/
On eigenvalue surfaces near a diabolic point O On eigenvalue surfaces near a diabolic point O

On eigenvalue surfaces near a diabolic point O - PDF document

natalia-silvester
natalia-silvester . @natalia-silvester
Follow
382 views
Uploaded On 2015-05-29

On eigenvalue surfaces near a diabolic point O - PPT Presentation

N Kirillov A A Mailybaev and A P Seyranian Abstract The paper presents a theory of unfolding of eigenvalue surfaces of real symmetric and Hermitian matrices due to an arbitrary complex perturbation near a diabolic point General asymptotic formulae d ID: 76811

Kirillov

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "On eigenvalue surfaces near a diabolic p..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

wherethederivativeistakenat,andinnerproductsofvectorsin(3)aregivenby .Inexpression(3)thehigherorderterms ±=fp ±Š0p=±Š0p fp.(5) 0-7803-9235-3/05/$20.00 © 2005 IEEEPhysCon 2005, St. Petersburg, Russia319 Fig.1.Unfoldingofadiabolicpointduetocomplexperturbation.  Š ) ,(18)ya,b=Š+   Š ) Thesetwosolutionsdeterminethepointsinparameterspace,wheredoubleeigenvaluesappear.When,thetwosolutionscoincide.For,theequationshavenorealsolutions.Inthelattercase,theeigenvaluesseparateforallNotethatthequantitiesareexpressedbymeansoftheanti-Hermitianpart=( ofthematrix 2i,=N(p0)u1,u2N(p0)u2,u1) dependsontheHermitianpart=( AT)/2as=H(p0)u1,u2)ŠH(p0)u2,u1) ,onecansaythatthein”uenceoftheanti-HermitianpartoftheperturbationisstrongerthanthatoftheHermitianpart.IftheHermitianpartprevailsintheperturbation,wehave.Inparticular,forapurelyHermitianperturbationLetusassumethatthevectorconsistsofonlytwo,andconsiderthesurfaces(13)and(14)fordifferentkindsoftheperturbation.Consider“rstthecase.Then,theeigensheetsareseparate,seeFigure1a.Equationde“nesalineinparameterplane.Thesheetsoftheeigensurface(14)intersectalongtheline=Imgivenbyconditions(16).Inthecasethelineandtheellipsede“nedbythequationhavecommonpointswheretheeigenvaluescouple.Coordinatesofthesepointscanbefoundfromtheequations(11),wherearede“nedbyexpressions(18)and(19).Herewehaveassumedthatthevectorsarelinearlyindependent.NotethatthepointscoincideinthedegeneratecaseAccordingtoconditions(15)therealeigensheetsaregluedintheintervalalpa,pb]oftheline+ReThesurfaceofrealeigenvalues(13)iscalledaŽdoublecoffee“lterŽ[6].Theunfoldingofadiabolicpointintothedoublecoffee“lterisshowninFigure1b.Notethatincrystalopticsandacousticstheintervalalpa,pb]isreferredtoasaŽbranchcutŽ,andthepointsarecalledŽsingularaxesŽ,see[5],[7].Accordingtoequation(8)thedoubleeigenvaluesat 321 Theinversedielectrictensorisdescribedbyacomplexnon-Hermitianmatrixtranspdichroicchiral.Thesymmetricpartofconsistingoftherealmatrixtranspandimaginarymatrixdichroicconstitutetheanisotropytensor,whichdescribesthebirefringenceofthecrystal.Foratransparentcrystal,theanisotropytensorisrealandisrepresentedonlybythematrixtransp;foracrystalwithlineardichroismitiscomplex.Choosingcoordinateaxesalongtheprincipalaxesoftransp,wehavetranspThematrixdichroicdescribeslineardichroism(absorption).Thematrixchiralgivestheantisymmetricpartofdescribingchirality(opticalactivity)ofthecrystal.Itisdeterminedbytheopticalactivityvectordependinglinearlyonchiralisasymmetricopticalactivitytensor;thistensorhasanimaginarypartforamaterialwithcirculardichroism,see[7]formoredetails.First,consideratransparentnon-chiralcrystal,whendichroic.Thenthematrixtranspisrealsymmetricanddependsonavectoroftwoparameters.Thethirdcomponentofthedirectionvectorisfoundas ,wherethecasesoftwodifferentsignsshouldbeconsideredseparately.Belowweassumethatthreedielectricconstantsdifferent.Thiscorrespondstobiaxialanisotropiccrystals.Thenonzeroeigenvaluesofthematrixarefoundexplicitlyintheform[11] 2±1 2 2trace(Theeigenvaluesarethesameforoppositedirections.Byusing(33)and(36)in(37),itisstraightforwardtoshowthattwoeigenvaluescoupleat (1Š2)/(1Š3)=± whichdeterminefourdiabolicpoints(fortwosignsof),alsocalledopticaxes[7].Thedoubleeigenvalue Fig.3.Diabolicsingularitiesnearopticaxesandtheirlocalapproximations.ofthematrixtwoeigenvectorssatisfyingnormalizationconditions(2).Usingexpressions(36)and(39),weevaluatethevectorswithcomponents(4)foropticaxes.Substitutingthemin(9),weobtainthelocalasymptoticexpressionfortheconesingularitiesintheEquation(40)isvalidforeachofthefouropticaxes(38).Nowletusassumethatthecrystalpossessesabsorptionandchirality.Thenthematrixfamily(36)takesacomplex,wheredichroicchiralAssumethattheabsorptionandchiralityareweak,i.e.,dichroicchiralissmall.ThenwecanuseasymptoticformulaeofSections2and3todescribeunfoldingofdiabolicsingularitiesoftheeigenvaluesurfaces.Forthispurpose,weneedtoknowonlythevalueoftheperturbationattheopticaxesofthetransparentnon-chiralcrystalSubstitutingmatrix(41)evaluatedatopticaxes(38)intoexpression(7),andthenusingformulae(12),weobtainWeseethat,andarepurelyimaginarynumbersdependingonlyondichroicpropertiesofthecrystal(absorp-tion).Thequantitydependsonlyonchiralpropertiesofthe 323 [7]BerryM.V.andDennisM.R.Proc.R.Soc.Lond.A..pp.1261…1292.2003.[8]BerryM.V.Czech.J.Phys..2004.1039…1047.[9]SeyranianA.P.,KirillovO.N.,MailybaevA.A.Couplingofeigenval-uesofcomplexmatricesatdiabolicandexceptionalpoints.J.ofPhys.A:Math.Gen.(8).pp.1723…1740.2005.[10]LandauL.D.,LifshitzE.M.,PitaevskiiL.P.Electrodynamicsofcon-tinuousmedia.Oxford:Pergamon,1984.[11]LewinM.DiscreteMathematics.(1…3).pp.255…262.1994. 325