/
Disjunctive Inequalities Applications and Extensions P Disjunctive Inequalities Applications and Extensions P

Disjunctive Inequalities Applications and Extensions P - PDF document

myesha-ticknor
myesha-ticknor . @myesha-ticknor
Follow
401 views
Uploaded On 2015-06-02

Disjunctive Inequalities Applications and Extensions P - PPT Presentation

Because is generally hard to deal with a possible approach for tackling 1 is to optimize the o bjective function over a suitable relaxation ie easy to solve Let be the optimal solution over If the problem is solved Otherwise one can derive a valid ID: 78559

Because generally hard

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Disjunctive Inequalities Applications an..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

DisjunctiveInequalities:ApplicationsandExtensionsPietroBelottiLeoLibertiyAndreaLodizGiacomoNannicinixAndreaTramontaniz1IntroductionAgeneraloptimizationproblemcanbeexpressedintheformminfcx:xSg;(1)wherexRnisthevectorofdecisionvariables,RnisalinearobjectivefunctionandSRnisthesetoffeasiblesolutionsof(1).BecauseSisgenerallyhardtodealwith,apossibleapproachfortackling(1)istooptimizetheobjectivefunctionoverasuitablerelaxation(i.e.,easytosolve)PS.LetxbetheoptimalsolutionoverP.IfxStheproblemissolved.Otherwise,onecanderiveavalidinequalityforSinordertoseparatexfromS,i.e.,aninequality x satis edbyallthefeasiblesolutionsinSandsuchthat x .Theadditionofthecuttingplane x totheconstraintsde ningPleadstoatighterrelaxationP0P\fxRn: x gandtheprocesscaneventuallybeiterated.Thedisjunctiveapproachtotheseparationproblem,asintroducedbyBalas[5],considersde ninganintermediatesetQSnotcontainingxandsepa-ratingxfromQ.ThesetQisobtainedbyapplyingtoPavaliddisjunctionDforthesetS,suchasD:=fxRn:qh=1Dhxdh0g;(2)whereDhRmn,dh0Rm(h=1;:::;q),andSD(i.e.,anyfeasiblesolutionof(1)satis esatleastoneoftheconditionsofD).Thus,thesetQ,denotedasthedisjunctivehullofD,isde nedasQ:=conv(PD),andanyvalidinequalityforQthatcutso xisadisjunctivecutfortheproblem(1). Dept.ofIndustrialandSystemsEngineering,LehighUniversityyLIX,EcolePolytechniquezDEIS,UniversitadiBolognaxTepperSchoolofBusiness,Carnegie-MellonUniversity1 SincetheearlyNineties,disjunctiveinequalitieshavebeensuccessfullyex-ploitedbothinthecontextofMixedIntegerLinearPrograms(MILPs)aswellasinthatofMixedIntegerNonlinearPrograms(MINLPs).Entry#1.4.4.1givesageneraloverviewofdisjunctiveprogramming.Inthepresententrywesurveysomeapplicationsandextensionsofdisjunctiveinequalitieswithspecialemphasistorecentdevelopments.Thepaperisorganizedasfollows.InSec-tion2werecallthebasicingredientsofdisjunctiveinequalitiesforMILPsandwereportonrecentresultsonthistopic.InSection3theapplicationofdis-junctiveconstraintsbothasmodelingtoolandcuttingplanesisdiscussedforMINLPs.Finally,inSection4weconsiderthefairlynewcontextofapplicationofdisjunctiveinequalitiesassophisticatedbranchingconditionsinenumerativealgorithms.2DisjunctiveinequalitiesinMILPInthespecialcaseofaMixedIntegerLinearProgram,Sisde nedasSfxRn:Axb;x0;xiiNIg,whereARmn,bRmandNIf1;:::;ngisthesetofvariablesconstrainedtobeinteger.Inthiscontext,theintrinsicdicultyoftheproblemisduetotheintegralityrestrictionsonthevariablesinNI.Thus,therelaxationPthatistypicallyconsideredisthepolyhedronassociatedwithS,i.e.,PfxRn:Axb;x0g,hencethedisjunctivehullQ(fora xeddisjunctionD)isde nedasaunionofpolyhedra.Moreprecisely,Q:=conv qqh=1Ph!;withPh:=P\fxRn:Dhxdh0g.Insuchacase,Balas[5,7]hasshownthatQisapolyhedronaswell.EvenifafulldescriptionofQinthespaceofthexvariablesmayrequireanexponentialnumberofconstraints,thekeyresultofBalas[5,7]isthatQhasacompactrepresentationinahigher-dimensionalspace.Namely,thereexistsapolyhedronQ:=f(x;y)Rn+p:BxCydgwhoseprojectionontothex-spaceisQ,andQhasaroundqnvariablesandqmPqh=1mhconstraints.ThisimpliesthatseparatingxfromQcanbesolvedbylinearprogramming.Indeed,eachpolyhedronPh(h=1;:::;q)canbede nedasPhfxRn+1:Ahxbh;x0g,whereAhADhandbhbdh0:AnotherkeyresultofBalas[7]isthatalltheinequalities x validforQaredescribedbythepolyhedralconeQ#f( ; )Rn+1: uhAh; uhbhforsomeuh0;h=1;:::;qg:Furthermore,forafull-dimensionalpolyhedronQthereisaonetoonecorre-spondenceamongtheextremeraysofQ#andthefacetsofQ.2 2.1SeparatingdisjunctivecutsinMILPTypically,disjunctivecutsareseparatedbyconsideringaveryspecialsubsetof2-termdisjunctions(i.e.,withq=2),namely,theso-calledsplitdisjunctionsoftheformx0x0+1;(3)withn,0,i=0i=NI.Disjunctivecutsarisingfromdisjunctionsoftheform(3)arealsoknownassplitcuts,see,e.g.,Cook,Kannan,andSchrijver[19]andentry#1.4.3.7.GivenasolutionxofPnS,acommonapproachforseparatingxfromSistoconsideranelementarysplitdisjunctionoftheformxi0xi0+1;(4)wherexiNI,xi=,eiisthei-thunitvectorand0xi1.Thus,thedisjunctivehullQissimplyde nedastheunionofthetwopolyhedraP0fxP:xi0gandP1fxP:xi0+1g.ByFarkaslemma,amost-violateddisjunctivecut x validforQcanbefoundbysolvingtheso-calledCutGeneratingLinearProgram(CGLP),thatdeterminestheFarkasmultipliers(u;u0;v;v0)associatedwiththeinequalitiesde ningP0andP1soastomaximizetheviolationoftheresultingcutwithrespecttox:(CGLP)min x uAu0ei; ubu00; vAv0ei; vbv0(0+1);u;v;u0;v00:(5)Onceaviolatedcuthasbeenfoundasasolutionof(5),thecutcanbeeasilystrengthenedaposteriorithroughtheBalasandJeroslow[10]procedure.Suchastrengtheningcanbeseenas ndingthebestsplitdisjunctionforagivensetofFarkasmultipliers.Byconstruction,anyfeasibleCGLPsolutionwithnegativeobjectivefunc-tionvaluecorrespondstoaviolateddisjunctivecut.However,thefeasibleCGLPsetisaconeandneedstobetruncatedbymeansofasuitablenormalizationcondition,soastoproduceaboundedLPincaseaviolatedcutexists.Di erentnormalizationconditionsmightleadtocompletelydi erentresultsintermsofthestrengthoftheseparatedcutsbecausetheyheavilya ectthechoiceoftheoptimalCGLPsolution.Severalnormalizationshavebeenproposedintheliterature,see,e.g.,CeriaandSoares[17],BalasandPerregaard[11]andFischetti,LodiandTramontani[24].Themostnaturalandsimplenormalizationisu0v0=1;(6) 1For0{1mixedintegerprograms,splitcutsarisingfromelementarydisjunctionsoftheform(4)aredenotedaslift-and-projectcuts(see,e.g.,[9]andentry#1.4.3.8).3 andtakesintoaccountonlythedualmultipliersofthedisjunctiveconstraints.Suchanormalizationhasbeenconsidered,forinstance,byBalasandSaxena[13]tooptimizeoverthe rstsplitclosure,i.e.,thepolyhedronobtainedbyaddingtoPallsplitcutswhichcouldbederivedfromtheoriginalsetoflinearconstraints(see,entries#1.4.3.1and#1.4.3.7).Oneofthemostwidely-us(ande ective)truncationconditionreadsinsteadeuevu0v0=1;(7)wheree=(1;:::;1).ThislatterconditionwasproposedbyBalas[6]andinvestigated,forinstance,byCeriaandSoares[17]andBalasandPerregaard[11,12].Recently,Fischetti,LodiandTramontani[24]analyzedcomputationallythetwoabovenormalizationconditions,thusshowingthatthetruncationconditio(7)generallyoutperforms(6).Indeed,normalization(7)naturallyenforcestheseparationofsparseandlowrankinequalitiesthatturnouttobemoree ectiveintermsofthepercentageoftheintegralitygapclosed.Unfortunately,anynormalizationcaninsomecasesproduceweakcuts.Theprojectionofthedisjunctivecone(5)ontothepolarspace( ; )yieldspreciselytheconeQ#.Asdiscussed,forafull-dimensionalpolyhedronQthereisaonetoonecorrespondenceamongtheextremeraysofQ#andthefacetsofQ.How-ever,thiscorrespondenceislostinthecone(5),thatisde nedinaliftedspacethatexplicitlyinvolvestheFarkasmultipliers(u;v;u0;v0).Indeed,therearemanyextremeraysoftheCGLPconethatcorrespondtodominatedcuts,andthispropertyisindependentofthenormalizationusedtotruncatethecone.Fischetti,LodiandTramontani[24]gaveatheoreticalcharacterizationofweakraysofthedisjunctivecone(5)thatleadtodominatedcuts,andshowedhowthepresenceofredundantconstraintsintheformulationofP0andP1increasesthenumberofweakraysin(5),thusa ectingthequalityofthegenerateddisjunc-tivecuts.Itremainsanopenquestionhowto ndacomputationallyecientwayofdealingwithredundantconstraintsintheseparation.AkeystepintheseparationofdisjunctivecutsforMILPsistheworkbyBalasandPerregaard[12].Evenifdisjunctivecutscanbeseparatedbylin-earprogramming,solvingtheCGLPintheliftedspace(u;v;u0;v0)maybeingeneraltootimeconsuming.Addressingthenormalization(7),BalasandPer-regaard[12]providedaprecisecorrespondencebetweenthebasesoftheCGLPtruncatedwith(7)andthebasesoftheoriginalLPAxIsb;x0;s0.Then,theydevelopedanelegantandecientwayofsolvingtheCGLPbyper-formingpivotoperationsintheoriginaltableauinvolving(x;s)variablesonly.Inparticular,BalasandPerregaard[12]alsoshowedthattheMixedIntegerGomory(MIG)cut[27]associatedwiththerowofthebasicvariablexi,iNI,intheoptimalsimplextableauofthesystemAxIsb;x0;s0,correspondstoabasicsolutionoftheCGLPtruncatedwith(7).Thus,solvingtheCGLPwithnormalization(7)canbeinterpretedasawayofstrengtheningtheMIGcutfromthetableau.Lately,Fischetti,LodiandTramontani[24]4 haveshownthatthebasicCGLPsolutionyieldingtheMIGcutis,infact,anoptimalsolutioniftheCGLPistruncatedwithnormalization(6).Hence,thestrengtheningoftheMIGcutliesinthebetterbehaviorofthenormalization(7)withrespectto(6).TheworkbyBalasandPerregaard[12]hasbeenrecentlyextendedbyBalasandBonami[8].In[8],theauthorsconsidereddi erentnormalizationconditionsoftheformuvu0v00;withRm+,0R+,anddevelopedaprocedurethatiterativelycombinesthe\pivotingmechanism"of[12]for ndingthebestsetofFarkasmultipliersfora xeddisjunction,withtheBalasandJeroslow[10]strengtheningofthedisjunctionforagivensetofmultipliers.Theresultspresentedin[8]showthatdisjunctiveinequalitiescanbepro tablyusedtoimproveontheperformanceofgeneralpurposeBranch-and-Cutalgorithms.3DisjunctiveinequalitiesinMINLPDisjunctionsareessentialformodelingseveraltypesofnonconvexconstraints,includingthosearisinginMINLP.Fortheseproblems,Sisde nedasSfxRn:j(x)0jM;xiiNIg;where,foralljM,j:RnRisamultivariate(possiblynonconvex)function.Whenallofthejareane,wehaveanMILP,whichisthereforeasubclassofMINLP.Whiletheintegralityofasubsetofvariablesrepresentsanimportantclassofnonconvexconstraints,thereexistothernonconvexitiesinMINLPthatcangiverisetodisjunctions,andthatcanbeusedbyBranch-and-Boundalgorithms.BelowwedescribeafewexamplesofhowdisjunctionsareusedtogeneratedisjunctiveinequalitiesforthegeneralMINLPcaseandforsomespecialcases.3.1GeneralnonconvexMINLPDespitethemoregeneralnonlinearsetting,mostoftheliteratureinMINLPandglobaloptimizationconsiderlineardisjunctionsoftheform(2).HorstandTuy[32]describedageneralprocedurewherebydisjunctionsoftheform(2)arerepeatedlygeneratedand,correspondingly,alinearcutisseparatedthatisvalidforallsetsS\fxRn:Dhxdh0gforallelementsofadisjunction,i.e.,forallh=1;2:::;q.Theyproceededtoprovethatsuchaprocedureisguaranteedtoconvergeundermildconditions.OneofthelowerboundingproceduresfornonconvexMINLPconsistsofre-formulatingthesetofconstraintsintoasetofnonconvexequalityconstraintsoftheformxkk(x1;x2:::;xk1),withk:Rk1Rnonlinear[52,54].AlowerboundcanthenbeobtainedbysolvinganLPrelaxationoftherefor-mulation,withnnvariables:PLPfxRn:Axbg.PLPisconstructed5 x2x21x1`1u1 (x?1;x?2)(a)AnLPrelaxationofanon-convexconstraint x2x21x1`1u10(x?1;x?2)(b)AsimpleMINLPdisjunctionFigure1:AnMINLPdisjunction.In(a),theshadedareaistheLPrelaxationoftheconstraintx22(x1)=(x1)2withx1[`1;u1],whereas(x?1;x?2)isthevalueofx1andx2intheoptimumoftheLPrelaxation.In(b),adisjunctionx10x10,albeitnotviolatedby(x1;x2),canbeusedtogeneratetwoLPrelaxations(thetwosmallershadedareas)whichinturnallowtoconstructadisjunctionD1xd1D2xd2violatedbyx.byadding,foreachconstraintxkk(x1;x2:::;xk1),asystemoflinearcon-straintsAkxbk.AnexampleofthisstepisshowninFigure1(a)fortheconstraintx22(x1)=x21,wheretheinequalitiesofAkxbkdelimittheshadedarea.LetxbetheoptimalsolutiontoPLP.Ifxsatis esintegralityconstraintsandallnonlinearconstraintsxkk(x1;x2:::;xk1),theproblemissolved.Ifitsatis esallintegralityconstraintswhileviolatingatleastoneofthenonlinearones,adisjunctionissoughtthatisviolatedbyx.Thesimpledisjunctionxi0xi0,althoughvalidforMINLP,isclearlynotviolated.However,thelinearrelaxationsP0LPandP00LPofS0S\fxRn:xi0gandS00S\fxRn:xi0g,respectively,depictedinFigure1(b),containnewlinearconstraintsthatcanbeusedtoconstructadisjunctionoftype(2)thatisviolatedbyx.SinceadisjunctiveinequalityforP0LPPP00LPisalsovalidforS00S00,aproceduresimilartothatusedinMILP,wheretheCGLPissolvedusingtheLPrelaxation,canbeapplied|seeforinstanceBelotti[14].Zhuetal.[55]proposedasimpleextensiontoMINLPwheretheCGLPissolvedfordisjunctionsonbinaryvariables.3.2SpecialclassesofMINLPSpeci cclassesofdisjunctionsarisefromMINLPswithacertainstructure.ForMINLPwithbinaryvariablesandwhosecontinuousrelaxationisconvex,StubbsandMehrotra[53]generalizedtheprocedureproposedbyBalas,CeriaandCornuejols[9]anddescribedaseparationprocedurebasedonaconvex6 optimizationproblem.Asimilar(specialized)procedurehasbeensuccessfullyappliedtoMixedIntegerConicProgramming(MICP)problems,whichcanbethoughtofasMILPamendedbyasetofconicconstraints.Thesecondorderconeandtheconeofsymmetricsemide nitematricesareamongthemostimportantclassesofconicconstraintsinthisclass.CezikandIyengar[18]andlatelyDrewes[23]proposed,forMICPwherealldisjunctionsaregeneratedfrombinaryvariables,anapplicationoftheliftingproceduretotheconiccase,wherebydisjunctiveinequalitiesareobtainedbysolvingacontinuousconicoptimizationproblem.AnalogouslytoFrangioniandGentile[26],restrictingtoaspecialtypeofconvexconstraint(secondorderorsemide nitecone)allowstoobtainmorespecializedandthusecientproceduresforobtainingadisjunctiveinequality.MathematicalProgramswithEquilibriumConstraints(MPEC).TheseMINLPscontainnonconvexconstraintsx�y=0,withxRk+,yRk+.Thesecanbemoreeasilystatedasxiyi=0foralli=1;2:::;k,andgiverisetosimpledisjunctionsxi=0yj=0.Judiceetal.[33]studiedanMPECwheretheonlynonlinearconstraintsarethecomplementarityconstraints.RelaxingthelatteryieldsanLP.DisjunctivecutsaregeneratedfromsolutionsoftheLPthatviolateacomplementarityconstraint(i.e.,xi0andyj0)throughtheobservationthatbothvariablesarebasicandbyapplyingstandarddisjunctivargumentstothecorrespondingtableaurows.DisjunctivecutshavebeenproposedbyAudet,HaddadandSavard[4]inthecontextofLinearBilevelProgramming,wheretheoptimalityofalowerlevelsubproblemisrequiredforasolutiontobefeasiblefortheupperlevelproblem,andisenforcedthroughcomplementarityconstraints.QuadraticallyConstrainedQuadraticProgramming(QCQP).Sax-ena,BonamiandLee[50,51]proposedtwoclassesofdisjunctivecutsforQCQPproblems,whichcontainconstraintsofthetypex�Qxb�x0,i.e.,non-convexbecauseingeneralQ0.TheseproblemsarereformulatedaslinearprogramswithanextranonconvexconstraintoftheformYxx�,whereYisannnmatrixofauxiliaryvariables.RelaxingtheseconstraintstoYxx�0,therebyallowingsolutionssuchthatxx�Y0,leadstoa(convex)semidef-initeprogram,whichyieldsgoodlowerbounds[31,49].Moreover,Saxena,BonamiandLee[50,51]usedthenonconvexconstraintxx�Y0toobtaindisjunctivecutsasfollows.Disjunctionsarederivedfromthenonconvexconstraint(v�x)2v�Yv,wherevectorvisobtainedfromthenegativeeigenvaluesofthematrixxx�Y,and(x;Y)isasolutionoftherelaxation.Inthesecondpaper[50],thisprocedureisre nedtogeneratecutsforthenon-reformulatedproblem,thusavoidingtheneedoftheauxiliarymatrixvariableY.7 3.3GeneralizedDisjunctiveProgramming.GeneralizedDisjunctiveProgramming(GDP)isanextensionofDisjunctiveProgramming[5]originallyproposedin[48]asamodellingframework(withaBranch-and-Boundbasedgeneral-purposesolutionalgorithm)targetingprob-lemsinchemicalengineeringandprocesssynthesis.GDPexplicitlyformulatesconditionalconstraintsviabooleanvariablesandlogicformul.Thisemphasizestherolethatlogic-basedtransformations(suchasDeMorgan'slawsorpassingfromconjunctivetodisjunctivenormalforms)haveontheformulation.Furthermore,itallowsthespeci cationofdi erentlowerboundingproblems.TheGDPisformulatedasfollows:min(x)+Xk2Kk(8)(x)0(9)kKi2Dk(Yikk\rikrik(x)0)(10)\n(Y)xXRnRjKj;(11)whereKandDk(kK)aresetsofindices,\rikisaknownparameterforallkK;iDk,Yarebooleanandx;carecontinuousdecisionvariables,\nisaConjunctiveNormalForm(CNF)logicformulahavingfreevariablesYandcontainingtheclausesW i2DkYikforallkK,with denoting\exclusiveor".Theformula\n(Y)actsasaconstraintinthesensethatitshouldbetrueinorderforYtobeafeasiblesolutionof(8)-(11).Itisclearthat(8)-(11)canbereformulatedtoanMINLPbyreplacingk\rikbyYik(k\rik)=0andrik(x)0byYikrik(x)0,andwriting\n(Y)asthecorrespondingbooleanexpressioninthef0;1g-variablesY.WhenXisavectorofnon-emptyintervals(say[0;U]),theproductsinvolvingtheYvariablescanbefurtherreformulatedto\big-M"typeconstraints,whicharconvexwheneverrik(x)areconvex.Thus,a\big-M"convexrelaxationcanbeeasilyobtainedfrom(8)-(11)usingwell-knowntechniquesonthepossiblynonconvexfunctionsand(see,e.g.,[15]).Theinterestofformulation(8)-(11),however,isthatitcanbeusedtoyieldadi erentconvexrelaxation[29]whichisingeneralstrongerthanthe\big-M"one,andrestsonaconvex-hull8 typereformulationofthedisjunctiveconstraints(10):kKxXi2DkvjkkKckXi2Dkik\rikXi2Dkik=1kK;iDkikrik(vjk=ik)0kK;iDk0vikikUkK;iDkik[0;1]:4DisjunctiveinequalitiesandbranchingWithinthecontextofaBranch-and-Bound[37]algorithm,akeydecisionthathastoberepeatedlyperformedishowtodivideaproblemintosubproblems.Indeed,Branch-and-Boundmakesanimplicituseoftheconceptofdisjunction:wheneverwearenotabletosolveaproblemoftheform(1),wechooseadisjunctionDofthefeasibleregionof(i.e.,adisjunctionDoftheform(2)validforS),andwedivideintotwoormoresubproblems1;:::;qcorrespondingtotheqtermsofthedisjunction.Hence,weareguaranteedthattheoptimalsolutionofoneoftheqsubproblemscoincideswiththeoptimumof.Inthiscase,wesaythatwebranchonthedisjunctionD.InMILP,branchingistypicallydoneontwo-termdisjunctions,andinpar-ticularthestandardmethodistobranchonasinglevariable,i.e.,anelementarydisjunction.LetxbethesolutiontotheLPrelaxationofthecurrentproblem,andletiNIsuchthatxi=.Then,webranchonthevariablexibydividinginto0and1,where0isequaltowiththeadditionoftheconstraintxibxi,and1isequaltowiththeadditionoftheconstraintxidxi.ChoosingwhichvariableshouldbebranchedonateachstepisoffundamentalimportancefortheperformanceofBranch-and-Bound.WerefertoAchterberg,KochandMartin[2]forarecentsurveyonthistopic.Eventhoughbranchingonsinglevariablesisthemethodcurrentlyimple-mentedbysolversforintegerprograms(bothlinearandnonlinear),itneednotbeso.ForMILPs,branchingcanbedoneonanysplitdisjunctionoftheform(3).Byintegrality,everyfeasiblesolutiontosatis esanysplitdisjunction.Inthebranchingliterature,everydisjunctionwhichisnotelementaryislabeledasageneraldisjunction.SeveralapproachestobranchongeneraldisjunctionshavebeenproposedintheMILPliterature.Theseapproachescanbeascribedtooneoftwocategories.The rstcategorycontainsmethodsthattrytoidentify\thin"directionsofthepolyhedronPassociatedwiththeLPrelaxationoftheMILP;thesecondcategoryfocusesonimprovingasmuchaspossibletheLPboundatthechildrennodes.Theconceptofthindirectionrequirestheconceptofwidthofafull-dimensionalpolyhedronPalongadirectionu,whichisde ned9 asmaxx;y2P(uxuy).Thus,forapureintegerprogramassociatedwithP,theintegerwidthisde nedasmin2Znnf0gmaxx;y2P(xy):Thisde nitionnaturallyextendstothemixedintegerlinearcasebyconsideringintegerdirectionsRnnf0gwithj=0forj=NI.MahajanandRalphs[43]discussedtheformulationofoptimizationmodelstoselectboththindirectionsandsplitdisjunctionsthatyieldmaximumboundimprovement.Notethatboththeproblemsof ndingadisjunctionwithsmallestintegerwidthorlargestboundimprovementarestronglyNP-hard[44].4.1BranchingonthindirectionsBranchingonthindirectionsofthepolyhedronPassociatedwiththeLPrelax-ationoftheMILPisamethodthatderivesfromtheworkofLenstra[39]onsolv-ingintegerprogramsin xeddimensioninpolynomialtime(seealso[30,42]).Theideaisasfollows.First,somethindirectionsofParecomputed,usingthelatticebasisreductionalgorithmbyLenstra,LenstraandLovasz[38].Then,thespaceistransformedsothatthesedirectionscorrespondtounitvectors,andtheproblemissolvedbyBranch-and-Boundinthenewspace.Branchingonsimpledisjunctionsinthisspacetranslatesbacktobranchingongeneraldisjunctionsintheoriginalspace.Thismethodhasprovensuccessfulforsomeparticularin-stanceswherestandardBranch-and-Boundfailsbecauseofthehugesizeoftheenumerationtree:Aardaletal.[1]discussedthesolutionofthedicultMarketSplitinstances[20],whileKrishnamoorthyandPatakistudieddecomposableknapsackproblems[36].SeealsoMehrotraandLi[45].4.2BranchingformaximumboundimprovementAnotherlineofresearchwhichhasbeenpursuedisthatofselectingagoodgeneraldisjunctionforbranchingateachnodeoftheBranch-and-Boundtree,inordertoimproveasmuchaspossibletheboundatthechildrennodes.OwenandMehrotra[46]proposedbranchingonsplitdisjunctionswithcoecientsinf1;0;1gontheintegervariableswithfractionalvaluesatthecurrentnode.Theygenerateallpossiblesuchdisjunctions,andevaluatethemusingstrongbranching[2],inordertoselecttheonethatgivesthelargestimprovementofthedualbound.KaramanovandCornuejols[35]providedacomputationalstudyofbranchingonthesplitdisjunctionsthatde netheMixedIntegerGomorycuts[27]associatedwiththeoptimalsimplextableauofthecurrentBranch-and-Boundnode.Severalsuchdisjunctionsaregenerated,usingthequalityoftheunderlyingcutasaproxyforthestrengthofthedisjunction,andstrongbranchingisusedtoselectone.AsimilarapproachwasproposedbyCornuejols,LibertiandNannicini[21],butinsteadofconsideringthesplitdisjunctionsas-sociatedwithMIGcutsthatcanbereaddirectlyfromtheoptimalsimplextableau,animprovementstepisapplied rst:therowsofthesimplextableau10 arelinearlycombinedwithintegercoecientsinordertoreducethecoecientsoftheresultingcombination.ThisstepcorrespondstotiltingtheunderlyingdisjunctionssoastoproducestrongerMIGcuts(seealsotheReduce-and-SplitalgorithmbyAndersen,CornuejolsandLi[3]).References[1]K.Aardal,R.E.Bixby,C.A.J.Hurkens,A.K.Lenstra,andJ.W.Smeltink.Marketsplitandbasisreduction:TowardsasolutionoftheCornuejols-Dawandeinstances.INFORMSJournalonComputing,12(3):192{202,2000.[2]T.Achterberg,T.Koch,andA.Martin.Branchingrulesrevisited.Opera-tionsResearchLetters,33(1):42{54,2005.[3]K.Andersen,G.Cornuejols,andY.Li.Reduce-and-splitcuts:Improv-ingtheperformanceofmixedintegerGomorycuts.ManagementScience,51(11):1720{1732,2005.[4]C.Audet,J.Haddad,andG.Savard.Disjunctivecutsforcontinuouslinearbilevelprogramming.OptimizationLetters,1(3):259{267,2007.[5]E.Balas.Disjunctiveprogramming.InP.L.Hammer,E.L.Johnson,aB.H.Korte,editors,AnnalsofDiscreteMathematics5:DiscreteOpti-mization,pages3{51.NorthHolland,1979.[6]E.Balas.Amodi edlift-and-projectprocedure.MathematicalProgram-ming,79:19{31,1997.[7]E.Balas.Disjunctiveprogramming:Propertiesoftheconvexhulloffeasiblepoints.DiscreteAppliedMathematics,89:3{44,1998.[8]E.BalasandP.Bonami.Generatinglift-and-projectcutsfromtheLPsimplextableau:opensourceimplementationandtestingofnewvariants.MathematicalProgrammingComputation,1:165{199,2009.[9]E.Balas,S.Ceria,andG.Cornuejols.Alift-and-projectcuttingplanealgorithmformixed0-1programs.MathematicalProgramming,58:295{324,1993.[10]E.BalasandR.Jeroslow.Strengtheningcutsformixedintegerprograms.EuropeanJournalofOperationsResearch,4:224{234,1980.[11]E.BalasandM.Perregaard.Lift-and-projectformixed0{1programming:recentprogress.DiscreteAppliedMathematics,123:129{154,2002.[12]E.BalasandM.Perregaard.Aprecisecorrespondencebetweenlift-and-projectcuts,simpledisjunctivecuts,andmixedintegerGomorycutsfor0-1programming.MathematicalProgramming,94(2-3):221{245,2003.11 [13]E.BalasandA.Saxena.Optimizingoverthesplitclosure.MathematicalProgramming,SeriesA,113(2):219{240,2008.[14]P.Belotti.Disjunctivecutsfornon-convexMINLP.Technicalreport,LehighUniversity,2009.[15]P.Belotti,J.Lee,L.Liberti,F.Margot,andA.Wachter.Branchingandboundstighteningtechniquesfornon-convexMINLP.OptimizationMethodsandSoftware,24(4):597{634,2009.[16]L.T.Biegler,I.E.Grossmann,andA.W.Westerberg.SystematicMethodsofChemicalProcessDesign.PrenticeHall,UpperSaddleRiver(NJ),1997.[17]S.CeriaandJ.Soares.Disjunctivecutsformixed0{1programming:du-alityandlifting.Technicalreport,GSB,ColumbiaUniversity,1997.[18]M.T.CezikandG.Iyengar.CutsforMixed0-1ConicProgramming.Math.Programming,Ser.A,104:179{200,2005.[19]W.Cook,R.Kannan,andA.Schrijver.Chvatalclosuresformixedintegerprogrammingproblems.MathematicalProgramming,47:155{174,1990.[20]G.CornuejolsandM.Dawande.Aclassofhardsmall0-1programs.IR.E.BixbyandE.A.Boyd,editors,Proceedingsofthe6thIPCOConfer-ence,volume1412ofLectureNotesinComputerScience,pages284{293.Springer-Verlag,Berlin,1998.[21]G.Cornuejols,L.Liberti,andG.Nannicini.Improvedstrategiesforbranch-ingongeneraldisjunctions.MathematicalProgrammingA,2009.Acceptedforpublication.[22]G.CornuejolsandR.Tutuncu.OptimizationMethodsinFinance.Cam-bridgeUniversityPress,Cambridge,2006.[23]S.Drewes.MixedIntegerSecondOrderConeProgramming.PhDthesis,TechnischeUniversitatDarmstadt,2009.[24]M.Fischetti,A.Lodi,andA.Tramontani.Ontheseparationofdisjunctivecuts.MathematicalProgramming,SeriesA,DOI10.1007/s10107-009-0300-y,2009.[25]C.A.Floudas.Globaloptimizationindesignandcontrolofchemicalpro-cesssystems.JournalofProcessControl,10:125{134,2001.[26]A.FrangioniandC.Gentile.Perspectivecutsforaclassofconvex0-1mixedintegerprograms.MathematicalProgramming,106(2):225{236,2006.[27]R.E.Gomory.Analgorithmforthemixedintegerproblem.TechnicalReportRM-2597,TheRANDCorporation,1960.12 [28]R.E.Gomory.Analgorithmforintegersolutionstolinearprograms.InP.Wolfe,editor,RecentAdvancesinMathematicalProgramming,pages269{302.McGraw-Hill,NewYork,1963.[29]I.GrossmannandS.Lee.Generalizedconvexdisjunctiveprogramming:Nonlinearconvexhullrelaxation.ComputationalOptimizationandAppli-cations,26:83{100,2003.[30]M.Grotschel,L.Lovasz,andA.Schrijver.Progressincombinatorialop-timization.InGeometricmethodsinCombinatorialOptimization,pages167{183.AcademicPress,Toronto,1984.[31]C.HelmbergandF.Rendl.Solvingquadratic(0,1)-problemsbysemide -niteprogramsandcuttingplanes.Math.Prog.,82(3):291{315,1998.[32]R.HorstandH.Tuy.GlobalOptimization:DeterministicApproaches.SpringerVerlag,Berlin,1996.[33]J.J.Judice,H.D.Sherali,I.M.Ribeiro,andA.M.Faustino.Acomplementarity-basedpartitioninganddisjunctivecutalgorithmformathematicalprogrammingproblemswithequilibriumconstraints.Jour-nalofGlobalOptimization,36:89{114,2006.[34]J.Kallrath.Solvingplanninganddesignproblemsintheprocessindus-tryusingmixedintegerandglobaloptimization.AnnalsofOperationsResearch,140(1):339{373,2005.[35]M.KaramanovandG.Cornuejols.Branchingongeneraldisjunctions.Tech-nicalreport,CarnegieMellonUniversity,2005.[36]B.KrishnamoorthyandG.Pataki.Columnbasisreductionanddecompos-ableknapsackproblems.DiscreteOptimization,6(3):242{270,2009.[37]A.H.LandandA.G.Doig.Anautomaticmethodofsolvingdiscreteprogrammingproblems.Econometrica,28(3):497{520,1960.[38]A.K.Lenstra,H.W.LenstraJr.,andL.Lovasz.Factoringpolynomialswithrationalcoecients.MathematischeAnnalen,4(261):515{534,1982.[39]H.W.LenstraJr.Integerprogrammingwitha xednumberofvariables.MathematicsofOperationsResearch,8(4):538{548,1983.[40]L.Liberti,C.Lavor,andN.Maculan.Abranch-and-prunealgorithmforthemoleculardistancegeometryproblem.InternationalTransactionsinOperationalResearch,15:1{17,2008.[41]L.Liberti,C.Lavor,M.A.C.Nascimento,andN.Maculan.Reformula-tioninmathematicalprogramming:anapplicationtoquantumchemistry.DiscreteAppliedMathematics,157(6):1309{1318,2009.13 [42]L.LovaszandH.E.Scarf.Thegeneralizedbasisreductionalgorithm.MathematicsofOperationsResearch,17(3):751{764,1992.[43]A.MahajanandT.K.Ralphs.Experimentswithbranchingusinggeneraldisjunctions.InProceedingsoftheEleventhINFORMSComputingSocietyMeeting,2009.ToAppear.[44]A.MahajanandT.K.Ralphs.Onthecomplexityofbranchingongen-eralhyperplanesforintegerprogramming.SIAMJournalonOptimization,2009.Toappear.[45]S.MehrotraandZ.Li.Ongeneralizedbranchingmethodformixedin-tegerprogramming.Technicalreport,NorthwesternUniversity,Evanston,Illinois,2004.[46]J.OwenandS.Mehrotra.Experimentalresultsonusinggeneraldisjunc-tionsinbranch-and-boundforgeneral-integerlinearprogram.Computa-tionalOptimizationandApplications,20:159{170,2001.[47]A.T.PhillipsandJ.B.Rosen.Aquadraticassignmentformulationofthemolecularconformationproblem.Technicalreport,CSD,Univ.ofMin-nesota,1998.[48]R.RamanandI.Grossmann.Modellingandcomputationaltechniquesforlogicbasedintegerprogramming.ComputersandChemicalEngineering,18(7):563{578,1994.[49]F.RendlandR.Sotirov.Boundsforthequadraticassignmentproblemusingthebundlemethod.MathematicalProgramming,109(2-3):505{524,2007.[50]A.Saxena,P.Bonami,andJ.Lee.Convexrelaxationsofnon-convexmixedintegerquadraticallyconstrainedprograms:Projectedformulations,November2008.OptimizationOnline.[51]A.Saxena,P.Bonami,andJ.Lee.Disjunctivecutsfornon-convexmixedintegerquadraticallyconstrainedprograms.InA.Lodi,A.Panconesi,andG.Rinaldi,editors,Proceedingsofthe13thIntegerProgrammingandCom-binatorialOptimizationConference,volume5035ofLectureNotesinCom-puterScience,pages17{33,2008.[52]E.M.B.SmithandC.C.Pantelides.Asymbolicreformulation/spatialbranch-and-boundalgorithmfortheglobaloptimisationofnonconvexMINLPs.Computers&Chem.Eng.,23:457{478,1999.[53]R.A.StubbsandS.Mehrotra.Abranch-and-cutmethodfor0-1mixedconvexprogramming.MathematicalProgramming,86:515{532,1999.14 [54]M.TawarmalaniandN.V.Sahinidis.Convexi cationandglobaloptimiza-tionincontinuousandmixed-integernonlinearprogramming:Theory,al-gorithms,softwareandapplications,volume65ofNonconvexOptimizationandItsApplications.KluwerAcademicPublishers,Dordrecht,2002.[55]Y.Zhu,Y.Hu,H.Wu,andM.Nakaiwa.Animprovedbranch-and-cutal-gorithmformixed-integernonlinearsystemsoptimizationproblem.AIChEJournal,54(12):3239{3247,2008.15