/
On a  possibility  of  baryonic On a  possibility  of  baryonic

On a possibility of baryonic - PowerPoint Presentation

myesha-ticknor
myesha-ticknor . @myesha-ticknor
Follow
404 views
Uploaded On 2018-02-06

On a possibility of baryonic - PPT Presentation

exotica Michał Praszałowicz in collaboration with MV Polyakov Bochum HC Kim Incheon 2003 LEPS Collaboration July 2003 July 2003 exotic quantum numbers ID: 628679

heavy quark model phys quark heavy phys model mev soliton spin chiral states baryons limit nrqm polyakov pentaquarks excited

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "On a possibility of baryonic" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

On a possibility of baryonic exotica

Michał

Praszałowicz

in

collaboration

with

M.V.

Polyakov

(

Bochum

) H.-C. Kim (

Incheon

)Slide2

2003

LEPS CollaborationSlide3

July

2003Slide4

July

2003

exotic

quantum

numbers

small mass: 1.5

GeV

very

small

width

: a

few

MeVSlide5

13.3.2007Michal Praszalowicz, Krakow

5

Quark Model

(

uudds

)

:

4

x 350 + 500 ~ 1900 MeV

penta

quark

:

strangeness

+1

~

400 - 1000

MeV

(2s) -

(s) = 150 MeVspin 1/2parity 

+

Slide6

Michal Praszalowicz, Krakow6

Chiral Soliton Models

Biedenharn

, Dothan (1984):

10-8

~ 600 MeV

Skyrme

modelMP (1987):

M

= 1535 MeV

Skyrme

model

in model independent approach,

second order

Diakonov, Petrov, Polyakov (1997):

QM - model independent approach, 1/Nc corrections  M= 1530 MeV

small width < 15 MeV !In Chiral Soliton Models quark-antiquark pairs are added as chiral

excitations of low mass (pion is massless!) rather than as twoconstituent (i.e. heavy) quarks.Slide7

13.3.2007Michal Praszalowicz, Krakow

7

Soliton Quark Model

(

uudds

)

:

4

x 350 + 500

~

1900

MeV

1500 MeV

penta

quark

:

strangeness

+1

~ 400 MeV a few MeV(2s) - (s) = 150 MeV 350

spin 1/2parity +

+

Slide8

What is the experimental statusof light

pentaquarks today?

+

Slide9

LEPS

and

various

conference

proceedings

e.g

. T.

Nakano

MENU 2016Slide10

DIANASlide11

dissidents

from CLASSlide12

disicalaimer

from CLASSlide13

What is the experimental statusof light

pentaquarks today?

+

Slide14

NA 49Slide15

What is the experimental statusof light

pentaquarks today?

+

Slide16

Pentanucleon?

D.

Werthmuller

et al. [A2 Collaboration]

Phys

. Rev. Lett. 111 (2013) 23, 232001

Eur.

Phys

. J. A 49 (2013) 154

Phys

. Rev. Rev. C 90 (2014) 015205

28.01.15

Michał Praszałowicz

16Slide17

Pentanucleon?

M.V.

Polyakov

and A.

Rathke

,

On

photoexcitation

of baryon anti-

decuplet

Eur. Phys. J. A 18 (2003) 691

natural (but not the only one) explanation if N

*

is a pentaquarkSlide18
Slide19

M. Praszałowicz

Q

C

D: quarks and gluons

integrate out gluons

many quark nonlocal interactions

Lagrangian chirally symmetric

approximation:

manyq, nonl. 4q, local

Nambu Jona Lasinio model

spontaneous chiral symmetry breaking

semibosonization:

qqqq qq

Chiral Quark ModelSlide20

QCD vacuum:

Chiral

Quark

Soliton

ModelSlide21

QCD vacuum:

Chiral

Quark

Soliton

ModelSlide22

chirally

inv.

manyquark

int.

chiral symmetry breaking:

Chiral

Quark

Soliton

ModelSlide23

a

dding

vlence

quarks:

Chiral

Quark

Soliton

Model

chirally

inv.

manyquark

int.Slide24

soliton

configuration

no quantum numbers except B

“classical” baryon:

Chiral

Quark

Soliton

Model

chirally

inv.

manyquark

int.Slide25

chiral symmetry breaking

chirally inv. manyquark int.

soliton

configuration

no quantum numbers except B

color

factorizes!

=

N

c

×

Chiral

Quark

Soliton

Model

“classical” baryon:Slide26

rotation generates flavor and spin

baryon:

Chiral

Quark

Soliton

Model

soliton

configuration

no quantum numbers except B

chirally

inv.

manyquark

int.Slide27

Mass formula

x

first order perturbation

in the strange quark mass

and in N

c

:

octet-decuplet

splitting

exotic-nonexotic splittings

known ?

O(1) corrections

to

M

cl

do not allow

for absolute mass predictions

P.O. Mazur, M.A. Nowak, MP,

Phys

.

Lett

. 147B (1984) 137

E. Guadagnini,

Nucl

.

Phys

. B236 (1984) 35

S.

Jain

, S.R. Wadia,

Nucl

.

Phys

. B258 (1985) 713Slide28

Allowed

statesSlide29

Successful Phenomenology

In a ”model independent”

approachone can get

both good

fits to the existing

data

(

including

very narrow light pentaquark

Θ

+

)

one

can

fix

all necessary model parameters

:M, I1, I2, α, β, γCh.V

. Christov et al. Prog. Part. Nucl. Phys. 37 (1996) 91Slide30

Successful Phenomenology

In a ”model independent”

approachone can get

both good

fits to the existing

data

(

including

very narrow light pentaquark

Θ

+

)

one

can

fix

all necessary model parameters

:M, I1, I2, α, β, γbut also one can

recover the NRQM result in a special limitNRQM limit =

= squeezing the soliton to zero sizeCh.V. Christov et al. Prog. Part. Nucl. Phys. 37 (1996) 91MP, A.

Blotz, K. Goeke Phys. Lett

. B354 (1995) 415Slide31

NRQM Limit

energy is calculated

with respect to the vacuum:

Diakonov

,

Petrov

,

Polyakov

,

Z.Phys

A359

(97) 305

MP,

A.Blotz

K.Goeke

,

Phys.Lett

.B354

:415-422,1995 Slide32

NRQM Limit

energy is calculated

with respect to the vacuum:

Diakonov

,

Petrov

,

Polyakov

,

Z.Phys

A359

(97) 305

MP,

A.Blotz

K.Goeke

,

Phys.Lett

.B354

:415-422,1995 Slide33

NRQM Limit

energy is calculated

with respect to the vacuum:

in the NRQM limit only valence level contributes

Diakonov

,

Petrov

,

Polyakov

,

Z.Phys

A359

(97) 305

MP,

A.Blotz

K.Goeke

,

Phys.Lett

.B354

:415-422,1995 Slide34

NRQM Limit

energy is calculated

with respect to the vacuum:

in the NRQM limit only valence level contributes

Diakonov

,

Petrov

,

Polyakov

,

Z.Phys

A359

(97) 305

MP,

A.Blotz

K.Goeke

,

Phys.Lett

.B354

:415-422,1995 Slide35

NRQM Limit

energy is calculated

with respect to the vacuum:

in the NRQM limit only valence level contributes

pentaquark

width

= 0 !

Diakonov

,

Petrov

,

Polyakov

,

Z.Phys

A359

(97) 305

MP,

A.Blotz

K.Goeke

,

Phys.Lett

.B354

:415-422,1995 Slide36

Soliton

with

N

c

− 1 quarks

color

factorizes!

(

N

c

−1) ×

if

N

c

is

large

,

N

c

- 1

is also

large and onecan use the same mean field

arguments

plus one heavy quark

G.S. Yang, H.C. Kim, M.V. Polyakov, MP

Phys. Rev. D94 (2016) 071502Slide37

Allowed SU(3) irreps.

= (

N

c

−1)/3Slide38

Heavy Baryons: soliton + heavy QSlide39

Splittings inside multiplets

=

S

L

one

has

to

add

h.f

.

interactionSlide40

Splittings inside multiplets

Equal

splittings

within

multiplets

follow

from

Eckhart-Wigner

theorem

(GMO relations)Slide41

Splittings inside multiplets

Equal

splittings

within

multiplets

follow

from

Eckhart-Wigner

theorem

(GMO relations)

however

the

relation

between

the

deltas does not follow fromEckhart-Wigner theoremSlide42

Splittings inside multiplets

from the

fits

to the

light

sector

we

get

:

(

exp

.: 121

MeV

)

(

exp

.: 178

MeV)

13%Slide43

Splittings inside multiplets

from the

fits

to the

light

sector

we

get

:

(

exp

.: 121

MeV

)

(

exp

.: 178

MeV)

13%

Successful

phenomenology

G.S. Yang, H.C. Kim, M.V.

Polyakov

, MP Phys. Rev. D94 (2016) 071502Slide44

Rotational excitations:heavy pentaquarks

2/3

H.C. Kim, M.V.

Plyakov

, MP arXiv:1704.04082 [

hep-ph

]Slide45

soliton

in 15 (

quatroquark

)

(spin

1 <

spin

0)

+ heavy

quark: 1

/2 + 3/2

2/3

Rotational

excitations

:

heavy

pentaquarks

H.C. Kim, M.V.

Plyakov, MP arXiv:1704.04082 [hep-ph]Slide46

soliton

in 15 (

quatroquark

)

(spin

1 <

spin

0)

+ heavy

quark: 1

/2 + 3/2

2/3

Rotational

excitations

:

heavy

pentaquarks

H.C. Kim, M.V.

Plyakov

, MP arXiv:1704.04082 [hep-ph]Slide47

Decay constants

H.C. Kim, M.V.

Plyakov, MP arXiv:1704.04082 [hep-ph

]Slide48

Decay constants

In NRQM limit:

Expectations

:

some decays

will

be

suppressed

H.C. Kim, M.V.

Plyakov

, MP arXiv:1704.04082 [

hep-ph

]Slide49

Quark excitations: non-exotic heavy baryons

V.

Petrov

, Acta

Phys. Pol. B47 (2016) 59Slide50

Quark excitations: non-exotic heavy baryons

Rotations

generate

quantum

numbersSlide51

One K=1 quark excited solitonsSlide52

3bar excited heavy baryons

add

heavy

quarktotal

spin

1/2 and 3/2Slide53

3bar excited heavy baryons

add

heavy

quarktotal

spin

1/2 and 3/2

experimentally

:

hyprfine

splitting

different

from the

ground

stateSlide54

sextet excited baryonsSlide55

sextet excited baryons

excited

Omega_Q

spectrum,

5

statesSlide56

5

states

!Slide57

Five very

narrow

resonances, unknown quantum numbersSlide58

Scenario 1:all LHCb

Omega’s are sextet

states

violates

constraints

:Slide59

Scenario 1:all LHCb

Omega’s are sextet

states

violates

constraints

:

similar

problem in the

quark

modelsSlide60

Scenario 2force sextet

constraintsSlide61

=24

heavy

states

above

Ξ

+ D

threshold

,

large

p.s.

also

to

Ω

c

+ π,

can

be

very

wideSlide62

=24

Two

narrow

states

(1

MeV

)

inerpreted

as

pentaquarks

heavy

states

above

Ξ

+ D

threshold

,

large

p.s.also toΩc+ π,

can bevery

wideSlide63

Consequences

Omega’s

form isospin triplet,

easy to

check experimentallySlide64

Consequences

Omega’s

form isospin triplet,

easy to

check experimentally

rich

structure

-

many new states

,

also

in the

case

of b

baryonsSlide65

Conclusionsnaive

QM

admits heavy pentaquarks with

naturally

large width

soliton

models

ARE quark

models

successful

phenomenology

in the

light

baryon sectorin

soliton models pentaquarks are naturally lightin NR limit

no decay of antidecuplet to ocet (!)LEPS and DIANA results standnull results

put bounds on prod. mechanism rather than exclude 5qnarrow structure in eta photoproduction on n –

signature of 5q?confirmation or

refutation of NA49 result needed

heavy baryons can be desribed in

terms of Nc-1 quark

solitontwo types

of excitations: rotations: 15-bar (

exotic)quark excitations

(regular)

two of the LHCb Omega_c states

may be interpreted as 5qSlide66
Slide67

Backup slidesSlide68

Prediction for Ω*b

model

independent

relation

:

satisfied

for

charm

:

Ω

*

c

= 2764.5 ± 3.1 MeV (2765.9 ± 2.0)Slide69

Prediction for Ω*b

model

independent

relation

:

satisfied

for

charm

:

Ω

*

c

= 2764.5 ± 3.1

MeV

(2765.9 ± 2.0)

Ω

*

b

= 6079.8 ± 2.3 MeV (to be confirmed)Slide70

How narrow

they

are?Assume p-wave decay and

extract coupling from Delta

decaySlide71

ss

-

diquark

ss

-

diquark

heavy

quark

heavy

quark

ground

state

L

= 0

h.f

.

splitting

70 MeVspin 1/2

spin 3/2Slide72

ss

-

diquark

ss

-

diquark

heavy

quark

heavy

quark

excited

state

L

= 1

spin

1/2, 3/2

spin 1/2, 3/2, 5/2Slide73

ss

-

diquark

ss

-

diquark

heavy

quark

heavy

quark

excited

state

L

= 1

spin

1/2, 3/2

spin 1/2, 3/2, 5/2

FIVE STATES as in LHCb

!Slide74

Very narrow

excited Ωc baryons

Marek

Karliner, Jonathan L. Rosner, e-

Print

: arXiv:1703.07774

take

general

spin

potential

,

try

sensible parameters, only 3

parameters: a2 + c, a1,

b.does not workSix Ω0c

states discovered by LHCb as new members of 1P and 2S charmed baryons Bing Chen, Xiang

Liu, e-Print: arXiv:1704.02583

they

have wave functions,

so can calculate coefficients

, calculate other known

states.different mass

ordering than KR, widths do not agreeSlide75

Quantum numbers of

recently

discovered Ω0c baryons

from lattice

QCD M.

Padmanath

,

Nilmani

Mathur, e-Print: arXiv:1704.00259

h.f

.

splitting

70

MeV