/
REVIEWOpenAccess REVIEWOpenAccess

REVIEWOpenAccess - PDF document

marina-yarberry
marina-yarberry . @marina-yarberry
Follow
359 views
Uploaded On 2016-08-01

REVIEWOpenAccess - PPT Presentation

Areviewonelectronicandopticalpropertiesof siliconnanowireanditsdifferentgrowth techniques MehedhiHasan 1 MdFazlulHuq 2 andZahidHasanMahmood 3 Abstract ElectronicandopticalpropertiesofSiliconNanowire ID: 429003

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "REVIEWOpenAccess" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

REVIEWOpenAccess Areviewonelectronicandopticalpropertiesof siliconnanowireanditsdifferentgrowth techniques MehedhiHasan 1 ,MdFazlulHuq 2* andZahidHasanMahmood 3 Abstract ElectronicandopticalpropertiesofSiliconNanowire(SiNW)obtainedfromtheoreticalstudiesandexperimental approacheshavebeenreviewed.ThediameterdependencyofbandgapandeffectivemassofSiNWforvarious terminationshavebeenpresented.OpticalabsorptionofSiNWandnanoconehasbeencomparedfordifferent angleofincidences.SiNWshowsgreaterabsorptionwithlargerangeofwavelengthandhigherrangeofangle ofincidence.ReflectanceofSiNWislessthan5%overmajorityofthespectrumfromtheUVtonearIRregion. Thereafter,abriefdescriptionofthedifferentgrowthtechniquesofSiNWisgiven.Theadvantagesand disadvantagesofthedifferentcatalystmaterialsforSiNWgrowtharediscussedatlength.Furthermore,three thermodynamicaspectsofSiNWgrowthviathevapor – liquid – solidmechanismarepresentedanddiscussed. Keywords: SiliconNanowires(SiNWs),Bandgap,Opticalabsorption,Reflectance,ChemicalVapourDeposition(CVD), Introduction GrowthofSiwhiskerswasfirstreportedbyWagnerand Ellisasearlyas1964(Wagner&Ellis1964).Later GivargizovelucidatedthegrowthmechanismofSiwhiskers in1975(Givargizov1975).Thefirstreportoncarbon nanotubesbyIijimain1991focusedaworldwideexponen- tialincreaseofresearchintothecarbonbasedandsilicon- basednanomaterialsespeciallycarbonnanotubesand SiNWs(Iijima1991).Subsequently,therewereextensive investigationscarriedoutonthe synthesis,physicalproper- ties,devicefabricationandapplicationsofSiNWs.Figure1 showsahistogramofthenumberofsilicon “ whisker ” and “ nanowire ” publications(Schmidt&Wittemann2009). DuetotheirnovelpropertiesSiliconnanowires(SiNWs) havegrabbedsuchgreatattentions.Itistheiruniqueelec- trical,opticalandmechanicalpropertiesthatmakethem basednanodevicesarecompatiblewiththecurrent Si-basedmicroelectronicsin dustry,andalreadyanumber ofnanodevicesbasedonSiNWsasbuildingblockshave beendemonstrated(Cui&Lieber2001). Thenanoscalediameterputstheradialdimensionof nanowiresatorbelowthecharacteristiclengthscaleof variousinterestingandfundamentalsolidstatephenom- ena:theexcitonBohrradius,wavelengthoflight,pho- nonmeanfreepath,criticalsizeofmagneticdomains, excitondiffusionlength,etc.(Alivisatos1996;Lawetal. 2004).Asaresult,manyphysicalpropertiesofsemicon- ductorsaresignificantlyalteredwithintheconfinement ofthenanowiresurfaces.Inaddition,theirlargesurface- to-volumeratioallowsfordistinctstructuralandchem- icalbehavioraswellasgreaterchemicalreactivity.This two-dimensionalconfinementendowsnanowireswith uniquepropertieswhichstrayfromthoseoftheircorre- spondingbulkmaterial.Second,thelargeaspectratioof nanowiresintimatestheirtechnologicalapplication.The oneunconstraineddimensioncandirecttheconduction ofquantumparticlessuchaselectrons,phonons,and photons.Thiscontrolovervariousformsofenergy transportrecommendsnanowiresasidealmaterialsfrom Moreover,thelengthofnanowiresisnormallysufficient tointerfacewithtop-downfabricationprocesses,suchas *Correspondence: fhuq.apece.du@gmail.com 2 DepartmentofInformationandCommunicationTechnology,Mawlana BhashaniScienceandTechnologyUniversity,Santash,Tangail1902, Bangladesh Fulllistofauthorinformationisavailableattheendofthearticle a SpringerOpen Journal ©2013Hasanetal.;licenseeSpringer.ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommons AttributionLicense(http://creativecommons.org/licenses/by/2.0),whichpermitsunrestricteduse,distribution,andreproduction inanymedium,providedtheoriginalworkisproperlycited. Hasan etal.SpringerPlus 2013, 2 :151 http://www.springerplus.com/content/2/1/151 photolithography.Asaresult,nanowiresprovideacon- venientplatformthroughwhichresearchersmaystudy confinedtransportphenomena. Review PropertiesofSiliconNanowires ElectronicProperties ThesmallsizesofSiNWsmaketheirelectronicand electricalpropertiesstronglydependentongrowthdirec- tion,size,morphologyandsurfacereconstruction.A wellknownexampleisthesizedependenceoftheelec- tronicbandgapwidthofSiNWsirrespectiveofwiredir- ection.Asthewirediameterdecreases,thebandgapof thenanowirewidensanddeviatesfromthatofbulksili- congradually.Moreover,theorientationsofthewire axisandthesurfacehaveagreateffectontheelectronic propertiesofSiNWs(Aijiang2007). MichaelNolanetal.theoreticallyinvestigatedtheband gapmodificationforsmall-diameter(~1nm)silicon nanowiresresultingfromtheuseofdifferentspeciesfor surfaceterminationbydensityfunctionaltheorycalcula- tions.Becauseofquantumconfinement,small-diameter wiresexhibitadirectbandgapthatincreasesasthewire diameternarrows,irrespectiveofsurfacetermination. Figure2showsbandgapasafunctionofnanowirediam- eterforvarioussurfaceterminations(Nolanetal.2007). Sacconietal.alsoinvestigatedtheelectronicproperties ofsiliconnanowireswithseveraldifferentapproacheslike theEmpiricalTight-Binding(ETB)model,theLinear CombinationofBulkBands(LCBB)modelandNon- EquilibriumGreenFunction(NEGF)model.Theyconsid- eredbothhydrogenatedandSiO 2 terminatedsilicon surfacesinthesemodels.WhenthediameterofSiNWis reducedfrom3.2to1.6nm,thebandgapofhydrogenated nanowireincreasesfrom1.56to2.44eV.Ontheother hand,inthecaseofSiO 2 /SiNWstructure,thisincreaseis smaller,sincethebandgapgoesfrom1.50eVfora3.2nm cell,to1.88eVfora1.6nmcell.Thisbehaviorcanbe expectedduetoalowerconfinementdeterminedbySiO 2 surroundingSiNW,withrespecttothecaseofsimple hydrogentermination. Effectivemassesforconductionandvalencebands havealsobeencalculated.TheeffectofanincreasingSi thicknessonahydrogenterminatedwireisthatofredu- cingtheconductionmass,from0.47m o to0.31m o , whichis55%greaterthanthevalueoftransversemass inbulksilicon.TheeffectontheSiO 2 -confinedwireis similar;byincreasingSithickness,effectivemassde- creasesfrom0.36m o to0.29m o (Sacconietal.2007). TheeffectofwirethicknessofSiNWonconductionval- leysplitting,holebandsplitting,effectivemassesand transmissionhasbeenreportedusingsp 3 d 5 s * modelby YunZhengetal.Theyconcludedthatintheconduction band,valleysplittingreducestheaveragedmobilitymass alongtheaxisofthewire,butquantumconfinementin- creasesthetransversemassoftheconductionbandedge. Forthewirethicknessrangethattheyhaveconsidered, theeffectivemassattheconductionbandedgeisatleast 35%heavierthanthatoftransversemassofbulkSi. Quantumconfinementhasthelargesteffectontheeffect- ivemassesinthevalenceband.Theeffectivemassatthe valencebandedgeisatleastsixtimesheavierthanthatof thebulk.Theeffectivemassofthenexthighestbandis evenheavier.Smallenergysplittingalsooccursatthecon- ductionbandminimum.Forwiresgreaterthan1.54nm thick,thefourbulkvalleyswhichcomposetheconduction bandminimumaresplitintothreeenergies.Thecenter energyistwofolddegenerateroughlyevenlysplitbetween thelowestandhighestenergy.Thesingle-bandmodelper- formsreasonablywellatcalculatingtheeffectiveband edgesforthe1.54nmwire(Zhengetal.2005). YiCuietal.showsthatBoronandphosphoruscanbe usedtochangetheconductivityofSiNWsovermanyor- dersofmagnitudeandthattheconductivityofthe dopedSiNWsrespondoppositelytopositive(negative) V gforboronandphosphorusdopants.Indeed,the V g dependenceprovidesstrongproofforp-type(holes) dopingwithboronandn-type(electrons)dopingwith phosphorusintheSiNWs(Cuietal.2000). OpticalProperties BulkSihasanindirectbandgap,withthevalenceband maximumatthe  pointandtheconductionminimumat about85%alongthe  toXdirection,andaphononisre- quiredtoconservethemomentuminanyelectronictran- sition.Remarkably,however,SiNWsgrownalongmostof thecrystallographicorientationshaveadirectbandgap, meaningthatthemaximumofthevalencebandandthe minimumoftheconductionbandoccuratthesamepoint ink-space.Thispropertyhasallowedtoenvisagetheuse Figure1 Histogramofsilicon “ whisker ” and “ nanowire ” publications.Source:ISIWebofKnowledge(SM). Hasan etal.SpringerPlus 2013, 2 :151 Page2of9 http://www.springerplus.com/content/2/1/151 ofSiNWsasopticallyactivematerialsforphotonicsappli- cations(Canham1990;Guichardetal.2006). Thepossibilityofcontrollingthebandgapwidthis tremendouslyattractiveforoptoelectronicsapplications: notonlySiNWscanhaveadirectbandgap,whichper seincreasestheopticalefficiency,butitswidthcanin principlebetuned.Itisnotdifficulttoimagine,however, thatcontrollingthewirediameterwithtoleranceswithin 1 – 3nmisamorethanchallengingtask.Asimplerroute tobandgaptuningiscontrollingthechemicalcompos- itionandthecoveragedensityofthewiresurface.Halo- genssuchasCl,Br,andIcanbeusedassurface passivationagentsinsteadofHand,whilenotaltering thesemiconductingcharacterofthewires,theyresult inasignificantshrinkingofbandgap(Leuetal.2006). Thestrongestreductionofthebandgapisprovidedby I,followedbyBrandCl,intheoppositeorderofthe bondingstrengthofthesespeciesandSiNWs.Interest- ingly,thesurfacecoverageisafurtherdegreeoffree- domandonecanspanallthebandgapvaluesbetween aH-andhalogen-passivatedwirebyvaryingtheH: halogenratio.Also,increasingthehalogensurfacecon- centrationthebandedgestates,concentratedinthe wirecoreinpresenceofH-passivation,progressively spreadtothesurface. AnalogousresultshavebeenreportedforOHandNH2 (Aradietal.2007;Nolanetal.2007).Itshouldbenoted thatthepassivatingspeciesdonotcontributesignificantly tothestatesclosetothebandedges,sothatthereduction ofthegapisnotcausedbytheintroductionofadditional bands.Itrathercomesfromthehybridizationofthe valencebandstateswiththefrontierorbitalsofthediffer- entpassivatingfunctionalgroupsthatcauseasignificant bandgapreductionrelativetoH-passivatedwires. Theseresultsindicatethatthebandgapwidthin SiNWscanbetailorednotonlybycontrollingthewire diameter,butalsobyanappropriatechoiceofthesur- facetermination. Thebroadbandopticalabsorptionpropertiesofsili- connanowire(SiNW)filmshavebeenmeasuredand foundtobehigherthanthatofsolidthinfilmsofSiof equivalentthickness.Theobservedbehaviorisad- equatelyexplainedbylightscatteringandlighttrapping thoughsomeoftheobservedabsorptionisduetoa highdensityofsurfacestatesinthenanowiresfilms,as evidencedbythepartialreductioninhighresidualsub- bandgapabsorptionafterhydrogenpassivation.There- flectanceofthesolidfilmshowstypicalbehaviorwhat expectedforsilicon,whereasthereflectanceofthe nanowirefilmislessthan5%overthemajorityofthe spectrumfromtheUVtothenearIRandbeginstoin- creaseat~700nmtoavaluesof~41%attheSiband edge(1100nm),similartothesolidfilmsample.Itis clearthatthenanowiresimpartasignificantreduction ofthereflectancecomparedtothesolidfilm.Figure3 showscomparativereflectanceofsolidsiliconandSi nanowires(Tsakalakosetal.2007). FabricationofSi:Hnanowires(NWs)andnanocones (NCs),usinganeasilyscalableandIC-compatibleprocess Figure2 Bandgapasafunctionofthe[100]siliconnanowirediameterforvarioussurfaceterminations. ( a )DFTcalculationswithinGGA- PBE.( b )Resultsfromadensity-functionaltightbinding(DFTB)parameterization. Figure3 Totalreflectancedatafromintegratedsphere measurementsforan11  mthicksolidSithinfilmand nanowirefilmonglasssubstrate(Tsakalakosetal.2007). Hasan etal.SpringerPlus 2013, 2 :151 Page3of9 http://www.springerplus.com/content/2/1/151 hasbeenreportedbyJiaZhu etal .Theyhaveshownthat Si:Hnanostructuresdisplaygreatlyenhancedabsorption overalargerangeofwavelengthsandanglesofincidence duetosuppressedreflection.Morethan90%oflightis absorbedatanglesofincidenceupto60°fora-Si:HNC arrays,whichissignificantlybetterthanNWarrays(70%) andthinfilms(45%).Inaddition,theabsorptionofNC arraysis88%atthebandgapedgeofa-Si:H,whichis muchhigherthanNWarrays(70%)andthinfilms(53%). Figure4summarizedtheresultsofdifferentstructures fordifferentcondition(Zhuetal.2009). MethodsofFabricationofNanowires Manytechniques,includingbothtop-downandbottom-up approaches,havebeendevelopedandappliedforthesyn- thesisofNanowires.Vapor – Liquid – Solid(VLS)Mechanism, ChemicalVaporDeposition(CVD),EvaporationofSiO, MolecularBeamEpitaxy(MBE),LaserAblationandElectro- lessmetaldepositionanddissolution(EMD)havebeen discussedhere. Vapor – Liquid – Solid(VLS)Mechanism TheVLSmechanism,firstproposedbyWagnerandEllis (Wagner&Ellis1964)inthemid-1960s,isthekey mechanismforsilicon-wiregrowth.TheirproposedVLS mechanismisbasedontwoobservations:thatthe additionofcertainmetalimpuritiesisanessentialpre- requisiteforgrowthofsiliconnanowiresinexperiments andthatsmallglobulesoftheimpurityarelocatedatthe tipofthewireduringgrowth.Fromthis,Wagnerand Ellisdeducedthattheglobuleatthewiretipmustbein- volvedinthegrowthofthesiliconwiresbyacting “ asa preferredsinkforthearrivingSiatomsor,perhapsmore likely,asacatalystforthechemicalprocessinvolved ” Figure4 Valueofabsorptiononsampleswitha-Si:Hthinfilm,NWarraysandNCarrays(a)Measured,(b)Calculatedoveralarge rangeofwavelengthsatnormalincidence;(c)Measured(d)Simulatedfordifferentangleofincidence(atwavelength  =488nm) (Zhuetal.2009). Hasan etal.SpringerPlus 2013, 2 :151 Page4of9 http://www.springerplus.com/content/2/1/151 (Wagner&Ellis1964).WhenAu,forexample,isde- positedonsiliconsubstrateandthissubstrateisthen heatedtotemperaturesaboveabout363°C,smallli- quidAu – Sialloydropletswillformonthesubstrate surface.Exposingsuchasubstratetoagaseoussilicon precursor,suchassilicontetrachloride(SiCl 4 )orsi- lane(SiH 4 )precursormoleculeswillcrackonthesur- faceoftheAu – Sialloydroplets,whereuponSiis incorporatedintothedroplet.Thesiliconsupplyfrom thegasphasecausesthedroplettobecomesupersa- turatedwithSiuntilsiliconfreezesoutatthesilicon/ dropletinterface.Thecontinuationofthisprocessthen leadstothegrowthofawirewiththealloydroplet ridingatopthegrowingwire(Wagner&Ellis1964) (Figure5). ChemicalVaporDeposition(CVD) InCVD,avolatilegaseoussiliconprecursor,suchassi- lane(SiH 4 )orsilicontetrachloride(SiCl 4 ),servesasthe siliconsource.Itistransportedtothedepositionsurface atwhichtheprecursorreacts,andiscrackedintoits constituentsasdepictedinFigure6. Originally,CVDwasdevisedforthedepositionof high-purityfilms.Contaminationssuchasgoldparticles, however,werefoundtocauseanisotropicgrowthofsili- con,thatis,thegrowthofsiliconwires.CVDallowsepi- taxialgrowthofSiNWs,withthegrowthvelocityvarying fromabout10 -2 to10 3 nmmin -1 ,(Kodambakaetal. 2006;Nebol ’ sinetal.2005)dependingontemperature andtypeofSiprecursorused.Furthermore,CVDoffers broadpossibilityofmodifyingthepropertiesofthesili- conwiresinacontrolledfashion.Avarietyofderivatives ofCVDmethodsexist.Thesecanbeclassifiedbypa- rameterssuchasthebaseandoperationpressureorthe treatmentoftheprecursor.Sincesiliconisknownto oxidizeeasilyifexposedtooxygenatelevatedtempera- tures,itiscrucialtoreducetheoxygenbackground pressureinordertobeabletoepitaxiallygrowuniform siliconnanowires.Inparticular,whenoxygen-sensitive catalystmaterialsareused,itturnsouttobeusefulto combinecatalystdepositionandnanowiregrowthinone system,sothatgrowthexperimentscanbeperformed withoutbreakingthevacuuminbetween(Wangetal. 2006).Inanycase,itisusefultolowerthebasepressure oftheCVDreactordowntohighorevenultrahighvac- uum,whichreducesunwantedcontaminationanden- ablesgrowthatloweredtemperatures(Akhtaretal. 2008).Thepressuresduringgrowthmainlydepends uponthegaseoussiliconprecursoranditscracking probabilityatthecatalystsurface.Growthwithdisilane, Si 2 H 6 ,forexample,can — butmustnot — becarriedout atextremelylowpartialpressuresofaround10 -6 mbar (1bar=10 5 Pa).Theselowgrowthpressuresallowthe combinationofCVDwithtransmissionelectronmicros- copy(TEM),enablinginsituobservationofthenanowire growth(Hofmannetal.2008).Incontrasttothat,silane partialpressuresrequiredforwiregrowthareaboutfive ordersofmagnitudehigher.Bymodifyingtheprecursor beforereactingwiththesamplesurface,thetemperature budgetofthesubstratecanbelowered.Incaseswhere thethermalloadiscriticalorwhereahighsupersaturation ofthedropletisnecessary,nanowiregrowthcanbeen- hancedusingplasma-enhancedCVD(PECVD)(Hofmann etal.2003;Sharmaetal.2004;Iacopietal.2007).Another advantageofCVDasabottom-upsynthesismethodisits variabilityconcerningtheintendedwiresize.Wirediame- tersrangefrombelow10nm(Cuietal.2001)uptosev- eralhundredmicrometers(Wagner&Ellis1964).Since surfacediffusiononlyplaysaminorroleinCVD,the Figure5 SchematicoftheVLSgrowthmechanism(a)Catalytic liquidalloy(b,c)Successivegrowthofnanowire. Figure6 Schematicsofexperimentalsetupfornanowire growthusingCVDmethod. Hasan etal.SpringerPlus 2013, 2 :151 Page5of9 http://www.springerplus.com/content/2/1/151 lengthofthewirescanalsobetunedaccordinglybysim- plyextendingordecreasingthegrowthtime.Thus,to summarize,alargerangeoflengthanddiameterconfigu- rationscanbefabricated(Parketal.2008).WithCVD, notonlythewiresizebutalsoitspropertiescanbe modified. EvaporationofSiO Acost-effectivemethodtoproducesiliconnanowireson alargescaleistoevaporatesolidsiliconmonoxide,SiO (showninFigure7). Atwo-zonetubefurnaceconnectedtoaninertgas supplyandsmallamountofSiOgranulatearethebasic ingredientsforthesynthesisofsiliconnanowires.Cru- cialforgrowthisatemperaturegradientfromabout 1350to900°Calongthetubeofthefurnace.SiOisevap- oratedatthehotterendofthetube,flowswiththegas streamtothecoolerpart,whereitundergoesadispro- portionationreactionintoSiandSiO 2 ,therebyforming thenanowires(Panetal.2001).Inprinciple,twodiffer- entgrowthmethodsarepossible:growthwithandwith- outmetalcatalyst.Growthassistedbythepresenceof ametalcatalystisrelativelyrapid(Guetal.2000).Con- sistentwiththeconceptofVLSgrowth,thediameters aredeterminedbythesizeofthecatalystparticle,al- thoughtheinterplaybetweenthenanowireandthecata- lystdropletseemstobemorecomplexcomparedto normalCVDgrowth.Asaconsequenceofthedispro- portionationreaction,thediameterratiobetweencrys- tallinecoreandamorphousshellremainsapproximately constant(Kolbetal.2004).Thesecondgrowthmode, metal-catalyst-freegrowth,hasbeenoriginallyproposed forgrowthvialaserablation(Wangetal.1998),whereit wasobservedthatnanowirescanbecatalyzedbysilicon dioxide(Wangetal.1999).Remarkableaboutthis oxide-assistedgrowth(OAG)isthatSiO 2 -containingtar- getsclearlyraisetheyieldofthefinalamountofsilicon nanowirescomparedtopuresilicontargetsormixedsil- icon – metaltargets(Wangetal.1998).Bycarryingout thegrowthprocessoverseveralhours,onecanobtain millimeter-longcrystallinesiliconnanowireswithvary- ingdiametersfromabout5nmto100nm,coveredby anamorphousshellofuptoseveral10nm(Shietal. 2000;Zhangetal.2000;Shietal.2005). MolecularBeamEpitaxy(MBE) InMBE,asolidhigh-puritysiliconsourceisheateduntil Sistartstoevaporate.Figure8schematicallydepictsan MBEsetup. Adirectionalgaseousbeamofsiliconatomsisaimedat thesubstrate,onwhichtheatomsadsorbandcrystallize. Toreducecontamination,thebasepressureofanMBE systemisusuallykeptatultrahighvacuum,allowingto monitorthegrowthusingReflectionHigh-EnergyElec- tronDiffraction(RHEED)(Werneretal.2006)orother surfacesensitiveexaminationmethods.SimilartoCVD, MBEwasinitiallydesignedforepitaxiallayer-by-layerde- positiononly.Yet,metalcontaminationwasalsofoundto causesilicon-wiregrowthinthiscase.Differingfrom CVD,noprecursorgasiscrackedatthesurfaceoftheli- quidmetal – siliconalloy.Therefore,thelattercannotbe treatedasaclassicalcatalystanymore.InMBE,twosilicon fluxesgovernwiregrowth.First,thedirectfluxofsilicon fromthesiliconsource;andsecond,thefluxofdiffusing Figure7 Schematicsofexperimentalsetupforsiliconnanowire growthbyevaporationofSiO. Figure8 Schematicsofexperimentalsetupforsiliconnanowire growthbyMBE. Hasan etal.SpringerPlus 2013, 2 :151 Page6of9 http://www.springerplus.com/content/2/1/151 siliconadatomsfromthesiliconsubstratesurface.The nanowiresproducedbyMBE — usuallygrownonSi(111) substrates — areepitaxialand11ᅰoriented.MBEoffers excellentcontrollabilityintermsoftheincomingflux,such thatdopedwires(Kanungoetal.2008)orheterostructures (Zakharovetal.2006)canbegrownbyswitchingbetween evaporationsources.OnedisadvantageofMBE,however,is thatthemethodislimitedwithrespecttotheminimally possibleSi-nanowirediameter.Onlynanowireswithdiame- tersgreaterthanabout40nmcanbeobtained(Shietal. 2005;Schubertetal.2004)whichseemstobeaconse- quenceoftheGibbs – Thomsoneffectandthefactthatonly smallSisupersaturationsa reachievablebyMBE.Another disadvantageofMBEisthelownanowiregrowthvelocity ofjustafewnanometersperminute(Schubertetal.2004). LaserAblation Thesiliconnanowiresproducedbylaserablationdifferin manyaspectsfromtheMBEgrownwhiskers.Onecan easilyobtainlargequantitiesofultrathinnanowireswith highaspectratios(Zhangetal.1998;Zhouetal.1998).As schematicallydisplayedinFigure9,ahigh-powerpulsed laserablatesmaterialfromamixedSi – catalysttarget, whichisplacedinatubefurnaceheldathightempera- turesandpurgedwithaninertgas. Thesiliconmaterialablatedfromthetargetcoolsbycol- lidingwithinert-gasmolecules,andtheatomscondenseto liquidnanodropletswiththesamecompositionasthetar- get(Morales&Lieber1998).Thus,thesenanoparticles containbothSiandthecatalys tmaterial.Accordingtothe VLSmechanism,siliconnanowiresstarttogrowoncethe catalystgetssupersaturatedwithsiliconandproceedsas longasthecatalystnanoparticlesremainliquid.Theadvan- tagesoflaser-ablatednanowireproductionaremanifold. First,thereisnoneedforasubstrate.Second,thecompos- itionoftheresultingnanowirescanbevariedbychanging thecompositionofthelasertarget.Byadding,forexample, SiO 2 tothetarget,single-crystallinesiliconnanowireswith variedamorphousSiO x shellthicknessescanbeobtainedin asingleprocessingstep(yangetal.2004)withsilicon-core diametersaslowas5nmandvaryingshellthicknessesof about10nm.Duetothehighgrowthtemperatures,catalyst metalssuchasFe,possessinga higheutectictemperature, canbeused.Theresultingnan owiregrowthvelocitiesare typicallyoftheorderofmicrometersperminute(Zhang etal.1998;Morales&Lieber1998).Theradiiofthe nanowiresnotonlydependonthetypeofmetalcatalysts usedbutalsoonthegasestha tarestreamedthroughthe furnace,suchasH 2 ,He,orN 2 (Zhangetal.1999). Electrolessmetaldepositionanddissolution Electrolessdeposition,anon-galvanictypeofdeposition methodthatinvolvesseveralsimultaneousreactionsinan aqueoussolution,whichoccurwithouttheuseofexternal electricalpower.Themostcommonelectrolessdeposition isnickel,silverorgoldparticledeposition.Firststepofsil- iconnanowiresynthesisusingthisprocessistodeposit metalparticlelikeAu,AgorCuonsiliconsubstrate. Thesenoblemetalswouldattractelectronsfromthesili- conandfacilitateSioxidation.Figure10showstheoxida- tionofsiliconsurfaceunderdepositedmetal. Figure9 Schematicsofexperimentalsetupforsiliconnanowire growthbyLaserAblationmethod. Figure10 Oxidationofsiliconsurfaceunderdepositedmetal. Figure11 Formationofsiliconnanowiresbyelectroless metaldeposition. Hasan etal.SpringerPlus 2013, 2 :151 Page7of9 http://www.springerplus.com/content/2/1/151 Generally,theetchingofacleanedSiwaferproceedsveryslowlyinaqueousHF/Fe(NOsolutionatlowtemperature.However,SietchingoccursrapidlywhenSisubstratescoveredwithAg/Au-nanoparticlefilmsareimmersedinHF/Fe(NOsolutionatroomtemperature.FormationofSiNWarraysduetothefurthersinkingoftheAgparticles,andlongitudinalandlateraldissolutionofbulkSi(showninFigure11)(Pengetal.2006).ConclusionsInsummary,wehaveseenthattherearesignificantchangesinelectronicandopticalpropertiesofsiliconnanowiresthanthoseofbulk.Thechangeofsomepropertiesdependsonthesizeandshapeofthenanostructures.Itsuggeststhat,carefulproductionofnanowiresofdesiredsizeandshapewouldmakeitpossibletomanipulatepropertieslikebandgap,effectivemassandopticalabsorption.Italsohasbeenseenthatsiliconnanowirescanbeproducedbydiffer-entgrowthmethods.AuandAgarethemostpopularcata-lystmaterialforsiliconnanowiresynthesis.CompetinginterestTheauthordeclaresthattheyhavenocompetinginterest.Allauthorshaveequalcontributiononthisworkandallauthorsreadandapprovedthefinalmanuscript.AuthordetailsDepartmentofElectricalandElectronicEngineering,ShahjalalUniversityofScienceandTechnology,Kumargaon,Sylhet3114,Bangladesh.ofInformationandCommunicationTechnology,MawlanaBhashaniScienceandTechnologyUniversity,Santash,Tangail1902,Bangladesh.DepartmentofappliedPhysicsElectronicsandCommunicationEngineering,UniversityofDhaka,Dhaka1000,Bangladesh.Received:15September2012Accepted:1April2013Published:10April2013AijiangLU(2007)TheoreticalStudyofElectronicandElectricalPropertiesofSiliconNanowires.Dissertation,CityUniversityofHongKong,HongKongAkhtarS,UsamiK,TsuchiyaY,MizutaH,OdaS(2008)VaporSolidGrowthofSmall-andUniform-DiameterSiliconNanowiresatLowTemperaturefrom.ApplPhysExpress1:014003AlivisatosAP(1996)SemiconductorClusters,Nanocrystals,andQuantumDots.Science271(5251):933AradiB,RamosLE,De´akP,K¨ohlerT,BechstedtF,ZhangRQ,FrauenheimT(2007)Theoreticalstudyofthechemicalgaptuninginsiliconnanowires.PhysRevB76(3):17,035305CanhamLT(1990)Siliconquantumwirearrayfabricationbyelectrochemicalandchemicaldissolutionofwafers.ApplPhysLett57(10):1046CuiY,DuanX,HuJ,LieberCM(2000)DopingandElectricalTransportinSiliconNanowires.JPhysChemB104(22):5213CuiY,LauhonLJ,GudiksenMS,WangJ,LieberCM(2001)Diameter-controlledsynthesisofsingle-crystalsiliconnanowires.ApplPhysLett78:2214CuiY,LieberCM(2001)AssembledusingSiliconNanowireBuildingBlocksFunctionalNanoscaleElectronicDevices.Science291:851GivargizovEI(1975)FundamentalAspectsofVLSGrowth.J.CrystGrowthGuichardAR,BarsicDN,SharmaS,KaminsTI,BrongersmaML(2006)Tunablelightemissionfromquantum-confinedexcitonsinTiSi2-catalyzedsiliconnanowires.NanoLett6(9):2140GuQ,DangH,CaoJ,ZhaoJ,FanS(2000)Siliconnanowiresgrownoniron-patternedsiliconsubstrates.ApplPhysLett76:3020HofmannS,DucatiC,NeillRJ,PiscanecS,FerrariAC,GengJ,Dunin-BorkowskiRE,RobertsonJ(2003)Goldcatalyzedgrowthofsiliconnanowiresbyplasmaenhancedchemicalvapordeposition.JApplPhys94(9):6005HofmannS,SharmaR,WirthCT,Cervantes-SodiF,DucatiC,KasamaT,Dunin-BorkowskiRE,DruckerJ,BennettP,RobertsonJ(2008)Ledge-flow-controlledcatalystinterfacedynamicsduringSinanowiregrowth.NatMater7:372IacopiF,VereeckenPM,SchaekersM,CaymaxM,MoelansN,BlanpainB,RichardO,DetavernierC,GriffithsH(2007)Plasma-enhancedchemicalvapourdepositiongrowthofSinanowireswithlowmeltingpointmetalcatalysts:aneffectivealternativetoAu-mediatedgrowth.Nanotechnology18:17,505307IijimaS(1991)HelicalMicrotubulesofGraphiticCarbon.Nature354:56KanungoPD,ZakharovN,BauerJ,BreitensteinO,WernerP,GoeseleU(2008)Controlledinsituborondopingofshortsiliconnanowiresgrownbymolecularbeamepitaxy.ApplPhysLett92:263107KodambakaS,TersoffJ,ReuterMC,RossFM(2006)Diameter-IndependentKineticsintheVaporliquid-SolidGrowthofSiNanowires.PhysRevLett96KolbFM,HofmeisterH,ScholzR,ZachariasM,Go¨seleU,MaDD,LeeST(2004)AnalysisofsiliconnanowiresgrownbycombiningSiOevaporationwiththeVLSmechanism.JElectrochemSoc151:G472LawM,GoldbergerJ,YangPD(2004)SemiconductorNanowiresandNanotubesAnnu.ReVMaterRes34:83LeuPW,ShanB,ChoK(2006)Surfacechemicalcontroloftheelectronicstructureofsiliconnanowires:Densityfunctionalcalculations.PhysRevB73MoralesAM,LieberCM(1998)ALaserAblationMethodfortheSynthesisofCrystallineSemiconductorNanowires.Science279(5348):208NolanM,OCallaghanS,FagasG,GreerJC,FrauenheimT(2007)Siliconnanowirebandgapmodification.NanoLett7(1):34sinVA,ShchetininAA,DolgachevAA,KorneevaVV(2005)EffectoftheNatureoftheMetalSolventontheVaporliquid-SolidGrowthRateofSiliconWhiskersInorg.Mater41(12):1256PanZW,DaiZR,XuL,LeeST,WangZL(2001)Temperaturecontrolledgrowthofsilicon-basednanostructuresbythermalevaporationofSiOpowders.JPhysChemB105:2507ParkWI,ZhengG,JiangX,TianB,LieberCM(2008)ControlledSynthesisofMillimeter-LongSiliconNanowireswithUniformElectronicProperties.NanoLett8(9):3004PengKQ,HuJJ,YanYJ,WuY,FangH,XuY,LeeST,ZhuJ(2006)FabricationofSingle-CrystallineSiliconNanowiresbyScratchingaSiliconSurfacewithCatalyticMetalParticles.AdvFunctMater16(3):387SacconiF,PerssonMP,PovolotskyiM,LatessaL,PecchiaA,GagliardiA,BalintA,FrqunheimT,CarloAD(2007)Electronicandtransportpropertiesofsiliconnanowires.JComputElectron6:329SchmidtV,WittemannJV(2009)SiliconNanowires:AReviewonAspectsoftheirGrowthandtheirElectricalProperties.AdvMater21:2681SchubertL,WernerP,ZakharovND,GerthG,KolbFM,LongL,Go¨seleU,TanTY(2004)SiliconnanowhiskersgrownonSisubstratesbymolecular-beamepitaxy.ApplPhysLett84:4968SharmaS,SunkaraMK(2004)Directsynthesisofsingle-crystallinesiliconnanowiresusingmoltengalliumandsilaneplasma.Nanotechnology15ShiWS,PengHY,ZhengYF,WangN,ShangNG,PanZW,LeeCS,LeeST(2000)SynthesisofLargeAreasofHighlyOriented.VeryLongSiliconNanowires.AdvMater12(18):1343ShiY,HuQ,ArakiH,SuzukiH,GaoH,YangW,NodaT(2005)LongSinanowireswithmillimeter-scalelengthbymodifiedthermalevaporationfromSipowder.ApplPhysA80(8):1733TsakalakosL,BalchJ,FronheiserJ,ShihM,LeBoeufSF,PietrzykowskiM,CodellaPJ,KorevaarBA,SulimaOV,RandJ,DavuluruA,RapolU(2007)Strongbroadbandopticalabsorptioninsiliconnanowirefilms.JournalofNanophotonics1(1):110,013552WagnerRS,EllisWC(1964)Vaporliquid-SolidMechanismofSingleCrystalGrowth.ApplPhysLett4:89WangN,TangYH,ZhangYF,LeeCS,BelloI,LeeST(1999)SiNanowiresGrownfromSiliconOxide.ChemPhysLett299(2):237WangN,TangYH,ZhangYF,YuDP,LeeCS,BelloI,LeeST(1998)TransmissionelectronmicroscopyevidenceofthedefectstructureinSinanowiressynthesizedbylaserablation.ChemPhysLett283:368WangY,SchmidtV,SenzS,Go¨seleU(2006)Epitaxialgrowthofsiliconnanowiresusinganaluminiumcatalyst.NatNanotechnol1:186etal.SpringerPlusPage8of9http://www.springerplus.com/content/2/1/151 WernerP,ZakharovND,GerthG,SchubertL,Go¨seleU(2006)Ontheformation ofSinanowiresbymolecularbeamepitaxy.IntJMaterRes97:1008 – 1015 YangYH,WuSJ,ChiuHS,LinPI,ChenYT(2004)CatalyticGrowthofSilicon NanowiresAssistedbyLaserAblation.JPhysChemB108(3):846 – 852 ZakharovND,WernerP,GerthG,SchubertL,SokolovL,Go¨seleU(2006)Growth phenomenaofSiandSi/GenanowiresonSi(111)bymolecularbeam epitaxy.JCrystGrowth290(1):6 – 10 ZhangYF,TangYH,LamC,WangN,LeeCS,BelloI,LeeST(2000)Bulk-quantity SinanowiressynthesizedbySiOsublimation.JCrystGrowth212:115 – 118 ZhangYF,TangYH,PengHY,WangN,LeeCS,BelloI,LeesST(1999)Diameter modificationofsiliconnanowiresbyambientgas.ApplPhysLett 75:1842 – 1844 ZhangYF,TangYH,WangN,YuDP,LeeCS,BelloI,LeeST(1998)Silicon nanowirespreparedbylaserablationathightemperature.ApplPhysLett 72:1835 – 1837 ZhengY,RivasC,LakeR,AlamKK,TimothyBB,GerhardK(2005)Electronic PropertiesofSiliconNanowires.ElectronDevices,IEEETransactionson52 (6):1097 – 1103 ZhouGW,ZhangZ,BaiZG,FengSQ,YuDP(1998)Transmissionelectron microscopystudyofSinanowires.ApplPhysLett73:677 – 679 ZhuJ,YuZ,BurkhardGF,HsuCM,ConnorST,XuY,WangQ,McGeheeM,FanS, CuiY(2009)OpticalAbsorptionEnhancementinAmorphousSilicon NanowireandNanoconeArrays.NanoLett9(1):279 – 282 doi:10.1186/2193-1801-2-151 Citethisarticleas: Hasan etal. : Areviewonelectronicandoptical propertiesofsiliconnanowireanditsdifferentgrowthtechniques. SpringerPlus 2013 2 :151. Submit your manuscript to a journal and bene“ t from: 7 Convenient online submission 7 Rigorous peer review 7 Immediate publication on acceptance 7 Open access: articles freely available online 7 High visibility within the “ eld 7 Retaining the copyright to your article Submit your next manuscript at 7 springeropen.com Hasan etal.SpringerPlus 2013, 2 :151 Page9of9 http://www.springerplus.com/content/2/1/151