimulation.MicroarrayanalysisAffymetrixexonarrayhybridizationwascompletedbylabeling1gofTRIzol-purifiedtotalRNAwithAffyme-trixreagentsaccordingtothemanufacturersinstructions.Hybridizationcocktailscontaining55.5gcDNAwerepreparedandhybridizedtoAffymetrix-GeneChipHumanExon1.0STarrays(Affymetrix).AffymetrixExpressionConsoleSoftwarewasusedforqualityassessment,whileexonarraydatawerenormalizedusingquintilenormalizationandanalyzedusingFasterDBannotation(https://fasterdb.lyon.unicancer.fr/)[41].Backgroundcorrectionandprobeselectionwereperformedasde-scribedpreviously[42].StatisticalanalyseswereperformedusingaStudent-testonthesplicingindex(SI)thatcorrespondstocomparisonofgene-normalizedexonintensityvaluesbetweentwoexperimentalconditions[30,42].Accordingtoexon-specificRT-PCR(Figures1CandD),microarraydatawereconsideredstatisticallysignificantforp0.05andSI1.2.PolymerasechainreactionPCRwasperformedusingtheHerculaseIIFusionDNAPolymerase(AgilentTechnologies)in3035cycles.PCRproductswereanalyzedbyagarosegelelectrophoresiswithethidiumbromideunderUVlight.Primersweredesignedtoencompassalternativesplicingevents.Primersequencesareavailableuponrequest.QuantitativeRT-PCRExpressionofTaxmRNAwasquantifiedwithRotorGene(Qiagen)aspreviouslydescribed[29,43].ExpressionofsHBZandunHBZwasquantifiedusingprimersprevi-ouslydescribedbyMurataetal.[44].qRT-PCRwasper-formedintriplicateandrelativequantitation(RQ)wascalculatedbythe2ddCTmethodtonormalizegeneexpres-siontotheendogenouscontrol(ENSG00000206625)orhprt1(ENSG00000165704).DrugexposureandcellviabilityCellviabilitywasdeterminedbyMTTassay(CellTiter96®Non-RadioactiveCellProliferationAssay,Promega)72hafterSudemycin(D1orE)exposure.TheMTTdyewasaddedduringthelasthourofincubation.After,supernatantswereremovedandcellswereincubatedwith100L/wellSolubilizationSolution/StopMixfor1hatroomtemperature.TheODwasmeasuredusinganELISAreaderat570nm,with650nmasareference.Experimentswerecompletedtwice,intriplicateforeachcelltype,withDMSOusedascontrol.AdditionalfilesAdditionalfile1:TableS1.Listofsamples.Additionalfile2:FigureS1.TaxexpressionininfectedclonesandATLLsamples.TaxmRNAwasquantifiedbyreal-timeqRT-PCRasdescribedpreviously[29,43].*StatisticallysignificantdifferencesbyMannWhitneyU-test.Additionalfile3:FigureS2.qRT-PCRconfirmationofoverallgeneexpression.cDNAwasamplifiedbyqRT-PCRin20lreactionsusingaQuantiFastSYBRGreenPCRKit(Qiagen)with10Mofeachprimer.ReactionswererunonaRotor-Gene3000(CorbettLifeScience,Australia).HRPT1geneexpressionwasusedasaninternalcontrol.Ameltingcurve(5795°C)wasgeneratedattheendofeachruntoverifyprimerspecificity.ThePfafflmethodwasusedforrelativequantification.Primersequencesareavailableuponrequest.FC,indicatesmicroarray-predictedpositiveornegativefold-changesingeneexpressionbetweeninfectedanduninfectedCD4cells;CD4UI,uninfectedCD4clones;CD4I,infectedCD4clones.Additionalfile4:TableS2.CommonAEUsbetweenuntransformed-infectedCD4clonesandATLLsamples(comparedwithuninfectedAdditionalfile5:TableS3.GOtermsenrichedbygeneswithcommonAEUsinuntransformed-infectedclonesandATLLsamples(comparedwithuninfectedclones).Additionalfile6:TableS4.GOtermsenrichedbygenesdisplayingAEUsthatdiscriminatebetweenuninfectedandinfectedclonesandATLLAdditionalfile7:FigureS3.GOanalysisinATLLsamplesanduntransformedclonesaccordingtowholegeneexpressionandAEU.TheVenn-diagramsshowthedistributionofgenesmodifiedatthewholegeneexpressionlevel(white;FC1.2;p0.05),AEUlevel(darkgrey;SI1.2;p0.05),orboth(lightgrey).EachgenesetwasanalyzedusingtheDAVIDbrowser(http://david.abcc.ncifcrf.gov/;KEGGpathways).Eachgenesetwaslimitedto2000genesthatdisplayedthehighestfold-changeinexpressionandsplicingindex(SI)values.Thecompletesetofgenesfeaturedinmicroarrayswasusedasreferencebackground.Toppathwaysarepresented.CompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterests.MT,CV,HM,MK,andCPperformedexperimentsandanalyzeddata.AGprovidedpatientsamplesandanalyzeddata.TWprovidedSudemycinEandanalyzeddata.EWandDAanalyzeddataandparticipatedinwritingthemanuscript.FMdesignedthestudy,analyzeddata,andwrotethemanuscript.Allauthorsreadandapprovedthefinalmanuscript.etal.Retrovirology (2014) 11:119 Page7of9 Acknowledgments TheauthorswouldliketothankJoelLachuerandNicolasNazaret (ProfilExpert,Lyon,France)forprovidingtranscriptomicfacilities.Thiswork wassupportedbytheLigueNationaleContreleCancer(Comitésdel ’ Ain,de laDrome,delaSaoneetLoire,andduRhône),FondationdeFrance, AssociationLauretteFugain,AssociationpourlaRecherchesurleCancer (ARC),AssociationGuillaumeEspoir,andtheAgenceNationalepourla Recherche(EPIVIR).M.T.andC.V.weresupportedbybursariesfromthe FrenchMinistryofHigherEducationandScience.F.M.wassupportedby INSERMandbytheHospicesCivilsdeLyon(AVIESANCHRTprogram2010). E.W.wassupportedbyHospicesCivilsdeLyonandLyonIUniversity (France).T.W.wassupportedinpartbyaUSNIHGrant(CA140474),the AmericanLebanese-SyrianAssociatedCharities(USA),andSt.JudeChildren ’ s ResearchHospital(USA). Authordetails 1 UniversitédeLyon1,CNRSUMR5239,OncovirologieetBiothérapies, LaboratoiredeBiologieMoléculairedelaCellule,FacultédeMédecineLyon Sud,PierreBénite,France. 2 CentredeRecherchesurleCancerdeLyon, FranceEpissagealternatifetprogressiontumorale,Lyon,France. 3 Institut Pasteur,Unitéd ’ EpidémiologieetPhysiopathologiedesVirusOncogènes, Paris,France. 4 SRIInternational,333RavenswoodAvenue,MenloPark,CA 94025-3493,USA. 5 UniversitéLyonI,Serviced ’ Hématologie,PavillonMarcel Bérard,CentreHospitalierLyon-Sud,PierreBénite,France. 6 Oncovirologieet Biotherapies,LaboratoiredeBiologieMoléculairedelaCellule,UMR5239 CNRS/ENS,Lyon/UCBL/HCL;EcolenormalesupérieuredeLyon,46,allée d ’ Italie;69364,Lyoncedex07,France. Received:20August2014Accepted:2December2014 References 1.MortreuxF,GabetAS,WattelE: MolecularandcellularaspectsofHTLV-1 associatedleukemogenesisinvivo. Leukemia 2003, 17: 26 – 38. 2.NgPW,IhaH,IwanagaY,BittnerM,ChenY,JiangY,GoodenG,TrentJM, MeltzerP,JeangKT,ZeichnerSL: Genome-wideexpressionchanges inducedbyHTLV-1Tax:evidenceforMLK-3mixedlineagekinase involvementinTax-mediatedNF-kappaBactivation. Oncogene 2001, 20: 4484 – 4496. 3.Pise-MasisonCA,RadonovichM,MahieuxR,ChatterjeeP,WhitefordC, DuvallJ,GuillermC,GessainA,BradyJN: Transcriptionprofileofcells infectedwithhumanT-cellleukemiavirustypeIcomparedwith activatedlymphocytes. CancerRes 2002, 62: 3562 – 3571. 4.TaylorJM,GhorbelS,NicotC: Genomewideanalysisofhumangenes transcriptionallyandpost-transcriptionallyregulatedbytheHTLV-I proteinp30. BMCGenomics 2009, 10: 311. 5.TsukasakiK,TanosakiS,DeVosS,HofmannWK,WachsmanW,GombartAF, KrebsJ,JauchA,BartramCR,NagaiK,TomonagaM,SaidJW,KoefflerHP: Identifyingprogression-associatedgenesinadultT-cellleukemia/ lymphomabyusingoligonucleotidemicroarrays. IntJCancer 2004, 109: 875 – 881. 6.ZaneL,SibonD,LegrasC,LachuerJ,WierinckxA,MehlenP,Delfau-Larue MH,GessainA,GoutO,PinatelC,LanconA,MortreuxF,WattelE: Clonal expansionofHTLV-1positiveCD8+cellsreliesoncIAP-2butnoton c-FLIPexpression. Virology 2010, 407: 341 – 351. 7.ChevalierSA,DurandS,DasguptaA,RadonovichM,CimarelliA,BradyJN, MahieuxR,Pise-MasisonCA: ThetranscriptionprofileofTax-3ismore similartoTax-1thanTax-2:insightsintoHTLV-3potentialleukemogenic properties. PLoSOne 2012, 7: e41003. 8.deLaFuenteC,DengL,SantiagoF,ArceL,WangL,KashanchiF: GeneexpressionarrayofHTLVtype1-infectedTcells:Up-regulationof transcriptionfactorsandcellcyclegenes. AIDSResHumRetroviruses 2000, 16: 1695 – 1700. 9.HarhajEW,GoodL,XiaoG,SunSC: GeneexpressionprofilesinHTLV-I- immortalizedTcells:deregulatedexpressionofgenesinvolvedin apoptosisregulation. Oncogene 1999, 18: 1341 – 1349. 10.MokSC,BonomeT,VathipadiekalV,BellA,JohnsonME,WongKK,ParkDC, HaoK,YipDK,DonningerH,OzbunL,SamimiG,BradyJ,RandonovichM, Pise-MasisonCA,BarrettJC,WongWH,WelchWR,BerkowitzRS,BirrerMJ: Agenesignaturepredictiveforoutcomeinadvancedovariancancer identifiesasurvivalfactor:microfibril-associatedglycoprotein2. Cancer Cell 2009, 16: 521 – 532. 11.Pise-MasisonCA,RadonovichM,DohoneyK,MorrisJC,O ’ MahonyD,Lee MJ,TrepelJ,WaldmannTA,JanikJE,BradyJN: Geneexpressionprofilingof ATLpatients:compilationofdisease-relatedgenesandevidencefor TCF4involvementinBIRC5geneexpressionandcellviability. Blood 2009, 113: 4016 – 4026. 12.RuckesT,SaulD,VanSnickJ,HermineO,GrassmannR: Autocrine antiapoptoticstimulationofculturedadultT-cellleukemiacellsby overexpressionofthechemokineI-309. Blood 2001, 98: 1150 – 1159. 13.SasakiH,NishikataI,ShiragaT,AkamatsuE,FukamiT,HidakaT,KubukiY, OkayamaA,HamadaK,OkabeH,MurakamiY,TsubouchiH,MorishitaK: Overexpressionofacelladhesionmolecule,TSLC1,asapossible molecularmarkerforacute-typeadultT-cellleukemia. Blood 2005, 105: 1204 – 1213. 14.TattermuschS,SkinnerJA,ChaussabelD,BanchereauJ,BerryMP,McNab FW,O ’ GarraA,TaylorGP,BanghamCR: Systemsbiologyapproachesreveal aspecificinterferon-induciblesignatureinHTLV-1associatedmyelopathy. PLoSPathog 2012, 8: e1002480. 15.DowlingD,Nasr-EsfahaniS,TanCH,O ’ BrienK,HowardJL,JansDA,Purcell DF,StoltzfusCM,SonzaS: HIV-1infectioninduceschangesinexpression ofcellularsplicingfactorsthatregulatealternativeviralsplicingand virusproductioninmacrophages. Retrovirology 2008, 5: 18. 16.PrzychodzenB,JerezA,GuintaK,SekeresMA,PadgettR,MaciejewskiJP, MakishimaH: PatternsofmissplicingduetosomaticU2AF1mutationsin myeloidneoplasms. Blood 2013, 122: 999 – 1006. 17.GermannS,GratadouL,DutertreM,AuboeufD: Splicingprogramsand cancer. JNucleicAcids 2012, 2012: 269570. 18.CavallariI,RendeF,D ’ AgostinoDM,CiminaleV: Convergingstrategiesin expressionofhumancomplexretroviruses. Viruses 2011, 3: 1395 – 1414. 19.CiminaleV,PavlakisGN,DerseD,CunninghamCP,FelberBK: Complexsplicing inthehumanT-cellleukemiavirus(HTLV)familyofretroviruses:novel mRNAsandproteinsproducedbyHTLVtypeI. JVirol 1992, 66: 1737 – 1745. 20.UsuiT,YanagiharaK,TsukasakiK,MurataK,HasegawaH,YamadaY, KamihiraS: CharacteristicexpressionofHTLV-1basiczipperfactor(HBZ) transcriptsinHTLV-1provirus-positivecells. Retrovirology 2008, 5: 34. 21.YoshidaM,SatouY,YasunagaJ,FujisawaJ,MatsuokaM: Transcriptional controlofsplicedandunsplicedhumanT-cellleukemiavirustype1bZIP factor(HBZ)gene. JVirol 2008, 82: 9359 – 9368. 22.GaudrayG,GachonF,BasbousJ,Biard-PiechaczykM,DevauxC,Mesnard JM: ThecomplementarystrandofthehumanT-cellleukemiavirustype 1RNAgenomeencodesabZIPtranscriptionfactorthatdown-regulates viraltranscription. JVirol 2002, 76: 12813 – 12822. 23.BakkerA,LiX,RulandCT,StephensDW,BlackAC,RosenblattJD: Human T-cellleukemiavirustype2Rexinhibitspre-mRNAsplicinginvitroatan earlystageofspliceosomeformation. JVirol 1996, 70: 5511 – 5518. 24.LiM,KannianP,YinH,KesicM,GreenPL: HumanTlymphotropicvirus type1regulatoryandaccessorygenetranscriptexpressionandexport arenotrexdependent. AIDSResHumRetroviruses 2012, 28: 405 – 410. 25.NakanoK,WatanabeT: HTLV-1Rex:thecourierofviralmessagesmaking useofthehostvehicle. FrontMicrobiol 2012, 3: 330. 26.MatsuokaE,UsukuK,JonosonoM,TakenouchiN,IzumoS,OsameM: CD44splicevariantinvolvementinthechronicinflammatorydiseaseof thespinalcord:HAM/TSP. JNeuroimmunol 2000, 102: 1 – 7. 27.HoriuchiS,YamamotoN,DewanMZ,TakahashiY,YamashitaA,YoshidaT, NowellMA,RichardsPJ,JonesSA,YamamotoN: HumanT-cellleukemia virustype-ITaxinducesexpressionofinterleukin-6receptor(IL-6R): SheddingofsolubleIL-6RandactivationofSTAT3signaling. IntJCancer 2006, 119: 823 – 830. 28.HoriuchiS,KoyanagiY,TanakaY,WakiM,MatsumotoA,ZhouYW, YamamotoM,YamamotoN: Alteredinterleukin-2receptoralpha-chainis expressedinhumanT-cellleukaemiavirustype-I-infectedT-celllines andhumanperipheralbloodmononuclearcellsofadultT-cellleukaemia patientsthroughanalternativesplicingmechanism. Immunology 1997, 91: 28 – 34. 29.SibonD,GabetAS,ZandeckiM,PinatelC,TheteJ,Delfau-LarueMH, RabaaouiS,GessainA,GoutO,JacobsonS,MortreuxF,WattelE: HTLV-1 propelsuntransformedCD4lymphocytesintothecellcyclewhile protectingCD8cellsfromdeath. JClinInvest 2006, 116: 974 – 983. 30.RabaaouiS,ZouhiriF,LanconA,LehH,d ’ AngeloJ,WattelE: Inhibitorsof strandtransferthatpreventintegrationandinhibithumanT-cell Thénoz etal.Retrovirology (2014) 11:119 Page8of9 leukemiavirustype1earlyreplication.AntimicrobAgentsChemother31.IpJY,TongA,PanQ,ToppJD,BlencoweBJ,LynchKW:GlobalanalysisofalternativesplicingduringT-cellactivation.32.WhistlerT,ChiangCF,LonerganW,HollierM,UngerER:Implementationofexonarrays:alternativesplicingduringT-cellproliferationasdeterminedbywholegenomeanalysis.BMCGenomics33.KannagiM,SugamuraK,SatoH,OkochiK,UchinoH,HinumaY:EstablishmentofhumancytotoxicTcelllinesspecificforhumanadultTcellleukemiavirus-bearingcells.JImmunol34.KinoshitaT,ShimoyamaM,TobinaiK,ItoM,ItoS,IkedaS,TajimaK,ShimotohnoK,SugimuraT:DetectionofmRNAforthetax1/rex1geneofhumanT-cellleukemiavirustypeIinfreshperipheralbloodmononuclearcellsofadultT-cellleukemiapatientsandviralcarriersbyusingthepolymerasechainreaction.ProcNatlAcadSciUSA35.YoshidaM,SeikiM,YamaguchiK,TakatsukiK:MonoclonalintegrationofhumanT-cellleukemiaprovirusinallprimarytumorsofadultT-cellleukemiasuggestscausativeroleofhumanT-cellleukemiavirusintheProcNatlAcadSciUSA36.FanL,LagisettiC,EdwardsCC,WebbTR,PotterPM:Sudemycins,novelsmallmoleculeanaloguesofFR901464,inducealternativegenesplicing.ACSChemBiol37.FushimiK,RayP,KarA,WangL,SutherlandLC,WuJY:Up-regulationoftheproapoptoticcaspase2splicingisoformbyacandidatetumorsuppressor,RBM5.ProcNatlAcadSciUSA38.LogetteE,WotawaA,SolierS,DesocheL,SolaryE,CorcosL:Thehumancaspase-2gene:alternativepromoters,pre-mRNAsplicingandAUGusagedirectisoform-specificexpression.39.SatouY,YasunagaJ,YoshidaM,MatsuokaM:HTLV-IbasicleucinezipperfactorgenemRNAsupportsproliferationofadultTcellleukemiacells.ProcNatlAcadSciUSA40.GazonH,LemassonI,PolakowskiN,CesaireR,MatsuokaM,BarbeauB,MesnardJM,PeloponeseJMJr:HumanT-cellleukemiavirustype1(HTLV-1)bZIPfactorrequirescellulartranscriptionfactorJunDtoupregulateHTLV-1antisensetranscriptionfromthe3longterminalJVirol41.MallinjoudP,VilleminJP,MortadaH,PolayEspinozaM,DesmetFO,SamaanS,ChautardE,TrancheventLC,AuboeufD:Endothelial,epithelial,andfibroblastcellsexhibitspecificsplicingprogramsindependentlyoftheirtissueoforigin.GenomeRes2014,51142.DutertreM,SanchezG,DeCianMC,BarbierJ,DardenneE,GratadouL,DujardinG,LeJossic-CorcosC,CorcosL,AuboeufD:exonskippinginthegenotoxicstressresponse.NatStructMolBiol43.SatouY,YasunagaJ,ZhaoT,YoshidaM,MiyazatoP,TakaiK,ShimizuK,OhshimaK,GreenPL,OhkuraN,YamaguchiT,OnoM,SakaguchiS,MatsuokaM:HTLV-1bZIPfactorinducesT-celllymphomaandsystemicinflammationinvivo.PLoSPathog44.MurataK,HayashibaraT,SugaharaK,UemuraA,YamaguchiT,HarasawaH,HasegawaH,TsurudaK,OkazakiT,KojiT,MiyanishiT,YamadaY,KamihiraS:AnovelalternativesplicingisoformofhumanT-cellleukemiavirustype1bZIPfactor(HBZ-SI)targetsdistinctsubnuclearlocalization.JVirol and take full advantage of: € Thorough peer review No space constraints or color “gure charges Research which is freely available for redistribution www.biomedcentral.com/submit etal.Retrovirology (2014) 11:119 Page9of9