/
38.Kinematics38.KINEMATICSRevisedJanuary2000byJ.D.Jackson(LBNL).Throug 38.Kinematics38.KINEMATICSRevisedJanuary2000byJ.D.Jackson(LBNL).Throug

38.Kinematics38.KINEMATICSRevisedJanuary2000byJ.D.Jackson(LBNL).Throug - PDF document

min-jolicoeur
min-jolicoeur . @min-jolicoeur
Follow
388 views
Uploaded On 2017-01-26

38.Kinematics38.KINEMATICSRevisedJanuary2000byJ.D.Jackson(LBNL).Throug - PPT Presentation

Forexampleifa080GeVkaonbeamisincidentonaprotontargetthecenterofmassenergyis1699GeVandthecenterofmassmomentumofeitherparticleis0442GeVItisalsousefultonotethat1lab1lablabCITATIONSEidelmanetal ID: 514006

Forexample ifa0.80GeV/kaonbeamisincidentonaprotontarget thecenterofmassenergyis1.699GeVandthecenterofmassmomentumofeitherparticleis0.442GeV/Itisalsousefultonotethat1lab1lablabCITATION:S.Eidelmanetal.

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "38.Kinematics38.KINEMATICSRevisedJanuary..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

38.Kinematics38.KINEMATICSRevisedJanuary2000byJ.D.Jackson(LBNL).Throughoutthissectionunitsareusedinwhich=1.Thefollowingconversionsareuseful:=197.3MeVfm,(=0.3894(GeV)mb.38.1.LorentztransformationsTheenergyand3-momentumofaparticleofmassforma4-vectorwhosesquare.Thevelocityoftheparticleis.Theenergyandmomentum()viewedfromaframemovingwithvelocityaregivenby=(1and)arethecomponentsofperpendicular(parallel)to.Other4-vectors,suchasthespace-timecoordinatesofevents,ofcoursetransforminthesameway.Thescalarproductoftwo4-momentaisinvariant(frameindependent).38.2.Center-of-massenergyandmomentumInthecollisionoftwoparticlesofmassesandthetotalcenter-of-massenergycanbeexpressedintheLorentz-invariantformistheanglebetweentheparticles.Intheframewhereoneparticle(ofmassisatrest(labframe),1labThevelocityofthecenter-of-massinthelabframeislab1lablab1laband1labThec.m.momentaofparticles1and2areofmagnitudelab Forexample,ifa0.80GeV/kaonbeamisincidentonaprotontarget,thecenterofmassenergyis1.699GeVandthecenterofmassmomentumofeitherparticleis0.442GeV/Itisalsousefultonotethat1lab1lablabCITATION:S.Eidelmanetal.,PhysicsLettersB592,1(2004)availableonthePDGWWWpages(URL:)January4,200512:11 38.Kinematics38.3.Lorentz-invariantamplitudesThematrixelementsforascatteringordecayprocessarewrittenintermsofaninvariantamplitude.Asanexample,the-matrixfor22scatteringisrelated Thestatenormalizationissuchthat=(238.4.ParticledecaysThepartialdecayrateofaparticleofmassintobodiesinitsrestframeisgivenintermsoftheLorentz-invariantmatrixelement ;:::;pisanelementof-bodyphasespacegivenby;:::;p Thisphasespacecanbegeneratedrecursively,viz.;:::;p;:::;pq;p;:::;p.Thisformisparticularlyusefulinthecasewhereaparticledecaysintoanotherparticlethatsubsequentlydecays.Survivalprobability:Ifaparticleofmasshasmeanproperlifetime(=1�)andhasmomentum(),thentheprobabilitythatitlivesforatimegreaterbeforedecayingisgivenbyandtheprobabilitythatittravelsadistanceorgreaterisJanuary4,200512:11 38.Kinematics Figure38.1:De nitionsofvariablesfortwo-bodydecays.Two-bodydecaysIntherestframeofaparticleofmass,decayinginto2particleslabeled1and2, 2M;(38:15)jp1j=jp2j=M2�(m1+m2)2M2�(m1�m2)21=2 and 2jMj2jp1j (cos)isthesolidangleofparticle1.Three-bodydecays Figure38.2:De nitionsofvariablesforthree-bodydecays.De ningand,thenand,whereistheenergyofparticle3intherestframeof.Inthatframe,themomentaofthethreedecayparticleslieinaplane.Therelativeorientationofthesethreemomentais xediftheirenergiesareknown.Themomentacanthereforebespeci edinspacebygivingthreeEulerangles( ; ; )thatspecifytheorientationofthe nalsystemrelativetotheinitialparticle[1].Then )51 d d(cosd :January4,200512:11 38.KinematicsAlternatively )51 where()isthemomentumofparticle1intherestframeof1and2,and istheangleofparticle3intherestframeofthedecayingparticle.andaregivenby and [ComparewithEq.(38Ifthedecayingparticleisascalarorweaverageoveritsspinstates,thenintegrationovertheanglesinEq.(3818)gives )31 8M jMj21dE2=1 )31 32M3 ThisisthestandardformfortheDalitzplot.Dalitzplot:Foragivenvalueof,therangeofisdeterminedbyitsvalueswhenisparallelorantiparalleltomax E22�m22�q E23�m232;:22a)(m2)=(E2+E3)2�q E22�m22+q Hereandaretheenergiesofparticles2and3intherestframe.ThescatterplotinandiscalledaDalitzplot.If isconstant,theallowedregionoftheplotwillbeuniformlypopulatedwithevents[seeEq.(3821)].Anonuniformityintheplotgivesimmediateinformation.Forexample,inthecaseofK,bandsappearwhenre ectingtheappearanceofthedecaychainKJanuary4,200512:11 38.Kinematics 012345 10 m12 (GeV2)m23 (GeV2) (m1+m2)2(M-m3)2 (M-m1)2(m2+m3)2 (m23)min Figure38.3:Dalitzplotforathree-body nalstate.Inthisexample,thestate at3GeV.Four-momentumconservationrestrictseventstotheshadedregion.Kinematiclimits:Inathree-bodydecaythemaximumof,[givenbyEq.(3820)],isachievedwhen,particles1and2havethesamevectorvelocityintherestframeofthedecayingparticle.If,inaddition,thenmaxmaxmaxMultibodydecays:Theaboveresultsmaybegeneralizedto nalstatescontaininganynumberofparticlesbycombiningsomeoftheparticlesinto\e ectiveparticles"andtreatingthe nalstatesas2or3\e ectiveparticle"states.Thus,ifijk:::,thenijk::: ijk:::andijk:::maybeusedinplaceofintherelationsinSec.38.4.3or38.4.3.1above. Figure38.4:De nitionsofvariablesforproductionofan-body nalstate.January4,200512:11 38.Kinematics38.5.CrosssectionsThedi erentialcrosssectionisgivenby 4q ;:::;p[SeeEq.(3811).]Intherestframeof(lab), 1lab;(38whileinthecenter-of-massframe 1cm Two-bodyreactions Figure38.5:De nitionsofvariablesforatwo-body nalstate.Twoparticlesofmomentaandandmassesandscattertoparticlesofmomentaandandmassesand;theLorentz-invariantMandelstamvariablesarede nedbyandtheysatisfyThetwo-bodycrosssectionmaybewrittenas dt=1 1 1cmJanuary4,200512:11 38.KinematicsInthecenter-of-massframe1cm3cm1cm3cm1cm3cmsin1cm3cmsinistheanglebetweenparticle1and3.Thelimitingvalues=0)and)for22scatteringare 2p 1cm3cmIntheliteraturethenotationmax)for)issometimesused,whichshouldbediscouragedsince.Thecenter-of-massenergiesandmomentaoftheincomingparticlesare1cm 2p 2cm 2p For3cmand4cm,changeand.Then and1cm1lab p Herethesubscriptlabreferstotheframewhereparticle2isatrest.[ForotherrelationsseeEqs.(38.2){(38.4).]Inclusivereactions:Choosesomedirection(usuallythebeamdirection)forthe-axis;thentheenergyandmomentumofaparticlecanbewrittenasy;psinhisthetransversemassandtherapidityisde nedby 2E+pz =ln =tanh Underaboostinthe-directiontoaframewithvelocitytanh.HencetheshapeoftherapiditydistributiondN=dyisinvariant.Theinvariantcrosssectionmayalsoberewritten d3p=d3 ddyp dydJanuary4,200512:11 38.KinematicsThesecondformisobtainedusingtheidentitydy=dp,andthethirdformrepresentstheaverageoverFeynman'svariableisgivenby max maxInthec.m.frame, p sinh p andmax=ln( For,therapidity[Eq.(3837)]maybeexpandedtoobtain 2)+ sin2)+lntan(wherecos.Thepseudorapidityde nedbythesecondlineisapproximatelyequaltotherapidityforand,andinanycasecanbemeasuredwhenthemassandmomentumoftheparticleisunknown.Fromthede nitiononecanobtaintheidentitiessinh=cotsintanh=cosPartialwaves:TheamplitudeinthecenterofmassforelasticscatteringofspinlessparticlesmaybeexpandedinLegendrepolynomialsk; +1)(cosisthec.m.momentum,isthec.m.scatteringangle,1,andisthephaseshiftofthepartialwave.Forpurelyelasticscattering,=1.Thedi erentialcrosssectionis k;Theopticaltheoremstatesthat andthecrosssectioninthepartialwaveisthereforebounded: +1)+1) January4,200512:11 38.Kinematics 1/21/2 al d Figure38.6:Argandplotshowingapartial-waveamplitudeasafunctionofenergy.Theamplitudeleavestheunitarycirclewhereinelasticitysetsin(Theevolutionwithenergyofapartial-waveamplitudecanbedisplayedasatrajectoryinanArgandplot,asshowninFig.38.6.TheusualLorentz-invariantmatrixelement(seeSec.38.3above)fortheelasticprocessisrelatedtok;)by k; lab=0)andarethecenter-of-massenergysquaredandmomentumtransfersquared,respectively(seeSec.38.4.1).Resonances:TheBreit-Wigner(nonrelativistic)formforanelasticamplitudewitharesonanceatc.m.energy,elasticwidth�,andtotalwidth� isthec.m.energy.AsshowninFig.38.7,intheabsenceofbackgroundtheelasticamplitudetracesacounterclockwisecirclewithcenter2andradiuswheretheelasticity.TheamplitudehasapoleatThespin-averagedBreit-Wignercrosssectionforaspin-resonanceproducedinthecollisionofparticlesofspinand+1) +1)(2+1) k2BB�2tot isthec.m.momentum,isthec.m.energy,andandarethebranchingfractionsoftheresonanceintotheentranceandexitchannels.The2factorsarethemultiplicitiesoftheincidentspinstates,andarereplacedby2forphotons.Thisexpressionisvalidonlyforanisolatedstate.Ifthewidthisnotsmall,�cannotbetreatedasaconstantindependentof.Therearemanyotherformsfor,allofwhichareequivalenttotheonegivenhereinthenarrow-widthcase.Someoftheseformsmaybemoreappropriateiftheresonanceisbroad.January4,200512:11 38.Kinematics 1/21/2 el/2 Figure38.7:Argandplotforaresonance.TherelativisticBreit-WignerformcorrespondingtoEq.(3850)is: Abetterformincorporatestheknownkinematicdependences,replacing ),where�)isthewidththeresonanceparticlewouldhaveifitsmasswere ,andcorrespondingly )where�)isthepartialwidthintheincidentchannelforamass s:a`=�p s�(s) s�m2+ip Fortheboson,allthedecaysaretoparticleswhosemassesaresmallenoughtobeignored,soondimensionalgrounds� ,where�de nesthewidthofthe,and�)isconstant.Afulltreatmentofthelineshaperequiresconsiderationofdynamics,notjustkinematics.ForthethisisdonebycalculatingtheradiativecorrectionsintheStandardModel.1.See,forexample,J.J.Sakurai,ModernQuantumMechnaics,Addison-Wesley(1985),p.172,orD.M.BrinkandG.R.Satchler,AngularMomentum,2nded.,OxfordUniversityPress(1968),p.20.January4,200512:11