/
THE BISPECTRUM AND TESTS FOR NONLINEARITY The Bispectrum hereas the spectrum provides THE BISPECTRUM AND TESTS FOR NONLINEARITY The Bispectrum hereas the spectrum provides

THE BISPECTRUM AND TESTS FOR NONLINEARITY The Bispectrum hereas the spectrum provides - PDF document

min-jolicoeur
min-jolicoeur . @min-jolicoeur
Follow
476 views
Uploaded On 2014-12-12

THE BISPECTRUM AND TESTS FOR NONLINEARITY The Bispectrum hereas the spectrum provides - PPT Presentation

First consider the spectral density This is the function such that ef 1 ir As long as the autocovariances xx do not go to zero too slowly we can invert this to give hhh exp ir so that the spectral density is the Fourier transform of the autocovar ID: 22555

First consider the spectral

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "THE BISPECTRUM AND TESTS FOR NONLINEARIT..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

THEBISPECTRUMANDTESTSFORNONLINEARITYTheBispectrumhereasthespectrumprovidesadecompositionofthesecondmomentintocontributionsfromindividualcomponentfrequencies,thebispectrumprovidesasimilardecompositionofthethiroment.First,considerthespectraldensity.Thisisthefunction)suchthat xxxassumednottodependon.ThebispectrumisdeÞnedbeef1212Thiscanbeinverted(undersuitableconditions)togivsothatthebispectrumisthe(twodimensional)Fouriertransformof).Usingthespectralrepresenation,wehavehavexxxEedZedZedZ1212eeeEEdZ()dZ()dZ()]incethelefthandsidedoesnotdependon,neitherdoestherighthandside,sosodZ()dZ()dZ()]012u12nless0,andthereforethereforedZ((1212Comparisonwith(2)revealsthatthatdZ(()],12121212212sothatisthejointthirdmomentofthecomponentsoffromthreefrequenciehichsumtozero,twoofwhichare.Sincefrom(2)wehave12122x]f(,)dd,swecanalsothinkofasthecontributiontotox]fromfrequencies().If{1212Gaussian,then0forall,andthebispectrumwillbeidenticallyequaltozero. SubbaRao’sTestforNonlinearityandNon-Gaussianitlthoughmanytimeseriesobservedinpracticemaybenonlinear,itwouldbeunrealistictoassumethatthedataweregeneratedexactlybyoneoftheknownparametricmodels.ThesemodelBilinear,TAR,GARCH,etc.)aremerelyapproximationswhichwillsometimesbeuseful.Thequestionofwhethertheseriesisnonlinear,however,seemsmorebasic.Byconsideringthebispectrum,anerhapshigherorderspectra,itispossibletoconstructtestsfornonlinearitywithoutspecifyinganyÞnite-parametermodels,eitherunderthenullhypothesisorthealternativehypothesis.Thenulypothesis(oflinearity)isthat,wherethe{}are.Itcanbeshown(homework)that}islinear,thenthequantityhhhhhhhhhhhhhhhhhhhhhhh,wherewheree].Furthermore,if{}isGaussian,thenitihhhwillbeconstant,inearwith0,so)(and))willbeidenticallyequaltozero.1212heÞrststageofSubbaRaoÕstestexamineswhethertheseriesisGaussian,bytestingwhethertheestimatedbispectrumoveragridoffrequenciesissigniÞcantlydifferentfromzero.Ifitis(asmeasredbyateststatisticrelatedtoHotellingÕs),thentheseriesisdeclaredtobenonGaussian,andwecanaskwhethertheprocessislinearornot.If{}islinear,then)willbeconstant.SothecondstageofSubbaRaoÕstestexamineswhetherthesampleversionof)issigniÞcantlynon-constant,overagridoffrequencies.Ifitis,wedeclaretheseriestobenonlinearTheadvantageofSubbaRaoÕstestisthatitisnonparametric.Adrawbackofthetestisthat,dependingonexactlyhowweestimatethespectrumandbispectrum,ourconclusionsaboutGaussianityndlinearityofagivenobservedseriesmaychange.Amoreseriousproblemisthatnotallnonlinearprocesseswillhaveanonzeroandnonconstantbispectrum.Forexample,thebispectrumofanARCHrocessisidenticallyzero.ThusSubbaRaoÕstestwillhavenochanceofdetectingnonlinearity(orevennonGaussianity)inthiscase.Ontheotherhand,wearenotlikelytoeverseeatimeserieswhichsexactlyARCH.Furthermore,itispossibletogeneralizeSubbaRaoÕstesttohigherorderspectra.For xample,thethird-orderspectrum("trispectrum")ofanARCHprocessisnonzero(seeMilhoj),whilethethird-orderspectrumofaGaussianprocessisidenticallyzero.SubbaRaoÕstestrevealsthattwoofthedatasetswhichtraditionallyhavebeenanalyzedinthetimeseriesliteratureusingARMAmodels(thesunspotseriesandtheCanadianLynxseries)actuallyeemtobenonlinear.