/
WITHSOFTSHARMA,Dr.GARG WITHSOFTSHARMA,Dr.GARG

WITHSOFTSHARMA,Dr.GARG - PDF document

mitsue-stanley
mitsue-stanley . @mitsue-stanley
Follow
395 views
Uploaded On 2016-08-07

WITHSOFTSHARMA,Dr.GARG - PPT Presentation

Assocx008bate Professor Cx008bvx008bx008e Egx008beerx008bg Departx008fet MAN T Bx008aopax008e Madx008ax009ba Pradesx008a Assx008bstat Professor Cx0 ID: 437520

Assoc‹ate Professor C‹v‹Ž E-g‹-eer‹-g Departe-t MAN T BŠopaŽ MadŠ›a PradesŠ Ass‹sta-t Professor C�

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "WITHSOFTSHARMA,Dr.GARG" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

WITHSOFTSHARMA,Dr.GARG Assoc‹ate Professor, C‹v‹Ž E-g‹-eer‹-g Departe-t, MAN T, BŠopaŽ, MadŠ›a PradesŠ, Ass‹sta-t Professor, C‹v‹Ž E-g‹-eer‹-g Departe-t, MAN T, BŠopaŽ, MadŠ›a PradesŠ, Ma-› urba- uŽt‹ store› bu‹Žd‹-gs ‹- -d‹a toda› Šave ope- grou-d stor› as a- u-avo‹dabŽe aspect, bas‹caŽŽ› to ge-erate par‹-g or recept‹o- Žobb‹es. TŠe upper coŽu- forces of tŠe grou-d store› of tŠe g‹ve- ‹d‐r‹se ope- grou-d store› bu‹Žd‹-g. t ‹s fou-d tŠat tŠe ‹-f‹ŽŽ pa-eŽs ‹tŠereb› ‹-creas‹-g tŠe forces, d‹spŽacee-t, dr‹ft a-d duct‹Ž‹t› dea-d ‹- tŠe soft grou-d store›. TŠ‹s couŽd becoe tŠe cause of fa‹Žure of ope- grou-d store› bu‹Žd‹-gs dur‹-g eartŠquae. TERMS: Ope- grou-d store›, aso-r› ‹-f‹ŽŽ waŽŽs, -o-‐structuraŽ eŽee-t, bare frae, ‹-f‹ŽŽ st‹ff-ess. Re‹-forced co-crete fraed bu‹Žd‹-gs Šave becoe coo- for of co-struct‹o- ‹- urba- a-d se‹ urba- areas arou-d tŠe worŽd wŠ‹cŠ ‹s aso-r› ‹-f‹ŽŽ. Nuerous sucŠ bu‹Žd‹-gs co-structed ‹- rece-t t‹es Šave a spec‹aŽ aspect ‐ tŠe grou-d store› ‹s Žeft ope-, wŠ‹cŠ ea-s tŠe coŽu-s ‹- tŠe grou-d store› do -ot Šave a-› part‹t‹o- waŽŽs betwee- tŠe. TŠese t›pes of bu‹Žd‹-gs Šav‹-g -o ‹-f‹ŽŽ aso-r› waŽŽs ‹- grou-d store›, but Šav‹-g ‹-f‹ŽŽ waŽŽs ‹- aŽŽ tŠe upper store›s, are caŽŽed as ǮOpe- rou-d Store› ȋO SȌ Bu‹Žd‹-gsǯ. TŠ‹s ope- grou-d store› bu‹Žd‹-g ‹s aŽso tered as bu‹Žd‹-g w‹tŠ ǮSoft Store› at TŠere ‹s s‹g-‹f‹ca-t adva-tage of sucŠ t›pe of bu‹Žd‹-g fu-ct‹o-aŽŽ› but wŠe- se‹s‹c perfora-ce po‹-t of v‹ew sucŠ bu‹Žd‹-g ‹s co-s‹dered ‹t ‹s fou-d to Šave ‹-creased vuŽ-erab‹Ž‹t›. TŠe ope- grou-d store› bu‹Žd‹-gs are ge-eraŽŽ› des‹g-ed as fraed structures w‹tŠout regard to structuraŽ co-tr‹but‹o- of aso-r› ‹-f‹ŽŽ waŽŽs. TŠe prese-ce of ‹-f‹ŽŽ waŽŽs ‹- aŽŽ tŠe upper stor‹es ešcept ‹- tŠe grou-d store› aes tŠe upper stor‹es ucŠ st‹ffer as copared to tŠe ope- grou-d store›. TŠus tŠe upper stor‹es ove aŽost togetŠer as a s‹-gŽe bŽoc a-d ost of tŠe Šor‹œo-taŽ d‹spŽacee-t of tŠe bu‹Žd‹-g occurs ‹- tŠe soft grou-d store› ‹tseŽf a-d Še-ce tŠe grou-d store› coŽu-s are Šeav‹Ž› stressed. S 1ͺͻ3 ȋ2002Ȍ recoe-ds a ag-‹f‹cat‹o- factor of 2.5 to be appŽ‹ed o- be-d‹-g oe-ts a-d sŠear forces ‹- tŠe coŽu-s of grou-d store› caŽcuŽated for tŠe bare frae u-der TŠe saŽ‹e-t obŒect‹ves of tŠe prese-t stud› Šave bee- to stud› tŠe effect of ‹-f‹ŽŽ stre-gtŠ a-d st‹ff-ess ‹- tŠe se‹s‹c a-aŽ›s‹s of ope- grou-d store› ȋO SȌ bu‹Žd‹-gs, to cŠec tŠe appŽ‹cab‹Ž‹t› of tŠe uŽt‹pŽ‹cat‹o- factor of 2.5 as g‹ve- ‹- tŠe -d‹a- Sta-dard S 1ͺͻ3:2002 for des‹g- of a ‹d r‹se ope- grou-d store› bu‹Žd‹-g a-d to assess tŠe ‹-fŽue-ce of var›‹-g tŠe ‹-f‹ŽŽ arra-gee-ts o- tŠe a-aŽ›s‹s resuŽts b› ta‹-g var‹ous cob‹-at‹o-s of ‹-f‹ŽŽ tŠ‹c-ess, stre-gtŠ, oduŽus of eŽast‹c‹t› a-d ope-‹-gs. For tŠe stud› f‹ve d‹ffere-t odeŽs of a s‹š store› bu‹Žd‹-g are co-s‹dered. TŠe bu‹Žd‹-g Šas f‹ve ba›s ‹-  d‹rect‹o- a-d four ba›s ‹-  d‹rect‹o- w‹tŠ tŠe pŽa- d‹e-s‹o- 22.5  × 14.4  a-d a store› Še‹gŠt of 3.5  eacŠ ‹- aŽŽ tŠe fŽoors a-d deptŠ of fou-dat‹o- tae- as 1.5 . TŠe ba› w‹dtŠ aŽo-g Žo-g‹tud‹-aŽ d‹rect‹o- ‹s 4.5 a-d aŽo-g tra-sverse d‹rect‹o- ‹s 3.6. TŠe bu‹Žd‹-g ‹s ept s›etr‹c ‹- botŠ ortŠogo-aŽ d‹rect‹o-s ‹- pŽa- to avo‹d tors‹o-aŽ respo-se u-der ŽateraŽ force. TŠe coŽu- ‹s ept square a-d s‹œe of tŠe coŽu- ‹s ept sae tŠrougŠout tŠe Še‹gŠt of tŠe structure to eep tŠe d‹scuss‹o- focused o-Ž› o- tŠe soft f‹rst store› effect w‹tŠout d‹stracted b› tŠe ‹ssues Ž‹e or‹e-tat‹o- of coŽu-. TŠe bu‹Žd‹-g ‹s co-s‹dered to be Žocated ‹- se‹s‹c œo-e V a-d ‹-te-ded for res‹de-t‹aŽ use. M‐25 grade of co-crete a-d Fe‐415 grade of re‹-forc‹-g steeŽ are used for aŽŽ tŠe frae odeŽs used ‹- tŠ‹s stud›. TŠe u-‹t we‹gŠts of co-crete a-d aso-r› are tae- as 25.0 N/ a-d 20.0 respect‹veŽ›. TŠe oduŽus of eŽast‹c‹t› of tŠe br‹cs fou-d ‹- -d‹a var‹es fro 350 MPa to 5000 MPa. To represe-t tŠe eštree cases of stro-g a-d wea ‹-f‹ŽŽ waŽŽs 2 cob‹-at‹o-s of ‹-f‹ŽŽ waŽŽs are co-s‹dered for odeŽŽ‹-g. TŠe tŠ‹cer waŽŽ of 230 tŠ‹c-ess ‹s cob‹-ed w‹tŠ stro-g ‹-f‹ŽŽ waŽŽ Šav‹-g E = 5000 MPa a-d tŠ‹--er waŽŽ of 115 tŠ‹c-ess ‹s cob‹-ed w‹tŠ wea ‹-f‹ŽŽ waŽŽ Šav‹-g E = 350 MPa. TŠe po‹so- rat‹o of co-crete ‹s 0.2 a-d of aso-r› ‹s 0.15. F‹gure 1: PŽa- of tŠe structure ANALYSISFoŽŽow‹-g f‹ve odeŽs are a-aŽ›œed us‹-g respo-se spectru a-aŽ›s‹s – ModeŽ : Bare frae odeŽ ȋre‹-forced co-crete frae ta‹-g ‹-f‹ŽŽ aso-r› we‹gŠt, -egŽect‹-g effect of st‹ff-essȌ. ModeŽ : Bu‹Žd‹-g w‹tŠ stro-g ‹-f‹ŽŽ ȋeffect of st‹ff-ess ‹s aŽso co-s‹dered ‹- add‹t‹o- to ta‹-g we‹gŠt of ‹-f‹ŽŽȌ. ModeŽ : Bu‹Žd‹-g w‹tŠ stro-g ‹-f‹ŽŽ Šav‹-g ope-‹-gs ȋodeŽ w‹tŠ ope-‹-gs at certa‹- pa-eŽsȌ. ModeŽ V: Bu‹Žd‹-g w‹tŠ wea ‹-f‹ŽŽ ȋeffect of st‹ff-ess ‹s aŽso co-s‹dered ‹- add‹t‹o- to ta‹-g we‹gŠt of ‹-f‹ŽŽȌ. ModeŽ V: Bu‹Žd‹-g w‹tŠ wea ‹-f‹ŽŽ Šav‹-g ope-‹-gs ȋodeŽ V w‹tŠ ope-‹-gs at certa‹- pa-eŽsȌ. F‹gure 2: ModeŽ : Bare frae ȋaȌ Fro-t eŽevat‹o- F‹gure 3: ModeŽ & V – -f‹ŽŽed fraes ȋaȌ Fro-t eŽevat‹o- ȋbȌ S‹de eŽevat‹o- F‹gure 4: ModeŽ & V – -f‹ŽŽed fraes w‹tŠ ope-‹-gs FRAMEINFILLTŠe structuraŽ ebers are odeŽŽed w‹tŠ tŠe a‹d of coerc‹aŽ software ETABS v ͻ.7.1 ‹- copŽ‹a-ce w‹tŠ tŠe codes S 456‐2000 a-d S 1ͺͻ3‐2002. TŠe frae ebers are odeŽŽed w‹tŠ r‹g‹d e-d co-d‹t‹o-s. TŠe fŽoor sŽabs were assued to act as d‹apŠrags, wŠ‹cŠ e-sure ‹-tegraŽ act‹o- of aŽŽ tŠe ŽateraŽ Žoad‐res‹st‹-g eŽee-ts. TŠe fŽoor f‹-‹sŠ o- tŠe fŽoors ‹s tae- to be 1.0 N/. TŠe Ž‹ve Žoad o- fŽoor ‹s tae- as 3.0 N/ a-d tŠat o- tŠe roof to be 1.5 N/. - se‹s‹c we‹gŠt caŽcuŽat‹o-s, 25 % of tŠe fŽoor Ž‹ve Žoads are co-s‹dered ‹- tŠe a-aŽ›s‹s. For a- ‹-f‹ŽŽ waŽŽ Žocated ‹- a ŽateraŽ Žoad‐res‹st‹-g frae, tŠe st‹ff-ess a-d stre-gtŠ co-tr‹but‹o- of tŠe ‹-f‹ŽŽ Šas to be co-s‹dered. No-‐‹-tegraŽ ‹-f‹ŽŽ waŽŽs subŒected to ŽateraŽ Žoad beŠave Ž‹e d‹ago-aŽ struts. TŠus a- ‹-f‹ŽŽ waŽŽ ca- be odeŽŽed as a- equ‹vaŽe-t Ǯcopress‹o- o-Ž›ǯ strut ‹- tŠe bu‹Žd‹-g odeŽ. R‹g‹d Œo‹-ts co--ect tŠe beas a-d coŽu-s, but p‹- Œo‹-ts co--ect tŠe equ‹vaŽe-t struts to tŠe bea‐to‐coŽu- Œu-ct‹o-s. TŠe Že-gtŠ of tŠe strut ‹s g‹ve- b› tŠe d‹ago-aŽ d‹sta-ce ȋdȌ of tŠe pa-eŽ a-d ‹ts tŠ‹c-ess ‹s equaŽ to tŠe tŠ‹c-ess of tŠe ‹-f‹ŽŽ waŽŽ. TŠe eŽast‹c oduŽus of tŠe strut ‹s equated to tŠe eŽast‹c oduŽus of aso-r› ȋEȌ. S‹tŠ ȋ1ͻ66Ȍ proposed a foruŽa to caŽcuŽate tŠe w‹dtŠ of strut based o- tŠe reŽat‹ve st‹ff-ess of tŠe frae aSHEARAs ca- be see- fro tŠe tabŽes 1 & 2 ȋodeŽ to VȌ a-d f‹gures 5 to ͺ tŠe be-d‹-g oe-ts a-d sŠear forces ȋstre-gtŠȌ dea-ds are severeŽ› Š‹gŠer for tŠe grou-d store› coŽu-s w‹tŠ respect to f‹rst store› coŽu-s, ‹- case of tŠe soft grou-d store› bu‹Žd‹-gs wŠe- tŠe› are a-aŽ›œed b› co-s‹der‹-g ‹-f‹ŽŽ as structuraŽ copo-e-t ta‹-g ‹-to co-s‹derat‹o- tŠe‹r st‹ff-ess aŽso w‹tŠ tŠe‹r we‹gŠt. TŠe ‹-troduct‹o- of waŽŽs ‹- tŠe f‹rst store› ȋodeŽ to VȌ reduces tŠe force ‹- tŠe f‹rst store› coŽu-s. - odeŽ , tŠe be-d‹-g oe-t a-d sŠear forces are tŠe aš‹u as copared to otŠer odeŽs, as tŠere ‹s -o effect of ‹-f‹ŽŽ waŽŽs co-s‹dered ‹- tŠe‹r a-aŽ›s‹s wŠ‹cŠ sŠows tŠe force dea-ds depe-ds upo- tŠe st‹ff-ess of tŠe ebers. AŽso tŠe forces ‹- tŠe f‹rst store› coŽu-s of odeŽ are aŽost equaŽ to tŠe forces ‹- tŠe grou-d store› coŽu-s or eve- ore for sŠear forces wŠ‹cŠ ‹s drast‹caŽŽ› oppos‹te beŠav‹our as copared to tŠe otŠer odeŽs. TŠerefore tŠe ‹porta-ce of odeŽŽ‹-g a-d co-s‹der‹-g tŠe ‹-f‹ŽŽ waŽŽs as structuraŽ copo-e-t a-d aŽso tŠe descr‹pt‹o- of ‹-f‹ŽŽ ater‹aŽs, tŠe‹r t›pe, stre-gtŠ a-d tŠe‹r eŽast‹c oduŽus def‹-‹t‹o- ‹s reaŽ‹œed Šere. TabŽe 1: Maš‹u be-d‹-g oe-t ‹- grou-d store› a-d f‹rst store› coŽu-s Bending(kNm) Longitudinal Transverse StoreyStoreyStoreyStorey 7ͻ7477 73 ͺ64ͺͻ0 40 ͺ251ͺ4 36 702771 2ͺ 66266ͺ 2ͺ F‹gure 5: Copar‹so- of aš‹u be-d‹-g oe-ts ‹- Žo-g‹tud‹-aŽ d‹rect‹o- : Copar‹so- of aš‹u be-d‹-g oe-ts ‹- tra-sverse Maš‹u sŠear force ‹- grou-d store› a-d f‹ShearForce(kN) Longitudinal Transverse StoreyStoreyStoreyStorey 40 42 40 41 51 21 52 15 4ͻ 21 51 14 3ͻ 15 40 1ͺ 36153ͺ 1ͺ : Copar‹so- of aš‹u sŠear force ‹- Žo-g‹tud‹-aŽ d‹rect‹o- : Copar‹so- of aš‹u sŠear force ‹- tra-sverse d‹rect‹o- LATERAL ‹- Žo-g‹tud‹-aŽ d‹rect‹o- StoreyStoreyStoreyStoreyStorey 7.ͺ15.ͻ 23.730.435.33ͺ.0 ͺ.1ͻ.3 10.311.111.ͺ12.2 7.ͻͻ.1 10.211.011.712.2 V 6.ͺ10.7 13.ͺ16.61ͺ.71ͻ.ͻ V 6.610.4 13.616.41ͺ.51ͻ.ͺ F‹gure ͻ: D‹spŽacee-t prof‹Že aŽo-g Žo-g‹tud‹-aŽ d‹rect‹o- TabŽe ‐4: Store› dr‹ft ȋ‹- Ȍ ‹- Žo-g‹tud‹-aŽ d‹rect‹o- StoreyStoreyStoreyStoreyStoreyStorey 0.6 2.0 2.32.21.ͻ1.4 0.ͺ 0.ͺ 2.0 0.360.2ͺ0.240.1ͻ 0.12 0.ͺ 1.ͻ 0.370.300.260.20 0.14 V 0.60 1.7 1.00.ͻ00.7ͺ0.60 0.35 V 0.60 1.6 1.10.ͻ20.ͺ00.62 0.36 F‹gure 10: Store› dr‹fts TŠe d‹spŽacee-t of tŠe odeŽ at aŽŽ tŠe fŽoors ‹s tŠe aš‹u w‹tŠ respect to tŠat of aŽŽ tŠe otŠer odeŽs. TŠere ‹s a Šuge d‹ffere-ce betwee- tŠe d‹spŽacee-t vaŽues of odeŽ a-d aŽŽ otŠer odeŽs. TŠ‹s gap of d‹ffere-ce ‹s ‹-creas‹-g u-‹forŽ› w‹tŠ tŠe ‹-crease ‹- tŠe store› ŽeveŽ. AŽso tŠe d‹spŽacee-t of odeŽ V & V ‹s ore tŠa- tŠe d‹spŽacee-t of odeŽ & tŠrougŠout tŠe fŽoors. TŠe d‹spŽacee-t of odeŽ ‹s of sucŠ aou-t because tŠere ‹s -o ŽateraŽ st‹ff-ess prov‹ded to tŠe structure b› tŠe ‹-f‹ŽŽ waŽŽ. As ca- be see- fro f‹gures a-d tabŽes for store› dr‹ft, tŠe store› dr‹ft prof‹Že of odeŽ ‹s sootŠ tŠrougŠout wŠereas for odeŽ to V tŠe store› dr‹ft cŠa-ges abruptŽ› fro grou-d store› to f‹rst store›. TŠ‹s sudde- cŠa-ge of sŽope of store› dr‹ft prof‹Že aŽo-g prof‹Že of eacŠ odeŽ s‹g-‹f‹es st‹ff-ess ‹rreguŽar‹t› betwee- soft store› a-d ‹-f‹ŽŽed store›, e-cou-tered because of odeŽŽ‹-g st‹ff-ess of ‹-f‹ŽŽ waŽŽ for soft grou-d store› bu‹Žd‹-gs. SucŠ st‹ff-ess ‹rreguŽar‹t› of soft grou-d store› bu‹Žd‹-gs ‹s cr‹t‹caŽ fro fa‹Žure po‹-t of v‹ew wŠe- subŒected to eartŠquae forces because of resebŽa-ce of ‹ts beŠav‹our w‹tŠ tŠe beŠav‹our of ‹-verted pe-duŽu. TŠe upper store›s ove togetŠer as a s‹-gŽe bŽoc a-d ost of tŠe Šor‹œo-taŽ deforat‹o- of tŠe bu‹Žd‹-g occurs ‹- tŠe soft grou-d store› ‹tseŽf. TabŽe 5 ‹-d‹cates tŠat tŠe ag-‹f‹cat‹o- factor vaŽues ‹s fou-d to var› betwee- 0.ͺͺ to 1.17 for tŠe be-d‹-g oe-t a-d for sŠear forces betwee- 0.ͻ5 to 1.33 ‹- tŠe grou-d store› coŽu-s of tŠe odeŽs to V ‹- copar‹so- to tŠe correspo-d‹-g vaŽues of be-d‹-g oe-t a-d sŠear force ‹- tŠe grou-d TabŽe 5: Mag-‹f‹cat‹o- factors for be-d‹-g oe-t a-d sŠear force Maš‹u BM ‹- grou-d store› ȋNȌ Ešter‹or CoŽu- 76ͺͻ71 6ͺ CoŽu- 77ͻ071 6ͺ Maš‹u sŠear force ‹- grou-d store› ȋNȌ Ešter‹or CoŽu- 3ͻ5240 3ͺ CoŽu- 405240 3ͺ # Mag-‹f‹cat‹o- factor vaŽues for be-d‹-g oe-t & sŠear force obta‹-ed b› d‹v‹d‹-g w‹tŠ tŠe correspo-d‹-g vaŽues for tŠe bare frae. TŠe foŽŽow‹-g are tŠe a‹- f‹-d‹-gs of tŠe prese-t stud› – TŠe structuraŽ eber forces, deforat‹o-s do var› w‹tŠ tŠe d‹ffere-t paraeters assoc‹ated w‹tŠ tŠe ‹-f‹ŽŽ waŽŽs. SucŠ var‹at‹o-s are -ot co-s‹dered ‹- curre-t codes a-d tŠus tŠe gu‹da-ce for tŠe des‹g- of bu‹Žd‹-gs Šav‹-g ‹-f‹ŽŽ waŽŽs ‹s ‹-copŽete a-d spec‹f‹caŽŽ› for bu‹Žd‹-gs w‹tŠ soft grou-d store› ‹t ‹s ‹perat‹ve to Šave des‹g- gu‹deŽ‹-es ‹- deta‹Ž. -f‹ŽŽ pa-eŽs ‹-creases tŠe st‹ff-ess of tŠe structure a-d tŠe ‹-crease ‹- tŠe ope-‹-g perce-tage Žeads to a decrease o- tŠe ŽateraŽ st‹ff-ess of ‹-f‹ŽŽed frae. e-ce beŠav‹our of bu‹Žd‹-g var‹es w‹tŠ tŠe cŠa-ge ‹- ‹-f‹ŽŽ arra-gee-ts. TŠ‹s ‹-d‹cates tŠat odeŽŽ‹-g of re‹-forced co-crete frae bu‹Žd‹-g w‹tŠout ‹-f‹ŽŽ waŽŽ ȋpa-eŽȌ or bare frae odeŽ a› -ot be appropr‹ate for tŠe a-aŽ›s‹s. TŠe a-aŽ›ses resuŽt sŠows tŠat coŽu- forces at tŠe grou-d store› ‹-creases for tŠe prese-ce of ‹-f‹ŽŽ waŽŽ ‹- tŠe upper store›s. But des‹g- force ag-‹f‹cat‹o- factor fou-d to be ucŠ Žesser tŠa- 2.5. TŠ‹s ‹s part‹cuŽarŽ› true for ‹d‐r‹se ope- grou-d store› bu‹Žd‹-gs. t ‹s see- fro respo-se spectru a-aŽ›s‹s tŠat tŠe ag-‹f‹cat‹o- factor decreases wŠe- tŠe st‹ff-ess of ‹-f‹ŽŽ pa-eŽs are decreased e‹tŠer b› reduc‹-g ‹-f‹ŽŽ stre-gtŠ ȋtŠ‹c-ess a-d oduŽus of eŽast‹c‹t›Ȍ or b› prov‹d‹-g ope-‹-gs ‹- tŠe ‹-f‹ŽŽ Še- a bare frae odeŽ ‹s subŒected to ŽateraŽ Žoad, ass of eacŠ fŽoor acts ‹-depe-de-tŽ› resuŽt‹-g eacŠ fŽoor to dr‹ft w‹tŠ respect to adŒace-t fŽoors. TŠus tŠe bu‹Žd‹-g frae beŠaves ‹- tŠe fŽeš‹bŽe a--er caus‹-g d‹str‹but‹o- of Šor‹œo-taŽ sŠear across fŽoors. - prese-ce of ‹-f‹ŽŽ waŽŽ ȋpa-eŽȌ, tŠe reŽat‹ve dr‹ft betwee- adŒace-t fŽoors ‹s restr‹cted caus‹-g ass of tŠe upper fŽoors to act togetŠer as a s‹-gŽe ass. - sucŠ case, tŠe totaŽ ‹-ert‹a of tŠe aŽŽ upper fŽoors causes a s‹g-‹f‹ca-t ‹-crease ‹- Šor‹œo-taŽ sŠear force at base or ‹- tŠe grou-d fŽoor coŽu-s. S‹‹ŽarŽ› ‹-creases tŠe be-d‹-g oe-t Fro tŠe prese-t resuŽts ‹t ‹s fou-d tŠat, ŽateraŽ d‹spŽacee-t ‹s ver› Žarge ‹- case of bare frae as copare to tŠat of ‹-f‹ŽŽed fraes. f tŠe effect of ‹-f‹ŽŽ waŽŽ ‹s co-s‹dered tŠe- tŠe defŽect‹o- Šas reduced drast‹caŽŽ›. TŠe prese-ce of waŽŽs ‹- upper store›s aes tŠe ucŠ st‹ffer tŠa- ope- grou-d store›. e-ce tŠe upper store› ove aŽost togetŠer as a s‹-gŽe bŽoc a-d ost of tŠe Šor‹œo-taŽ d‹spŽacee-t of tŠe bu‹Žd‹-g occurs ‹- tŠe soft grou-d store› ‹tseŽf. [1]. AgarwaŽ P. a-d SŠr‹Ša-de M. ȋ2006Ȍ. EartŠquae res‹sta-t des‹g- of structures. P ear-‹-g Pvt. td., New [2]. ArŽear .N., a‹- S. . a-d Murt› ȋ1ͻͻ7Ȍ. Se‹s‹c respo-se of RC fraes bu‹Žd‹-gs w‹tŠ soft f‹rst store›s. Proceed‹-gs of CBR goŽde- Œub‹Žee co-fere-ce o- -aturaŽ Šaœards ‹- urba- [3]. Dav‹s R., Me-o- D. a-d Prasad A. M. ȋ200ͺȌ. EvaŽuat‹o- of ag-‹f‹cat‹o- factors for ope- grou-d store› bu‹Žd‹-gs us‹-g -o-Ž‹-ear a-aŽ›ses. TŠe 14orŽd Co-fere-ce o- EartŠquae E-g‹-eer‹-g, Be‹Œ‹-g, CŠ‹-a. [4]. ETABS -o-Ž‹-ear vers‹o- ͻ.7.1. Ešte-ded TŠree D‹e-s‹o-aŽ A-aŽ›s‹s of Bu‹Žd‹-g S›stes, Userǯs Ma-uaŽ. Coputers a-d Structures, -c., BereŽe›, CaŽ‹for-‹a, USA. [5]. S 1ͺͻ3 Part 1 ȋ2002Ȍ. Cr‹ter‹a for EartŠquae Res‹sta-t Des‹g- of Structures. Bureau of -d‹a- Sta-dards, [6]. S 456 ȋ2000Ȍ.PŽa‹- a-d re‹-forced co-crete: Code of pract‹ce. Bureau of -d‹a- Sta-dards, New DeŽŠ‹. [7]. Subraa-‹a- N. ȋ2004Ȍ. D‹scuss‹o- o- se‹s‹c perfora-ce of co-ve-t‹o-aŽ uŽt‹‐store› bu‹Žd‹-g w‹tŠ ope- grou-d fŽoors for veŠ‹cuŽar par‹-g b› a-‹tar a-d a-‹tar. TŠe -d‹a- Co-crete our-aŽ. 7ͺ, 11‐13. DharmeshVijaywargiya,Post raduate Stude-t, C‹v‹Ž E-g‹-eer‹-g Departe-t MAN T, BŠopaŽ, MadŠ›a PradesŠ, -d‹a AbhaySharma,Assoc‹ate Professor, C‹v‹Ž E-g‹-eer‹-g Departe-t MAN T, BŠopaŽ, MadŠ›a PradesŠ, -d‹a VivekAss‹sta-t Professor, C‹v‹Ž E-g‹-eer‹-g Departe-t MAN T, BŠopaŽ, MadŠ›a PradesŠ, -d‹a ȏ6]Ǥ IS 456 (2000)ǤPlai- a-d rei-forced co-creteǣ Code of practiceǤ Bureau of I-dia- Sta-dardsǡ New DelhiǤ ȏ7]Ǥ Subrama-ia- NǤ (2004)Ǥ Discussio- o- seismic performa-ce of co-ve-tio-al multiǦstoreB buildi-g with ope- grou-d floors for vehicular parki-g bB Ka-itkar a-d Ka-itkarǤ The I-dia- Co-crete Jour-alǤ 78ǡ 11Ǧ13Ǥ DharmeshVijaywargiya,Post Graduate Stude-tǡ Civil E-gi-eeri-g Departme-t MANITǡ Bhopalǡ MadhBa Pradeshǡ I-dia AbhaySharma,Associate Professorǡ Civil E-gi-eeri-g Departme-t MANITǡ Bhopalǡ MadhBa Pradeshǡ I-dia VivekAssista-t Professorǡ Civil E-gi-eeri-g Departme-t MANITǡ Bhopalǡ MadhBa Pradeshǡ I-dia mag-ificatio- factor decreases whe- the stiff-ess of i-fill pa-els are decreased either bB reduci-g i-fill stre-gth (thick-ess a-d modulus of elasticitB) or bB providi-g ope-i-gs i- the i-fill Whe- a bare frame model is subjected to lateral loadǡ mass of each floor acts i-depe-de-tlB resulti-g each floor to drift with respect to adjace-t floorsǤ Thus the buildi-g frame behaves i- the fleAible ma--er causi-g distributio- of horiCo-tal shear across floorsǤ I- prese-ce of i-fill wall (pa-el)ǡ the relative drift betwee- adjace-t floors is restricted causi-g mass of the upper floors to act together as a si-gle massǤ I- such caseǡ the total i-ertia of the all upper floors causes a sig-ifica-t i-crease i- horiCo-tal shear force at base or i- the grou-d floor colum-sǤ SimilarlB i-creases the be-di-g mome-t From the prese-t results it is fou-d thatǡ lateral displaceme-t is verB large i- case of bare frame as compare to that of i-filled framesǤ If the effect of i-fill wall is co-sidered the- the deflectio- has reduced drasticallBǤ The prese-ce of walls i- upper storeBs makes them much stiffer tha- ope- grou-d storeBǤ He-ce the upper storeB move almost together as a si-gle block a-d most of the horiCo-tal displaceme-t of the buildi-g occurs i- the soft grou-d storeB itselfǤ ȏ1]Ǥ Agarwal PǤ a-d Shrikha-de MǤ (2006)Ǥ Earthquake resista-t desig- of structuresǤ PHI Lear-i-g PvtǤ LtdǤǡ New ȏ2]Ǥ Arlekar JǤNǤǡ Jai- SǤ KǤ a-d MurtB (1997)Ǥ Seismic respo-se of RC frames buildi-gs with soft first storeBsǤ Proceedi-gs of CBRI golde- jubilee co-fere-ce o- -atural haCards i- urba- ȏ3]Ǥ Davis RǤǡ Me-o- DǤ a-d Prasad AǤ MǤ (2008)Ǥ Evaluatio- of mag-ificatio- factors for ope- grou-d storeB buildi-gs usi-g -o-li-ear a-alBsesǤ The 14World Co-fere-ce o- Earthquake E-gi-eeri-gǡ Beiji-gǡ Chi-aǤ ȏ4]Ǥ ETABS -o-li-ear versio- 9Ǥ7Ǥ1Ǥ EAte-ded Three Dime-sio-al A-alBsis of Buildi-g SBstemsǡ User’s Ma-ualǤ Computers a-d Structuresǡ I-cǤǡ BerkeleBǡ Califor-iaǡ USAǤ ȏ5]Ǥ IS 1893 Part 1 (2002)Ǥ Criteria for Earthquake Resista-t Desig- of StructuresǤ Bureau of I-dia- Sta-dardsǡ Table 5ǣ Mag-ificatio- factors for be-di-g mome-t a-d shear force IIIIIIV MaAimum BM i- grou-d storeB (kNm) EAterior Colum- 768971 68 Colum- 779071 68 MaAimum shear force i- grou-d storeB (kN) EAterior Colum- 395240 38 Colum- 405240 38 # Mag-ificatio- factor values for be-di-g mome-t Ƭ shear force obtai-ed bB dividi-g with the correspo-di-g values for the bare frameǤ The followi-g are the mai- fi-di-gs of the prese-t studB – The structural member forcesǡ deformatio-s do varB with the differe-t parameters associated with the i-fill wallsǤ Such variatio-s are -ot co-sidered i- curre-t codes a-d thus the guida-ce for the desig- of buildi-gs havi-g i-fill walls is i-complete a-d specificallB for buildi-gs with soft grou-d storeB it is imperative to have desig- guideli-es i- detailǤ I-fill pa-els i-creases the stiff-ess of the structure a-d the i-crease i- the ope-i-g perce-tage leads to a decrease o- the lateral stiff-ess of i-filled frameǤ He-ce behaviour of buildi-g varies with the cha-ge i- i-fill arra-geme-tsǤ This i-dicates that modelli-g of rei-forced co-crete frame buildi-g without i-fill wall (pa-el) or bare frame model maB -ot be appropriate for the a-alBsisǤ The a-alBses result shows that colum- forces at the grou-d storeB i-creases for the prese-ce of i-fill wall i- the upper storeBsǤ But desig- force mag-ificatio- factor fou-d to be much lesser tha- 2Ǥ5Ǥ This is particularlB true for midǦrise ope- grou-d storeB buildi-gsǤ It is see- from respo-se spectrum a-alBsis that the Figure 10ǣ StoreB drifts The displaceme-t of the model I at all the floors is the maAimum with respect to that of all the other modelsǤ There is a huge differe-ce betwee- the displaceme-t values of model I a-d all other modelsǤ This gap of differe-ce is i-creasi-g u-iformlB with the i-crease i- the storeB levelǤ Also the displaceme-t of model IV Ƭ V is more tha- the displaceme-t of model II Ƭ III throughout the floorsǤ The displaceme-t of model I is of such amou-t because there is -o lateral stiff-ess provided to the structure bB the i-fill wallǤ As ca- be see- from figures a-d tables for storeB driftǡ the storeB drift profile of model I is smooth throughout whereas for model II to V the storeB drift cha-ges abruptlB from grou-d storeB to first storeBǤ This sudde- cha-ge of slope of storeB drift profile alo-g profile of each model sig-ifies stiff-ess irregularitB betwee- soft storeB a-d i-filled storeBǡ e-cou-tered because of modelli-g stiff-ess of i-fill wall for soft grou-d storeB buildi-gsǤ Such stiff-ess irregularitB of soft grou-d storeB buildi-gs is critical from failure poi-t of view whe- subjected to earthquake forces because of resembla-ce of its behaviour with the behaviour of i-verted pe-dulumǤ The upper storeBs move together as a si-gle block a-d most of the horiCo-tal deformatio- of the buildi-g occurs i- the soft grou-d storeB itselfǤ Table 5 i-dicates that the mag-ificatio- factor values is fou-d to varB betwee- 0Ǥ88 to 1Ǥ17 for the be-di-g mome-t a-d for shear forces betwee- 0Ǥ95 to 1Ǥ33 i- the grou-d storeB colum-s of the models II to V i- compariso- to the correspo-di-g values of be-di-g mome-t a-d shear force i- the grou-d I 7Ǥ815Ǥ9 23Ǥ730Ǥ435Ǥ338Ǥ0 II 8Ǥ19Ǥ3 10Ǥ311Ǥ111Ǥ812Ǥ2 III 7Ǥ99Ǥ1 10Ǥ211Ǥ011Ǥ712Ǥ2 IV 6Ǥ810Ǥ7 13Ǥ816Ǥ618Ǥ719Ǥ9 V 6Ǥ610Ǥ4 13Ǥ616Ǥ418Ǥ519Ǥ8 Figure 9ǣ Displaceme-t profile alo-g lo-gitudi-al directio- Table Ǧ4ǣ StoreB drift (i- mm) i- lo-gitudi-al directio- StoreyStoreyStoreyStoreyStoreyStorey 0Ǥ6 2Ǥ0 2Ǥ32Ǥ21Ǥ91Ǥ4 0Ǥ8 II 0Ǥ8 2Ǥ0 0Ǥ360Ǥ280Ǥ240Ǥ19 0Ǥ12 III 0Ǥ8 1Ǥ9 0Ǥ370Ǥ300Ǥ260Ǥ20 0Ǥ14 IV 0Ǥ60 1Ǥ7 1Ǥ00Ǥ900Ǥ780Ǥ60 0Ǥ35 V 0Ǥ60 1Ǥ6 1Ǥ10Ǥ920Ǥ800Ǥ62 0Ǥ36 ǣ Compariso- of maAimum be-di-g mome-ts i- tra-sverse MaAimum shear force i- grou-d storeB a-d fiShearForce(kN) Longitudinal Transverse StoreyStoreyStoreyStorey 40 42 40 41 51 21 52 15 49 21 51 14 39 15 40 18 361538 18 ǣ Compariso- of maAimum shear force i- lo-gitudi-al directio- ǣ Compariso- of maAimum shear force i- tra-sverse directio- LATERAL i- lo-gitudi-al directio- StoreyStoreyStoreyStoreyStorey of the soft grou-d storeB buildi-gs whe- theB are a-alBCed bB co-sideri-g i-fill as structural compo-e-t taki-g i-to co-sideratio- their stiff-ess also with their weightǤ The i-troductio- of walls i- the first storeB (model II to V) reduces the force i- the first storeB colum-sǤ I- model Iǡ the be-di-g mome-t a-d shear forces are the maAimum as compared to other modelsǡ as there is -o effect of i-fill walls co-sidered i- their a-alBsis which shows the force dema-ds depe-ds upo- the stiff-ess of the membersǤ Also the forces i- the first storeB colum-s of model I are almost equal to the forces i- the grou-d storeB colum-s or eve- more for shear forces which is drasticallB opposite behaviour as compared to the other modelsǤ Therefore the importa-ce of modelli-g a-d co-sideri-g the i-fill walls as structural compo-e-t a-d also the descriptio- of i-fill materialsǡ their tBpeǡ stre-gth a-d their elastic modulus defi-itio- is realiCed hereǤ Table 1ǣ MaAimum be-di-g mome-t i- grou-d storeB a-d first storeB colum-s Bending(kNm) Longitudinal Transverse StoreyStoreyStoreyStorey 797477 73 864890 40 825184 36 702771 28 662668 28 Figure 5ǣ Compariso- of maAimum be-di-g mome-ts i- lo-gitudi-al directio- (b) Side elevatio- Figure 4ǣ Model III Ƭ V – I-filled frames with ope-i-gs FRAMEINFILLThe structural members are modelled with the aid of commercial software ETABS v 9Ǥ7Ǥ1 i- complia-ce with the codes IS 456Ǧ2000 a-d IS 1893Ǧ2002Ǥ The frame members are modelled with rigid e-d co-ditio-sǤ The floor slabs were assumed to act as diaphragmsǡ which e-sure i-tegral actio- of all the lateral loadǦresisti-g eleme-tsǤ The floor fi-ish o- the floors is take- to be 1Ǥ0 kN/mǤ The live load o- floor is take- as 3Ǥ0 kN/m a-d that o- the roof to be 1Ǥ5 kN/mǤ I- seismic weight calculatio-sǡ 25 Ψ of the floor live loads are co-sidered i- the a-alBsisǤ For a- i-fill wall located i- a lateral loadǦresisti-g frameǡ the stiff-ess a-d stre-gth co-tributio- of the i-fill has to be co-sideredǤ No-Ǧi-tegral i-fill walls subjected to lateral load behave like diago-al strutsǤ Thus a- i-fill wall ca- be modelled as a- equivale-t ‘compressio- o-lB’ strut i- the buildi-g modelǤ Rigid joi-ts co--ect the beams a-d colum-sǡ but pi- joi-ts co--ect the equivale-t struts to the beamǦtoǦcolum- ju-ctio-sǤ The le-gth of the strut is give- bB the diago-al dista-ce (d) of the pa-el a-d its thick-ess is equal to the thick-ess of the i-fill wallǤ The elastic modulus of the strut is equated to the elastic modulus of maso-rB (E)Ǥ Smith (1966) proposed a formula to calculate the width of strut based o- the relative stiff-ess of the frame aSHEARAs ca- be see- from the tables 1 Ƭ 2 (model II to V) a-d figures 5 to 8 the be-di-g mome-ts a-d shear forces (stre-gth) dema-ds are severelB higher for the grou-d storeB colum-s with respect to first storeB colum-sǡ i- case ANALYSISFollowi-g five models are a-alBCed usi-g respo-se spectrum a-alBsis – Model Iǣ Bare frame model (rei-forced co-crete frame taki-g i-fill maso-rB weightǡ -eglecti-g effect of stiff-ess)Ǥ Model IIǣ Buildi-g with stro-g i-fill (effect of stiff-ess is also co-sidered i- additio- to taki-g weight of i-fill)Ǥ Model IIIǣ Buildi-g with stro-g i-fill havi-g ope-i-gs (model II with ope-i-gs at certai- pa-els)Ǥ Model IVǣ Buildi-g with weak i-fill (effect of stiff-ess is also co-sidered i- additio- to taki-g weight of i-fill)Ǥ Model Vǣ Buildi-g with weak i-fill havi-g ope-i-gs (model IV with ope-i-gs at certai- pa-els)Ǥ Figure 2ǣ Model Iǣ Bare frame (a) Fro-t elevatio- Figure 3ǣ Model II Ƭ IV – I-filled frames (a) Fro-t elevatio- of 2Ǥ5 as give- i- the I-dia- Sta-dard IS 1893ǣ2002 for desig- of a mid rise ope- grou-d storeB buildi-g a-d to assess the i-flue-ce of varBi-g the i-fill arra-geme-ts o- the a-alBsis results bB taki-g various combi-atio-s of i-fill thick-essǡ stre-gthǡ modulus of elasticitB a-d ope-i-gsǤ For the studB five differe-t models of a siA storeB buildi-g are co-sideredǤ The buildi-g has five baBs i- X directio- a-d four baBs i- Y directio- with the pla- dime-sio- 22Ǥ5 m έ 14Ǥ4 m a-d a storeB height of 3Ǥ5 m each i- all the floors a-d depth of fou-datio- take- as 1Ǥ5 mǤ The baB width alo-g lo-gitudi-al directio- is 4Ǥ5m a-d alo-g tra-sverse directio- is 3Ǥ6mǤ The buildi-g is kept sBmmetric i- both orthogo-al directio-s i- pla- to avoid torsio-al respo-se u-der lateral forceǤ The colum- is kept square a-d siCe of the colum- is kept same throughout the height of the structure to keep the discussio- focused o-lB o- the soft first storeB effect without distracted bB the issues like orie-tatio- of colum-Ǥ The buildi-g is co-sidered to be located i- seismic Co-e IV a-d i-te-ded for reside-tial useǤ MǦ25 grade of co-crete a-d FeǦ415 grade of rei-forci-g steel are used for all the frame models used i- this studBǤ The u-it weights of co-crete a-d maso-rB are take- as 25Ǥ0 kN/m a-d 20Ǥ0 respectivelBǤ The modulus of elasticitB of the bricks fou-d i- I-dia varies from 350 MPa to 5000 MPaǤ To represe-t the eAtreme cases of stro-g a-d weak i-fill walls 2 combi-atio-s of i-fill walls are co-sidered for modelli-gǤ The thicker wall of 230mm thick-ess is combi-ed with stro-g i-fill wall havi-g E α 5000 MPa a-d thi--er wall of 115mm thick-ess is combi-ed with weak i-fill wall havi-g E α 350 MPaǤ The poiso- ratio of co-crete is 0Ǥ2 a-d of maso-rB is 0Ǥ15Ǥ Figure 1ǣ Pla- of the structure colum- forces of the grou-d storeB of the give- midǦrise ope- grou-d storeB buildi-gǤ It is fou-d that the i-fill pa-els itherebB i-creasi-g the forcesǡ displaceme-tǡ drift a-d ductilitB dema-d i- the soft grou-d storeBǤ This could become the cause of failure of ope- grou-d storeB buildi-gs duri-g earthquakeǤ TERMS: Ope- grou-d storeBǡ maso-rB i-fill wallsǡ -o-Ǧstructural eleme-tǡ bare frameǡ i-fill stiff-essǤ Rei-forced co-crete framed buildi-gs have become commo- form of co-structio- i- urba- a-d semi urba- areas arou-d the world which is maso-rB i-fillǤ Numerous such buildi-gs co-structed i- rece-t times have a special aspect Ǧ the grou-d storeB is left ope-ǡ which mea-s the colum-s i- the grou-d storeB do -ot have a-B partitio- walls betwee- themǤ These tBpes of buildi-gs havi-g -o i-fill maso-rB walls i- grou-d storeBǡ but havi-g i-fill walls i- all the upper storeBsǡ are called as ‘Ope- Grou-d StoreB (OGS) Buildi-gs’Ǥ This ope- grou-d storeB buildi-g is also termed as buildi-g with ‘Soft StoreB at There is sig-ifica-t adva-tage of such tBpe of buildi-g fu-ctio-allB but whe- seismic performa-ce poi-t of view such buildi-g is co-sidered it is fou-d to have i-creased vul-erabilitBǤ The ope- grou-d storeB buildi-gs are ge-erallB desig-ed as framed structures without regard to structural co-tributio- of maso-rB i-fill wallsǤ The prese-ce of i-fill walls i- all the upper stories eAcept i- the grou-d storeB makes the upper stories much stiffer as compared to the ope- grou-d storeBǤ Thus the upper stories move almost together as a si-gle block a-d most of the horiCo-tal displaceme-t of the buildi-g occurs i- the soft grou-d storeB itself a-d he-ce the grou-d storeB colum-s are heavilB stressedǤ IS 1893 (2002) recomme-ds a mag-ificatio- factor of 2Ǥ5 to be applied o- be-di-g mome-ts a-d shear forces i- the colum-s of grou-d storeB calculated for the bare frame u-der The salie-t objectives of the prese-t studB have bee- to studB the effect of i-fill stre-gth a-d stiff-ess i- the seismic a-alBsis of ope- grou-d storeB (OGS) buildi-gsǡ to check the applicabilitB of the multiplicatio- factor WITHSOFTSHARMA,Dr.GARGPost Graduate Stude-tǡ Civil E-gi-eeri-g Departme-tǡ MANITǡ Bhodharmesh2405@gmailǤcom Associate Professorǡ Civil E-gi-eeri-g Departme-tǡ MANITǡ Bhopalǡ MadhBa Pradeshǡ Assista-t Professorǡ Civil E-gi-eeri-g Departme-tǡ MANITǡ Bhopalǡ MadhBa Pradeshǡ vivek_garg5@BahooǤcoǤi- Ma-B urba- multi storeB buildi-gs i- I-dia todaB have ope- grou-d storB as a- u-avoidable aspectǡ basicallB to ge-erate parki-g or receptio- lobbiesǤ The upper storeBs have brick i-filled wall pa-els with various ope-i-g perce-tage i- themǤ These tBpes of buildi-gs are -ot desirable i- seismicallB active areas because various vertical irregularities are i-duced i- such buildi-gs which have performed co-siste-tlB poor duri-g past earthquakesǤ It has bee- k-ow- si-ce lo-g time that maso-rB i-fill walls affect the stre-gth a-d stiff-ess of i-filled framed structuresǤ I-fill walls are ge-erallB see- as a -o-Ǧstructural eleme-t a-d their effect is -eglected bB ig-ori-g the stiff-ess of the i-fill wall duri-g the modelli-g phase of the structure (a-alBsed as a ‘li-ear bare frame’) leadi-g to substa-tial i-accuracB i- obtai-i-g the actual seismic respo-se of framed structuresǤ The objective of the paper is to check the applicabilitB of the multiplicatio- factor of 2Ǥ5 for the give- buildi-g of mid height a-d to studB the i-flue-ce of i-fill stre-gth a-d stiff-ess i- the seismic a-alBsis of a mid rise ope- grou-d storeB buildi-gǤ A rei-forced co-crete framed buildi-g (GΪ5) with ope- grou-d storeB located i- Seismic Zo-eǦIV is co-sidered for this studBǤ This buildi-g is a-alBCed for two differe-t casesǣ (a) co-sideri-g both i-fill mass a-d i-fill stiff-ess a-d (b) co-sideri-g i-fill mass but without co-sideri-g i-fill stiff-ess bB respo-se spectrum a-alBsis methodǤ The result shows that the effect of i-fill’s stiff-ess o- structural respo-se is sig-ifica-t u-der lateral loadsǤ The mag-ificatio- factor of 2Ǥ5 is high to be multiplied to ȏ6]Ǥ IS 456 (2000)ǤPlai- a-d rei-forced co-creteǣ Code of practiceǤ Bureau of I-dia- Sta-dardsǡ New DelhiǤ ȏ7]Ǥ Subrama-ia- NǤ (2004)Ǥ Discussio- o- seismic performa-ce of co-ve-tio-al multiǦstoreB buildi-g with ope- grou-d floors for vehicular parki-g bB Ka-itkar a-d Ka-itkarǤ The I-dia- Co-crete Jour-alǤ 78ǡ 11Ǧ13Ǥ DharmeshVijaywargiya,Post Graduate Stude-tǡ Civil E-gi-eeri-g Departme-t MANITǡ Bhopalǡ MadhBa Pradeshǡ I-dia AbhaySharma,Associate Professorǡ Civil E-gi-eeri-g Departme-t MANITǡ Bhopalǡ MadhBa Pradeshǡ I-dia VivekAssista-t Professorǡ Civil E-gi-eeri-g Departme-t MANITǡ Bhopalǡ MadhBa Pradeshǡ I-dia mag-ificatio- factor decreases whe- the stiff-ess of i-fill pa-els are decreased either bB reduci-g i-fill stre-gth (thick-ess a-d modulus of elasticitB) or bB providi-g ope-i-gs i- the i-fill Whe- a bare frame model is subjected to lateral loadǡ mass of each floor acts i-depe-de-tlB resulti-g each floor to drift with respect to adjace-t floorsǤ Thus the buildi-g frame behaves i- the fleAible ma--er causi-g distributio- of horiCo-tal shear across floorsǤ I- prese-ce of i-fill wall (pa-el)ǡ the relative drift betwee- adjace-t floors is restricted causi-g mass of the upper floors to act together as a si-gle massǤ I- such caseǡ the total i-ertia of the all upper floors causes a sig-ifica-t i-crease i- horiCo-tal shear force at base or i- the grou-d floor colum-sǤ SimilarlB i-creases the be-di-g mome-t From the prese-t results it is fou-d thatǡ lateral displaceme-t is verB large i- case of bare frame as compare to that of i-filled framesǤ If the effect of i-fill wall is co-sidered the- the deflectio- has reduced drasticallBǤ The prese-ce of walls i- upper storeBs makes them much stiffer tha- ope- grou-d storeBǤ He-ce the upper storeB move almost together as a si-gle block a-d most of the horiCo-tal displaceme-t of the buildi-g occurs i- the soft grou-d storeB itselfǤ ȏ1]Ǥ Agarwal PǤ a-d Shrikha-de MǤ (2006)Ǥ Earthquake resista-t desig- of structuresǤ PHI Lear-i-g PvtǤ LtdǤǡ New ȏ2]Ǥ Arlekar JǤNǤǡ Jai- SǤ KǤ a-d MurtB (1997)Ǥ Seismic respo-se of RC frames buildi-gs with soft first storeBsǤ Proceedi-gs of CBRI golde- jubilee co-fere-ce o- -atural haCards i- urba- ȏ3]Ǥ Davis RǤǡ Me-o- DǤ a-d Prasad AǤ MǤ (2008)Ǥ Evaluatio- of mag-ificatio- factors for ope- grou-d storeB buildi-gs usi-g -o-li-ear a-alBsesǤ The 14World Co-fere-ce o- Earthquake E-gi-eeri-gǡ Beiji-gǡ Chi-aǤ ȏ4]Ǥ ETABS -o-li-ear versio- 9Ǥ7Ǥ1Ǥ EAte-ded Three Dime-sio-al A-alBsis of Buildi-g SBstemsǡ User’s Ma-ualǤ Computers a-d Structuresǡ I-cǤǡ BerkeleBǡ Califor-iaǡ USAǤ ȏ5]Ǥ IS 1893 Part 1 (2002)Ǥ Criteria for Earthquake Resista-t Desig- of StructuresǤ Bureau of I-dia- Sta-dardsǡ Table 5ǣ Mag-ificatio- factors for be-di-g mome-t a-d shear force IIIIIIV MaAimum BM i- grou-d storeB (kNm) EAterior Colum- 768971 68 Colum- 779071 68 MaAimum shear force i- grou-d storeB (kN) EAterior Colum- 395240 38 Colum- 405240 38 # Mag-ificatio- factor values for be-di-g mome-t Ƭ shear force obtai-ed bB dividi-g with the correspo-di-g values for the bare frameǤ The followi-g are the mai- fi-di-gs of the prese-t studB – The structural member forcesǡ deformatio-s do varB with the differe-t parameters associated with the i-fill wallsǤ Such variatio-s are -ot co-sidered i- curre-t codes a-d thus the guida-ce for the desig- of buildi-gs havi-g i-fill walls is i-complete a-d specificallB for buildi-gs with soft grou-d storeB it is imperative to have desig- guideli-es i- detailǤ I-fill pa-els i-creases the stiff-ess of the structure a-d the i-crease i- the ope-i-g perce-tage leads to a decrease o- the lateral stiff-ess of i-filled frameǤ He-ce behaviour of buildi-g varies with the cha-ge i- i-fill arra-geme-tsǤ This i-dicates that modelli-g of rei-forced co-crete frame buildi-g without i-fill wall (pa-el) or bare frame model maB -ot be appropriate for the a-alBsisǤ The a-alBses result shows that colum- forces at the grou-d storeB i-creases for the prese-ce of i-fill wall i- the upper storeBsǤ But desig- force mag-ificatio- factor fou-d to be much lesser tha- 2Ǥ5Ǥ This is particularlB true for midǦrise ope- grou-d storeB buildi-gsǤ It is see- from respo-se spectrum a-alBsis that the Figure 10ǣ StoreB drifts The displaceme-t of the model I at all the floors is the maAimum with respect to that of all the other modelsǤ There is a huge differe-ce betwee- the displaceme-t values of model I a-d all other modelsǤ This gap of differe-ce is i-creasi-g u-iformlB with the i-crease i- the storeB levelǤ Also the displaceme-t of model IV Ƭ V is more tha- the displaceme-t of model II Ƭ III throughout the floorsǤ The displaceme-t of model I is of such amou-t because there is -o lateral stiff-ess provided to the structure bB the i-fill wallǤ As ca- be see- from figures a-d tables for storeB driftǡ the storeB drift profile of model I is smooth throughout whereas for model II to V the storeB drift cha-ges abruptlB from grou-d storeB to first storeBǤ This sudde- cha-ge of slope of storeB drift profile alo-g profile of each model sig-ifies stiff-ess irregularitB betwee- soft storeB a-d i-filled storeBǡ e-cou-tered because of modelli-g stiff-ess of i-fill wall for soft grou-d storeB buildi-gsǤ Such stiff-ess irregularitB of soft grou-d storeB buildi-gs is critical from failure poi-t of view whe- subjected to earthquake forces because of resembla-ce of its behaviour with the behaviour of i-verted pe-dulumǤ The upper storeBs move together as a si-gle block a-d most of the horiCo-tal deformatio- of the buildi-g occurs i- the soft grou-d storeB itselfǤ Table 5 i-dicates that the mag-ificatio- factor values is fou-d to varB betwee- 0Ǥ88 to 1Ǥ17 for the be-di-g mome-t a-d for shear forces betwee- 0Ǥ95 to 1Ǥ33 i- the grou-d storeB colum-s of the models II to V i- compariso- to the correspo-di-g values of be-di-g mome-t a-d shear force i- the grou-d I 7Ǥ815Ǥ9 23Ǥ730Ǥ435Ǥ338Ǥ0 II 8Ǥ19Ǥ3 10Ǥ311Ǥ111Ǥ812Ǥ2 III 7Ǥ99Ǥ1 10Ǥ211Ǥ011Ǥ712Ǥ2 IV 6Ǥ810Ǥ7 13Ǥ816Ǥ618Ǥ719Ǥ9 V 6Ǥ610Ǥ4 13Ǥ616Ǥ418Ǥ519Ǥ8 Figure 9ǣ Displaceme-t profile alo-g lo-gitudi-al directio- Table Ǧ4ǣ StoreB drift (i- mm) i- lo-gitudi-al directio- StoreyStoreyStoreyStoreyStoreyStorey 0Ǥ6 2Ǥ0 2Ǥ32Ǥ21Ǥ91Ǥ4 0Ǥ8 II 0Ǥ8 2Ǥ0 0Ǥ360Ǥ280Ǥ240Ǥ19 0Ǥ12 III 0Ǥ8 1Ǥ9 0Ǥ370Ǥ300Ǥ260Ǥ20 0Ǥ14 IV 0Ǥ60 1Ǥ7 1Ǥ00Ǥ900Ǥ780Ǥ60 0Ǥ35 V 0Ǥ60 1Ǥ6 1Ǥ10Ǥ920Ǥ800Ǥ62 0Ǥ36 ǣ Compariso- of maAimum be-di-g mome-ts i- tra-sverse MaAimum shear force i- grou-d storeB a-d fiShearForce(kN) Longitudinal Transverse StoreyStoreyStoreyStorey 40 42 40 41 51 21 52 15 49 21 51 14 39 15 40 18 361538 18 ǣ Compariso- of maAimum shear force i- lo-gitudi-al directio- ǣ Compariso- of maAimum shear force i- tra-sverse directio- LATERAL i- lo-gitudi-al directio- StoreyStoreyStoreyStoreyStorey of the soft grou-d storeB buildi-gs whe- theB are a-alBCed bB co-sideri-g i-fill as structural compo-e-t taki-g i-to co-sideratio- their stiff-ess also with their weightǤ The i-troductio- of walls i- the first storeB (model II to V) reduces the force i- the first storeB colum-sǤ I- model Iǡ the be-di-g mome-t a-d shear forces are the maAimum as compared to other modelsǡ as there is -o effect of i-fill walls co-sidered i- their a-alBsis which shows the force dema-ds depe-ds upo- the stiff-ess of the membersǤ Also the forces i- the first storeB colum-s of model I are almost equal to the forces i- the grou-d storeB colum-s or eve- more for shear forces which is drasticallB opposite behaviour as compared to the other modelsǤ Therefore the importa-ce of modelli-g a-d co-sideri-g the i-fill walls as structural compo-e-t a-d also the descriptio- of i-fill materialsǡ their tBpeǡ stre-gth a-d their elastic modulus defi-itio- is realiCed hereǤ Table 1ǣ MaAimum be-di-g mome-t i- grou-d storeB a-d first storeB colum-s Bending(kNm) Longitudinal Transverse StoreyStoreyStoreyStorey 797477 73 864890 40 825184 36 702771 28 662668 28 Figure 5ǣ Compariso- of maAimum be-di-g mome-ts i- lo-gitudi-al directio- (b) Side elevatio- Figure 4ǣ Model III Ƭ V – I-filled frames with ope-i-gs FRAMEINFILLThe structural members are modelled with the aid of commercial software ETABS v 9Ǥ7Ǥ1 i- complia-ce with the codes IS 456Ǧ2000 a-d IS 1893Ǧ2002Ǥ The frame members are modelled with rigid e-d co-ditio-sǤ The floor slabs were assumed to act as diaphragmsǡ which e-sure i-tegral actio- of all the lateral loadǦresisti-g eleme-tsǤ The floor fi-ish o- the floors is take- to be 1Ǥ0 kN/mǤ The live load o- floor is take- as 3Ǥ0 kN/m a-d that o- the roof to be 1Ǥ5 kN/mǤ I- seismic weight calculatio-sǡ 25 Ψ of the floor live loads are co-sidered i- the a-alBsisǤ For a- i-fill wall located i- a lateral loadǦresisti-g frameǡ the stiff-ess a-d stre-gth co-tributio- of the i-fill has to be co-sideredǤ No-Ǧi-tegral i-fill walls subjected to lateral load behave like diago-al strutsǤ Thus a- i-fill wall ca- be modelled as a- equivale-t ‘compressio- o-lB’ strut i- the buildi-g modelǤ Rigid joi-ts co--ect the beams a-d colum-sǡ but pi- joi-ts co--ect the equivale-t struts to the beamǦtoǦcolum- ju-ctio-sǤ The le-gth of the strut is give- bB the diago-al dista-ce (d) of the pa-el a-d its thick-ess is equal to the thick-ess of the i-fill wallǤ The elastic modulus of the strut is equated to the elastic modulus of maso-rB (E)Ǥ Smith (1966) proposed a formula to calculate the width of strut based o- the relative stiff-ess of the frame aSHEARAs ca- be see- from the tables 1 Ƭ 2 (model II to V) a-d figures 5 to 8 the be-di-g mome-ts a-d shear forces (stre-gth) dema-ds are severelB higher for the grou-d storeB colum-s with respect to first storeB colum-sǡ i- case ANALYSISFollowi-g five models are a-alBCed usi-g respo-se spectrum a-alBsis – Model Iǣ Bare frame model (rei-forced co-crete frame taki-g i-fill maso-rB weightǡ -eglecti-g effect of stiff-ess)Ǥ Model IIǣ Buildi-g with stro-g i-fill (effect of stiff-ess is also co-sidered i- additio- to taki-g weight of i-fill)Ǥ Model IIIǣ Buildi-g with stro-g i-fill havi-g ope-i-gs (model II with ope-i-gs at certai- pa-els)Ǥ Model IVǣ Buildi-g with weak i-fill (effect of stiff-ess is also co-sidered i- additio- to taki-g weight of i-fill)Ǥ Model Vǣ Buildi-g with weak i-fill havi-g ope-i-gs (model IV with ope-i-gs at certai- pa-els)Ǥ Figure 2ǣ Model Iǣ Bare frame (a) Fro-t elevatio- Figure 3ǣ Model II Ƭ IV – I-filled frames (a) Fro-t elevatio- of 2Ǥ5 as give- i- the I-dia- Sta-dard IS 1893ǣ2002 for desig- of a mid rise ope- grou-d storeB buildi-g a-d to assess the i-flue-ce of varBi-g the i-fill arra-geme-ts o- the a-alBsis results bB taki-g various combi-atio-s of i-fill thick-essǡ stre-gthǡ modulus of elasticitB a-d ope-i-gsǤ For the studB five differe-t models of a siA storeB buildi-g are co-sideredǤ The buildi-g has five baBs i- X directio- a-d four baBs i- Y directio- with the pla- dime-sio- 22Ǥ5 m έ 14Ǥ4 m a-d a storeB height of 3Ǥ5 m each i- all the floors a-d depth of fou-datio- take- as 1Ǥ5 mǤ The baB width alo-g lo-gitudi-al directio- is 4Ǥ5m a-d alo-g tra-sverse directio- is 3Ǥ6mǤ The buildi-g is kept sBmmetric i- both orthogo-al directio-s i- pla- to avoid torsio-al respo-se u-der lateral forceǤ The colum- is kept square a-d siCe of the colum- is kept same throughout the height of the structure to keep the discussio- focused o-lB o- the soft first storeB effect without distracted bB the issues like orie-tatio- of colum-Ǥ The buildi-g is co-sidered to be located i- seismic Co-e IV a-d i-te-ded for reside-tial useǤ MǦ25 grade of co-crete a-d FeǦ415 grade of rei-forci-g steel are used for all the frame models used i- this studBǤ The u-it weights of co-crete a-d maso-rB are take- as 25Ǥ0 kN/m a-d 20Ǥ0 respectivelBǤ The modulus of elasticitB of the bricks fou-d i- I-dia varies from 350 MPa to 5000 MPaǤ To represe-t the eAtreme cases of stro-g a-d weak i-fill walls 2 combi-atio-s of i-fill walls are co-sidered for modelli-gǤ The thicker wall of 230mm thick-ess is combi-ed with stro-g i-fill wall havi-g E α 5000 MPa a-d thi--er wall of 115mm thick-ess is combi-ed with weak i-fill wall havi-g E α 350 MPaǤ The poiso- ratio of co-crete is 0Ǥ2 a-d of maso-rB is 0Ǥ15Ǥ Figure 1ǣ Pla- of the structure colum- forces of the grou-d storeB of the give- midǦrise ope- grou-d storeB buildi-gǤ It is fou-d that the i-fill pa-els itherebB i-creasi-g the forcesǡ displaceme-tǡ drift a-d ductilitB dema-d i- the soft grou-d storeBǤ This could become the cause of failure of ope- grou-d storeB buildi-gs duri-g earthquakeǤ TERMS: Ope- grou-d storeBǡ maso-rB i-fill wallsǡ -o-Ǧstructural eleme-tǡ bare frameǡ i-fill stiff-essǤ Rei-forced co-crete framed buildi-gs have become commo- form of co-structio- i- urba- a-d semi urba- areas arou-d the world which is maso-rB i-fillǤ Numerous such buildi-gs co-structed i- rece-t times have a special aspect Ǧ the grou-d storeB is left ope-ǡ which mea-s the colum-s i- the grou-d storeB do -ot have a-B partitio- walls betwee- themǤ These tBpes of buildi-gs havi-g -o i-fill maso-rB walls i- grou-d storeBǡ but havi-g i-fill walls i- all the upper storeBsǡ are called as ‘Ope- Grou-d StoreB (OGS) Buildi-gs’Ǥ This ope- grou-d storeB buildi-g is also termed as buildi-g with ‘Soft StoreB at There is sig-ifica-t adva-tage of such tBpe of buildi-g fu-ctio-allB but whe- seismic performa-ce poi-t of view such buildi-g is co-sidered it is fou-d to have i-creased vul-erabilitBǤ The ope- grou-d storeB buildi-gs are ge-erallB desig-ed as framed structures without regard to structural co-tributio- of maso-rB i-fill wallsǤ The prese-ce of i-fill walls i- all the upper stories eAcept i- the grou-d storeB makes the upper stories much stiffer as compared to the ope- grou-d storeBǤ Thus the upper stories move almost together as a si-gle block a-d most of the horiCo-tal displaceme-t of the buildi-g occurs i- the soft grou-d storeB itself a-d he-ce the grou-d storeB colum-s are heavilB stressedǤ IS 1893 (2002) recomme-ds a mag-ificatio- factor of 2Ǥ5 to be applied o- be-di-g mome-ts a-d shear forces i- the colum-s of grou-d storeB calculated for the bare frame u-der The salie-t objectives of the prese-t studB have bee- to studB the effect of i-fill stre-gth a-d stiff-ess i- the seismic a-alBsis of ope- grou-d storeB (OGS) buildi-gsǡ to check the applicabilitB of the multiplicatio- factor WITHSOFTSHARMA,Dr.GARGPost Graduate Stude-tǡ Civil E-gi-eeri-g Departme-tǡ MANITǡ Bhodharmesh2405@gmailǤcom Associate Professorǡ Civil E-gi-eeri-g Departme-tǡ MANITǡ Bhopalǡ MadhBa Pradeshǡ Assista-t Professorǡ Civil E-gi-eeri-g Departme-tǡ MANITǡ Bhopalǡ MadhBa Pradeshǡ vivek_garg5@BahooǤcoǤi- Ma-B urba- multi storeB buildi-gs i- I-dia todaB have ope- grou-d storB as a- u-avoidable aspectǡ basicallB to ge-erate parki-g or receptio- lobbiesǤ The upper storeBs have brick i-filled wall pa-els with various ope-i-g perce-tage i- themǤ These tBpes of buildi-gs are -ot desirable i- seismicallB active areas because various vertical irregularities are i-duced i- such buildi-gs which have performed co-siste-tlB poor duri-g past earthquakesǤ It has bee- k-ow- si-ce lo-g time that maso-rB i-fill walls affect the stre-gth a-d stiff-ess of i-filled framed structuresǤ I-fill walls are ge-erallB see- as a -o-Ǧstructural eleme-t a-d their effect is -eglected bB ig-ori-g the stiff-ess of the i-fill wall duri-g the modelli-g phase of the structure (a-alBsed as a ‘li-ear bare frame’) leadi-g to substa-tial i-accuracB i- obtai-i-g the actual seismic respo-se of framed structuresǤ The objective of the paper is to check the applicabilitB of the multiplicatio- factor of 2Ǥ5 for the give- buildi-g of mid height a-d to studB the i-flue-ce of i-fill stre-gth a-d stiff-ess i- the seismic a-alBsis of a mid rise ope- grou-d storeB buildi-gǤ A rei-forced co-crete framed buildi-g (GΪ5) with ope- grou-d storeB located i- Seismic Zo-eǦIV is co-sidered for this studBǤ This buildi-g is a-alBCed for two differe-t casesǣ (a) co-sideri-g both i-fill mass a-d i-fill stiff-ess a-d (b) co-sideri-g i-fill mass but without co-sideri-g i-fill stiff-ess bB respo-se spectrum a-alBsis methodǤ The result shows that the effect of i-fill’s stiff-ess o- structural respo-se is sig-ifica-t u-der lateral loadsǤ The mag-ificatio- factor of 2Ǥ5 is high to be multiplied to