PPT-Purely sequence-trained neural networks for ASR based on la

Author : natalia-silvester | Published Date : 2017-10-27

Dan Povey Vijay Peddinti Daniel Galvez Pegah Ghahremani Vimal Manohar Xingyu Na Yiming Wang Sanjeev Khudanpur Why should you care about this It gives

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "Purely sequence-trained neural networks ..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

Purely sequence-trained neural networks for ASR based on la: Transcript


Dan Povey Vijay Peddinti Daniel Galvez Pegah Ghahremani Vimal Manohar Xingyu Na Yiming Wang Sanjeev Khudanpur Why should you care about this It gives better WERs. Designing Crypto Primitives Secure Against Rubber Hose Attacks. A Paper by. . Hristo. . Bojinov. , Daniel Sanchez, Paul . Reber. , . Dan . Boneh. , Patrick Lincoln.. Presented By, Course Advisor. Abhishek Narwekar, Anusri Pampari. CS 598: Deep Learning and Recognition, Fall 2016. Lecture Outline. Introduction. Learning Long Term Dependencies. Regularization. Visualization for RNNs. Section 1: Introduction. Abhishek Narwekar, Anusri Pampari. CS 598: Deep Learning and Recognition, Fall 2016. Lecture Outline. Introduction. Learning Long Term Dependencies. Regularization. Visualization for RNNs. Section 1: Introduction. 1. Table of contents. Recurrent models. Partially recurrent neural networks. . Elman networks. Jordan networks. Recurrent neural networks. BackPropagation Through Time. Dynamics of a neuron with feedback. Ali Cole. Charly. . Mccown. Madison . Kutchey. Xavier . henes. Definition. A directed network based on the structure of connections within an organism's brain. Many inputs and only a couple outputs. Fall 2018/19. 7. Recurrent Neural Networks. (Some figures adapted from . NNDL book. ). Recurrent Neural Networks. Noriko Tomuro. 2. Recurrent Neural Networks (RNNs). RNN Training. Loss Minimization. Bidirectional RNNs. Introduction to Back Propagation Neural . Networks BPNN. By KH Wong. Neural Networks Ch9. , ver. 8d. 1. Introduction. Neural Network research is are very . hot. . A high performance Classifier (multi-class). Zachary . C. Lipton . zlipton@cs.ucsd.edu. Time. . series. Definition. :. A.  time series is a series of . data. . points.  indexed (or listed or graphed) in time order. . It . is a sequence of . Dr. Abdul Basit. Lecture No. 1. Course . Contents. Introduction and Review. Learning Processes. Single & Multi-layer . Perceptrons. Radial Basis Function Networks. Support Vector and Committee Machines. Abigail See, Peter J. Liu, Christopher D. Manning. Presented by: Matan . Eyal. Agenda. Introduction. Word Embeddings. RNNs. Sequence-to-Sequence. Attention. Pointer Networks. Coverage Mechanism. Introduction . Developing efficient deep neural networks. Forrest Iandola. 1. , Albert Shaw. 2. , Ravi Krishna. 3. , Kurt Keutzer. 4. 1. UC Berkeley → DeepScale → Tesla → Independent Researcher. 2. Georgia Tech → DeepScale → Tesla. Short-Term . Memory. Recurrent . Neural Networks. Meysam. . Golmohammadi. meysam@temple.edu. Neural Engineering Data Consortium. College . of Engineering . Temple University . February . 2016. Introduction. Models and applications. Outline. Sequence Data. Recurrent Neural Networks Variants. Handling Long Term Dependencies. Attention Mechanisms. Properties of RNNs. Applications of RNNs. Hands-on LSTM-supported timeseries prediction. Human Language Technologies. Giuseppe Attardi. Some slides from . Arun. . Mallya. Università di Pisa. Recurrent. RNNs are called . recurrent.  because they perform the same task for every element of a sequence, with the output depending on the previous values..

Download Document

Here is the link to download the presentation.
"Purely sequence-trained neural networks for ASR based on la"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents