Scene Parsing with Multiscale Feature Learning Purity Trees and Optimal Covers Clment Farabet CFARABET CS NYU EDU Camille Couprie CCOUPRIE CS NYU EDU Laurent Najman NAJMAN ESIEE FR Yann LeCun YANN CS - PDF document

Download presentation
Scene Parsing with Multiscale Feature Learning Purity Trees and Optimal Covers Clment Farabet CFARABET CS NYU EDU Camille Couprie CCOUPRIE CS NYU EDU Laurent Najman NAJMAN ESIEE FR Yann LeCun YANN CS
Scene Parsing with Multiscale Feature Learning Purity Trees and Optimal Covers Clment Farabet CFARABET CS NYU EDU Camille Couprie CCOUPRIE CS NYU EDU Laurent Najman NAJMAN ESIEE FR Yann LeCun YANN CS

Embed / Share - Scene Parsing with Multiscale Feature Learning Purity Trees and Optimal Covers Clment Farabet CFARABET CS NYU EDU Camille Couprie CCOUPRIE CS NYU EDU Laurent Najman NAJMAN ESIEE FR Yann LeCun YANN CS


Presentation on theme: "Scene Parsing with Multiscale Feature Learning Purity Trees and Optimal Covers Clment Farabet CFARABET CS NYU EDU Camille Couprie CCOUPRIE CS NYU EDU Laurent Najman NAJMAN ESIEE FR Yann LeCun YANN CS "— Presentation transcript


By: mitsue-stanley
Views: 109
Type: Public

Scene Parsing with Multiscale Feature Learning Purity Trees and Optimal Covers Clment Farabet CFARABET CS NYU EDU Camille Couprie CCOUPRIE CS NYU EDU Laurent Najman NAJMAN ESIEE FR Yann LeCun YANN CS - Description


We propose a method that uses a mul tiscale convolutional network trained from raw pixels to extract dense feature vectors that encode regions of multiple sizes centered on each pixel The method alleviates the need for engineered features In paralle ID: 6383 Download Pdf

Related Documents