PPT-1 Binary Heaps What if we’re mostly concerned with finding the most relevant data?

Author : min-jolicoeur | Published Date : 2018-12-09

A binary heap is a binary tree 2 or fewer subtrees for each node A heap is structured so that the node with the most relevant data is the root node the next most

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "1 Binary Heaps What if we’re mostly co..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

1 Binary Heaps What if we’re mostly concerned with finding the most relevant data?: Transcript


A binary heap is a binary tree 2 or fewer subtrees for each node A heap is structured so that the node with the most relevant data is the root node the next most relevant as the children of the root etc. ii The height or depth of a binary tree is the maxi mum depth of any node or 1 if the tree is empty Any binary tree can have at most 2 nodes at depth Easy proof by induction EFINITION A complete binary tree of height is a binary tree which contain Data . Structures. Self-Adjusting. Data . Structures. 2. Lists. [D.D. . Sleator. , R.E. . Tarjan. , . Amortized Efficiency of List Update Rules. , Proc. 16. th. Annual ACM Symposium on Theory of Computing, 488-492, 1984]. Heaps Is this a heap? Why or why not? Is this a heap? Why or why not? Heap OperationsAs mentioned earlier, there are two basic operations to be Inserting an item into the heapFinding and removing th COL 106. Shweta Agrawal and . Amit. Kumar. 2. Revisiting FindMin. Application: Find the smallest ( or highest priority) item quickly. Operating system. needs to schedule jobs according to priority instead of FIFO. Numbering of a tree’s nodes for storage in a arrayIf we use the number of a node as an array Index, this technique gives us an orderin which we can store tree nodes In an array. The tree may be e Data . Structures. Self-Adjusting. Data . Structures. 2. Lists. [D.D. . Sleator. , R.E. . Tarjan. , . Amortized Efficiency of List Update Rules. , Proc. 16. th. Annual ACM Symposium on Theory of Computing, 488-492, 1984]. Data . Structures. Self-Adjusting. Data . Structures. 2. Lists. [D.D. . Sleator. , R.E. . Tarjan. , . Amortized Efficiency of List Update Rules. , Proc. 16. th. Annual ACM Symposium on Theory of Computing, 488-492, 1984]. Cynthia Bailey Lee. Some slides and figures adapted from Paul . Kube’s. CSE 12. .  .                          . CS2 in Java Peer Instruction Materials by . Cynthia Lee. A heap is a binary tree.. A heap is best implemented in sequential representation (using an array).. Two important uses of heaps are: . (. i. ) efficient implementation of priority queues. (ii) sorting -- . Data . Structures. Self-Adjusting. Data . Structures. 2. Lists. [D.D. . Sleator. , R.E. . Tarjan. , . Amortized Efficiency of List Update Rules. , Proc. 16. th. Annual ACM Symposium on Theory of Computing, 488-492, 1984]. A binary min-heap allows the operations of push and pop to occur . in an average case of . Q. (1). and . Q. (. ln. (. n. )). time, respectively. Merging two binary min-heaps, however, is an . Q. (. Prof. . Neary. Based on slides from previous iterations of this course. Today’s Topics. Review of Min Heaps. Introduction of Left-. ist. Heaps. Merge Operation. Heap Operations. Review of Heaps. Min Binary Heap. Cynthia Lee. CS106X. Topics:. Priority Queue. Linked List implementation. Heap . data . structure implementation. TODAY’S TOPICS . NOT. ON THE MIDTERM. 2. Some priority queue implementation options. Definition of a . d. -ary min heap . Implementation as a complete tree. Examples of binary, ternary, quaternary, and quinary min heaps. Properties. Relative speeds. Optimal choice is a quaternary heap.

Download Document

Here is the link to download the presentation.
"1 Binary Heaps What if we’re mostly concerned with finding the most relevant data?"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents