/
Hadamard matrices  Introduction Hadamard matrix is an matrix with entries  which satises Hadamard matrices  Introduction Hadamard matrix is an matrix with entries  which satises

Hadamard matrices Introduction Hadamard matrix is an matrix with entries which satises - PDF document

min-jolicoeur
min-jolicoeur . @min-jolicoeur
Follow
574 views
Uploaded On 2014-12-18

Hadamard matrices Introduction Hadamard matrix is an matrix with entries which satises - PPT Presentation

Then det Equality holds if and only if X is a Hadamard matrix This is a nice example of a theorem which seems to lack any reasonable ap proach we are asked to optimise a highly nonlinear function over a multidimen sional region yet when looked at ID: 25599

Then det

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Hadamard matrices Introduction Hadamard..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

az }| {++++++az }| {++++��az }| {++��++az }| {++����Figure1:ThreerowsofaHadamardmatrixNow,sinceeveryotherrowisorthogonaltotherst,weseethateachfurtherrowhasmentries+andmentries�,wheren=2m.Moreover,ifn�2,therstthreerowsarenowasinFigure1,withn=4a.ItisconjecturedthatthereisaHadamardmatrixofeveryorderdivisibleby4(inotherwords,theabovenecessaryconditionissufcient).Thesmallestmultipleof4forwhichnomatrixhasbeenconstructediscurrently428.Wewillseeafewconstructionsinthefollowingsections.See[4]formore.(Note:Thisisnowoutofdate;aHadamardmatrixoforder428wasconstructedbyHadiKharaghaniandBehruzTayfeh-Rezaie[3]attheIPMinTehran,Iranin2004.ThematrixcanbedownloadedfromtheIPMwebsite[2],orfromNeilSloane'slibraryofHadamardmatrices[5].Thecurrentsmallestunknownorderis668.)2SomeconstructionsTheconstructionsgivenherebynomeansexhaustthoseknown,butsufcetogiveaHadamardmatrixofeachadmissibleorderlessthan52.2.1SylvestermatricesThesimplestconstructionofnewHadamardmatricesfromoldistheKronecker(ortensor)product.Ingeneral,ifA=(aij)andB=(bkl)arematricesofsizemnandpqrespectively,theKroneckerproductA Bisthempnqmatrixmadeupofpqblocks,wherethe(i;j)blockisaijB.Thenwehavethefollowingresult:Theorem3TheKroneckerproductofHadamardmatricesisaHadamardmatrix.TheSylvestermatrixS(k)oforder2kistheiteratedKroneckerproductofkcopiesoftheHadamardmatrix+++�oforder2.Bytheprecedingtheorem,TheEncyclopaediaofDesignTheoryHadamardmatrices/2 ConstructionfromLatinsquaresLetL=(lij)beaLatinsquareoforder6:thatis,a66arraywithentries1;:::;6suchthateachentryoccursexactlyonceineachroworcolumnofthearray.NowletHbeamatrixwithrowsandcolumnsindexedbythe36cellsofthearray:itsentryinthepositioncorrespondingtoapair(c;c0)ofdistinctcellsisdenedtobe+1ifcandc0lieinthesamerow,orinthesamecolumn,orhavethesameentry;allotherentries(includingthediagonalones)are�1.ThenHisaHadamardmatrix.SteinertriplesystemsLetSbeaSteinertriplesystemoforder15:thatis,Sisasetof“triples”or3-elementsubsetsoff1;:::;15gsuchthatanytwodistinctelementsofthissetarecontainedinauniquetriple.Thereare35triples,andtwodistincttripleshaveatmostonepointincommon.NowletAbeamatrixwithrowsandcolumnsindexedbythetriples,withentryinposition(t;t0)being�1iftandt0meetinasinglepoint;allotherentries(includingthediagonalones)are+1.NowletHbeobtainedbyborderingAbyarowandcolumnof+1s.ThenHisaHadamardmatrix.3EquivalenceofHadamardmatricesTheSylvesterandPaleymatricesoforders4and8areequivalent–indeedthereisessentiallyauniquematrixofeachoftheseorders.Foralllargerordersforwhichbothtypesexist(thatis,n=p+1,wherepisaMersenneprime),theyarenotequivalent.Weproceedtomakethesenseof“equivalence”ofHadamardmatricesprecise.ThereareseveraloperationsonHadamardmatriceswhichpreservetheHadamardproperty:(a)permutingrows,andchangingthesignofsomerows;(b)permutingcolumns,andchangingthesignofsomecolumns;(c)transposition.WecalltwoHadamardmatricesH1andH2equivalentifonecanbeobtainedfromtheotherbyoperationsoftypes(a)and(b);thatis,ifH2=P�1H1Q,wherePandQaremonomialmatrices(havingjustonenon-zeroelementineachroworcolumn)withnon-zeroentries1.Accordingly,theautomorphismgroupofaHadamardmatrixHisthegroupconsistingofallpairs(P;Q)ofmonomialmatriceswithnon-zeroentries1TheEncyclopaediaofDesignTheoryHadamardmatrices/4 ThisisthePaleydesign.Yetanotherdesigncanbeobtainedasfollows.LetHbeaHadamardmatrixoforder4a.ThepointsofthedesignarethecolumnsofH;foreachpairofrowsofH,therearetwoblocksofsize2a,thesetofcolumnswheretheentriesintherowsagree,andthesetwheretheydisagree.Thisisa3-(4a;2a;2a(a�1))design.Equivalentmatricesgivethesamedesign.Remarkablyitturnsoutthatthedesignisa4-designifandonlyifa=3,inwhichcaseitisevena5-design(specicallythe5-(12;6;1)Steinersystem,whoseautomorphismgroupistheMathieugroupM12whichwemetabove).5SymmetricmatriceswithconstantrowsumIfaHadamardmatrixHissymmetricwithconstantrowsum,thenitsorderisasquare,say4m2,andtherowsumiseither2mor�2m.Ifwereplacetheentries�1inthematrixby0,weobtaintheincidencematrixofasquare2-(4m2;2m2m;m2m)design.AnySylvestermatrixofsquareorderisequivalenttoasymmetricmatrixwithconstantrowsum,andthusgivesrisetosuchdesigns;thesecanbeconstructedusingquadraticformsonavectorspaceoverGF(2).TheHadamardmatricesoforder36constructedabovefromLatinsquaresarealsoofthisform.References[1]M.Hall,Jr.,NoteontheMathieugroupM12,Arch.Math.13(1962),334–340.[2]InstituteforStudiesinTheoreticalPhysicsandMathematics,IPM,Iran;http://math.ipm.ac.ir.[3]H.KharaghaniandB.Tayfeh-Rezaie,AHadamardmatrixoforder428,J.CombinatorialDesigns13(2005),435–440.[4]J.SeberryandM.Yamada,Hadamardmatrices,sequencesandblockdesigns,pp.431–560inContemporaryDesignTheory:ACollectionofSurveys(ed.J.H.DinitzandD.R.Stinson),Wiley,NewYork,1992.[5]NeilSloane,AlibraryofHadamardmatrices;http://www.research.att.com/˜njas/hadamard/TheEncyclopaediaofDesignTheoryHadamardmatrices/6