/
134A.KesselmanandY.MansourDolevetal.[6]studyretransmissiontimeoutsetti 134A.KesselmanandY.MansourDolevetal.[6]studyretransmissiontimeoutsetti

134A.KesselmanandY.MansourDolevetal.[6]studyretransmissiontimeoutsetti - PDF document

min-jolicoeur
min-jolicoeur . @min-jolicoeur
Follow
365 views
Uploaded On 2015-10-12

134A.KesselmanandY.MansourDolevetal.[6]studyretransmissiontimeoutsetti - PPT Presentation

timesthemeanofRTTProvidedthathighermomentsofRTTexistweestablishboundswhicharemostlydrivenbythosemomentswhiletheeffectofthewindowsizebecomesinsignicantNoticethatwhenRTTisaxedconstantweobtainanup ID: 158093

timesthemeanofRTT.Pro-videdthathighermomentsofRTTexist weestablishboundswhicharemostlydrivenbythosemomentswhiletheeffectofthewindowsizebecomesinsignicant.NoticethatwhenRTTisaxedconstant weobtainanup

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "134A.KesselmanandY.MansourDolevetal.[6]s..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

134A.KesselmanandY.MansourDolevetal.[6]studyretransmissiontimeoutsettingforasimpletransmissionproto-colbymeansofcompetitiveanalysis.LudwigandKatz[17]proposetheEifelalgorithmtoeliminatetheunnecessaryretransmissionsthatcanresultfromaspuriousretransmis-siontimeout.GurtovandLudwig[11]presentanenhancedversionoftheEifelalgorithmandshowitsperformancebenetsonpathswithahighbandwidth-delayproduct.EkstrandLudwig[7]proposeanewalgorithmforcalculatingtheRTO,namedthePeak-Hopper-RTO(PH-RTO),whichimprovesupontheperformanceofTCPinhighlossenvironments.SignicanteffortshavebeenalsodevotedtomodelingsuchacomplexprotocolasTCP[16,15,18,20].InthispaperwestudyhowtondtheoptimalRTOmaximizingtheTCPthroughputusingthemodelof[20].OurmaincontributionistoshowthattheoptimalRTOneedtodependontheTCPwindowsize.WederivetheoptimalRTOasafunctionofRTTandtheTCPwindowsizeforageneralandsomespecicdistributionsofRTT.Intuitively,thelargertheTCPwindowsize,thelongertheoptimalRTO.Wenotethattheheavy-tailedParetodistributionhasbeenshowntoapproximatemostaccuratelytheactualRTTdistributionintheInternet[1,2,10,5].AnimportantadvantageofouralgorithmisthatitcanbeeasilyimplementedonthetopoftheexistingTCPtimeoutmechanism.RFC3649[8]proposesamodicationofTCPcongestioncontrolthatadaptstheincreasestrategyandmakesitmoreaggressiveforhighbandwidthlinks(i.e.forlargewindowsizes).InthisworkwedemonstratethatforsuchscenariosTCPthroughputcouldbefurtherincreasedbyselectingalargerRTO.Ourresultsarestrengthenedbysimulationsin[11],whichshowthatproperhandlingofspurioustimeoutsonpathswithahighbandwidth-delayproductcanincreaseTCPthroughputbyuptoTherestofthepaperisorganizedasfollows.SummaryofourresultsappearsinSection2.InSection3wedescribetheTCPmodel.Section4containsananalyticderivationoftheoptimalRTO.AgeneralRTTdistributionandsomespecicdistributionsareconsideredinSection5andSection6,respectively.2SummaryofResultsInthissectionwegiveanoverviewofourmainresultswhiletheformaldenitionsandproofsaredeferredtothefollowingsections.WeassumethatRTTbehaveslikearandomvariableandderivetheoptimalretransmissiontimeoutasafunctionofthemeanandthevarianceofRTTandtheTCPwindowsize.TheinputparameterstoouralgorithmaretheRTTmean,theRTTvarianceandtheTCPwindowsize.(Weassumethatbotharenite.)OurgoalistondtheoptimalRTOmaximizingtheTCPthroughput.WeshowthatitisanincreasingfunctiononFirstweobtainsomeupperboundsontheoptimalRTOforageneralRTTdistri-bution.Theseboundsmaybeconsideredasworst-caseboundssincetheyholdforanydistribution.TheresultsarepresentedinTable1.WeshowthatforanyRTTdistributiontheoptimalRTOisboundedfromaboveby timesthemeanofRTT.Pro-videdthathighermomentsofRTTexist,weestablishboundswhicharemostlydrivenbythosemomentswhiletheeffectofthewindowsizebecomesinsignicant.NoticethatwhenRTTisaxedconstant,weobtainanupperboundwhichtendstoRTT. OptimizingTCPRetransmissionTimeout135Table1.Generaldistribution Moment RTO–UpperBound Firstmoment 1  3W RTT ’thmoment W2 31 RTTTRTT k Table2.Specicdistributions RTTDistribution RTO–OptimalValue Normal µ+·O +ln  Exponential µ·O(lnW) Pareto W2 1Š1 NextwederivetheoptimalRTOforsomespecicdistributions.ThecorrespondingresultsarepresentedinTable2.Basically,wewouldliketheprobabilityofaprematureretransmissiontimeouttobeverysmall.Therationalisthatthethroughputdegradationduetoaprematureretransmissiontimeoutismuchhigherthanthatduetoalateretrans-missiontimeout.Ourmodelsetstheprobabilityofaprematureretransmissiontimeoutatabout,foroptimizingtheTCPthroughput.IncaseRTTisdistributedaccordingtotheNormaldistribution,onewouldexpecttheoptimalRTOtobeasumofthemeanplusthestandarddeviationtimessomefactor,asouranalysisindeedshows.ThefactorofisduetothefactthatwhenRTOtheexpectednumberofroundswastedasaresultofalateretransmissiontimeoutis/µ.ThissettingissimilartotheRTOcalculationofJacobson[12]whilethemaindifferenceisthedependenceonthewindowsize.FortheExponentialRTTdistribution,weshowthattheoptimalRTOisproportionaltothemeanofRTTandthelogarithmofthewindowsize.Thelogarithmicfactorofthewindowsizefollowsfromtheformofthedensityfunction.Finally,weconsidertheheavy-tailedParetodistributionofRTTandestablishthattheoptimalRTOisthemeanofRTTmultipliedbyapowerofthewindowsize.Suchadependenceisduetotheheavy-tailpropertyoftheParetodistribution.3TCPModelWeadoptthemodelof[20]thatisbasedonRenoversionofTCP.TheTCP’scongestionavoidancebehaviorismodeledintermsof"rounds."Thedurationofaroundisequaltotheroundtriptimeandisassumedtobeindependentofthewindowsize.WedenearoundofTCPtobeatimeperiodstartingfromtransmittingawindowofpacketsback-to-backandendinguponreceivingtheacknowledgmentsforthesepackets.Wemakethefollowingsimplifyingassumptions.Thereisalwaysdatapendingatthesender,suchthatthesendercanalwaystransmitdataaspermittedbythecongestionwindowwhilethereceiver’sadvertisedwindowissufcientlylargetoneverconstrainthecongestionwindow.Everypacketisassumedtobeindividuallyacknowledged(the 136A.KesselmanandY.Mansourdelayedacknowledgmentalgorithmisnotineffect).Apacketislostinaroundindepen-dentlyofanypacketslostinotherrounds.However,packetlossesarecorrelatedamongtheback-to-backtransmissionswithinaround:ifapacketislost,alltheconsequentpacketstransmitteduntiltheendofthatroundarealsolost.Wedenepacketlossprob-tobetheprobabilitythatapacketislost,giventhateitheritistherstpacketinaroundortheprecedingpacketintheroundisnotlost.Wecallthecongestionavoidancephaseasteadystate.Weassumethattimeoutexpirationdoesnotoccurduringaslowstartphaseandconcentrateonthetimeoutsettinginasteadystate.WealsoassumethatthemeanandthevarianceofRTTareavailableorcouldbeestimated.WeapproximatethepacketlossprobabilityasafunctionoftheTCPwindowsizeinasteadystate,whichisasimplicationof[20],as .Wenotethatthemodelof[20]capturestheeffectofTCP’stimeoutmechanismonthroughput.4TCPTimeoutOptimizationInthissectionweconsideroptimizationoftheretransmissiontimeout.ThegoalistomaximizethethroughputofTCP.NoticethattheoptimalRTOistheactualRTT,whichisunknowntoouralgorithm.Thus,theonlinedecisionmustbebasedonlyontheavailableestimatesofthemeanandthevarianceofRTT.WetrytondthevalueofRTOthatbalancesthroughputdegradationbetweenaprematureretransmissiontimeoutandalateretransmissiontimeout,whicharesocalled“badevents”(thatwillbeformallydenedlater).Recallthatinourmodelbadeventsoccuronlyinasteadystate.Whenabadeventhappens,weconsidertheconvergenceperiodduringwhichTCPreachesasteadystate.WecomparethethroughputofTCPduringwiththatofanoptimalalgorithmthatusestheactualRTTasitsRTOandsendsinaveragepacketseveryround.Wecalltothenumberofextrapacketssentbytheoptimalalgorithmduringthroughputdegradation.Thegoalistominimizetheexpectedthroughputdegradationduetobadevents.Firstwewillderivetheexpecteddurationoftheconvergenceperiod.Inthecaseofaprematureretransmissiontimeout,ittakesexactlyroundsforTCPtoreachasteadystatesincetheTCPwindowgrowsexponentiallyduringaslowstartphase.Inthecaseofalateretransmissiontimeout,TCPisidleinsteadoftransmittingduringRTORTTtimeunits.Thus,theexpectationofthelengthofinroundsis:is:lengthRTO�RTT RTO�RTTRTORTORTTdRTT.WeapproximatetheexpectednumberofroundsusingtheLawofLargeNumbersasaslengththroundsinRTO�RTT RTO�RTTRTORTORTT dRTT. Suchsituationnaturallyoccurswhenthetail-droppolicyisdeployedbythebottleneckrouter. OptimizingTCPRetransmissionTimeout137Assumingthatthereisasequenceofoneormorelossesinagivenround,theproba-bilityofretransmissiontimeoutis [20].Inthesequel,weassumethatNextwewilldenethebadeventsmoreformally.Prematureretransmissiontimeout.Wesaythatatimeoutoccurredprematurelynopacketintheroundislostorthelosscanbecapturedbythefastretransmissionmechanism.NotethatRTOmustbesmallerthanRTT.Theprobabilityofthiseventis:is:RTORTT RTORTTThethroughputdegradationduetothiseventis:.Observethatduringtheslowstartphase,TCPsendsatmostpackets.Weobtainthattheexpectedthroughputdegradationasaresultofaprematureretransmissiontimeoutis:is:RTORTTLateretransmissiontimeout.Wesaythatatimeoutoccurredifsomepacketsintheroundarelostandthelosscannotbecapturedbythefastretransmissionmechanism.NotethatRTOmustbelargerthanRTT.Theprobabilityofthiseventis:is:RTO&#x-270;&#x.100;RTT RTO�RTT Thethroughputdegradationduetothiseventis: RTO�RTTRTORTORTT dRTT.Wegetthattheexpectedthroughputdegradationasaresultofalateretransmissiontimeoutis: RTORTORTT dRTT.TheoptimalRTO,RTO,minimizestheexpectedthroughputdegradation,thatis:RTORTORTORTOThus,giventheprobabilitydistributionofRTT,theoptimalRTOminimizes:minimizes:RTORTT RTORTORTT dRTT.Forsimplicity,wewillderiveanapproximationfortheoptimalRTO,thebalancedRTO,forwhichtheexpectedthroughputdegradationisthesameforbothofthebadevents:ents:RTORTT RTORTORTT dRTTNotethatintheworstcasetheexpectedthroughputdegradationforthebalancedRTOisatmosttwiceaslargeasthatfortheoptimalRTO. OptimizingTCPRetransmissionTimeout1396.2ExponentialDistributionInthissectionweconsidertheExponentialdistributionofRTTwiththerateparameterthemeanmeanx]=1/,thedensityfunctionandthedistributionfunction.WeshowthattheoptimalRTOisproportionaltothemeanofRTTandthelogarithmoftheTCPwindowsize.Substitutingto(1),(1),RTORTTRTOORTTRTTweget:RTO RTORTORTOThisgivesusthefollowingRTO:RTO ln W2 3 =1 .Theloga-rithmofachievestheeffectofsettingtheprematureretransmissiontimeoutprobabilitytobeorderof6.3ParetoDistributionInthissectionweconsidertheheavy-tailedParetodistributionofRTTwiththeshape,themean ,thedensityfunction andthedistributionfunction .WeshowthattheoptimalRTOisthemeanofRTTmultipliedbyapowerofthewindowsize,whichisduetotheheavy-tailpropertyofthePareto.Substitutingto(1),(1),RTORTT RTOORTT RTT givesus: RTO WaŠ1 a·1Š1 RTORTORTORTT SolvingthisequationderivesthefollowingRTO:RTO .AninterestingsettingisisRTT.InthiscasewegetthatRTO ,whichjustiestheformoftheboundwehaveforanarbitrarydistribution.References1.A.AcharyaandJ.Saltz,"AStudyofInternetRound-tripDelay,"TechnicalReportCS-TR-,UniversityofMaryland,December1996.2.M.AllmanandV.Paxson,“OnEstimatingEnd-to-EndNetworkPathProperties,”InProceed-ingsofSIGCOMM’99,pp.263-274.3.H.Balakrishnan,S.Seshan,M.Stemm,andR.H.Katz,“AnalyzingStabilityinWide-AreaNetworkPer-formance,”InProceedingsofSIGMETRICS’974.J.C.Bolot,“CharacterizingEnd-to-EndPacketDelayandLossintheInternet,”JournalofHighSpeedNetworks,2(3),September1993.5.C.J.Bovy,H.T.Mertodimedjo,G.Hooghiemstra,H.UijterwaalandP.VanMieghem,"Anal-ysisofEndtoendDelayMeasurementsinInternet,"InProceedingsofPAM2002,March