To appear at the Eurographics Symposium on Geometry Processing Alexander Belyae - PDF document

Download presentation
To appear at the Eurographics Symposium on Geometry Processing  Alexander Belyae
To appear at the Eurographics Symposium on Geometry Processing  Alexander Belyae

To appear at the Eurographics Symposium on Geometry Processing Alexander Belyae - Description


We argue that de64257ning a modeling operation by asking for rigidity of the local transformations is useful in various settings Such formulation leads to a nonlinear yet conceptually simple energy formulation which is to be minimized by the deforme ID: 3125 Download Pdf

Tags

argue that de64257ning

Embed / Share - To appear at the Eurographics Symposium on Geometry Processing Alexander Belyae


Presentation on theme: "To appear at the Eurographics Symposium on Geometry Processing Alexander Belyae"— Presentation transcript


O.Sorkine&M.Alexa/As-Rigid-As-PossibleSurfaceModeling originalmeshuniformweightscotanweightsuniformweightscotanweightsFigure2:Demonstrationoftheimportanceofproperedgeweightingintheenergyformulation( 3 ).Deformationusinguniformweighting(wij=1)leadstoasymmetricalresults,whereascotangentweightingenablestoeliminatetheinuenceofthemeshingbias. LetusdenotebySithecovariancematrixSi=åj2N(i)wijeije0Tij=PiDiP0Ti;(5)whereDiisadiagonalmatrixcontainingtheweightswij,Piisthe3jN(vi)jcontainingeij'sasitscolumns,andsimilarlyforP0i.ItiswellknownthattherotationmatrixRimaximizingTr(RiSi)isobtainedwhenRiSiissymmetricpositivesemi-denite(ifMisapsdmatrixthenforanyor-thogonalR,Tr(M)�Tr(RM)).OnecanderiveRifromthesingularvaluedecompositionofSi=UiSiVTi:Ri=ViUTi;(6)uptochangingthesignofthecolumnofUicorrespondingtothesmallestsingularvalue,suchthatdet(Ri)�0.2.2.ThelocalrigidityenergyOursimpleideaformeasuringtherigidityofadeformationofthewholemeshistosumupoverthedeviationsfromrigiditypercell,asexpressedby( 3 ).Thus,weobtainthefollowingenergyfunctional:E�S0=nåi=1wiE(Ci;C0i)= (7) =nåi=1wiåj2N(i)wij �p0i�p0j�Ri(pi�pj) 2;wherewi,wijaresomexedcellandedgeweights.NotethatE�S0dependssolelyonthegeometriesofS,S0,i.e.,onthevertexpositionsp;p0.Inparticular,sincethereferencemesh(ourinputshape)isxed,theonlyvariablesinE�S0arethedeformedvertexpositionsp0i.ThisisbecausetheoptimalrotationsRiarewell-denedfunctionsofp0,aswasshownintheprevioussection.Thechoiceofper-edgeweightswijandper-cellweightswiisimportantformakingourdeformationenergyasmesh-independentaspossible,asdemonstratedinFigure 2 .Theweightsshouldcompensatefornon-uniformlyshapedcells andpreventdiscretizationbias.Wethereforeusethecotan-gentweightformulaforwij[ PP93 , MDSB03 ]:wij=1 2�cotaij+cotbij;whereaij;bijaretheanglesoppositeofthemeshedge(i;j)(foraboundaryedge,onlyonesuchangleexists).Wefur-thernotethatthedeviationfromrigidity,asdenedby( 3 ),isanintegratedquantity,sothatthecellenergyispropor-tionaltothecellarea,andwecansetwi=1.Analternativeexplanationforthiswouldbeusingthearea-correctededgeweightsw0ij=(1=Ai)wij,whereAiistheVoronoiareaofcellCi[ MDSB03 ],andthenalsosettingthecellweightstobetheVoronoiarea:w0i=Ai.Theareatermsimplycancelsout,andweareleftwiththesymmetriccotangentweightswij.3.ModelingframeworkInamodelingframeworkweneedtosolveforpositionsp0ofS0thatminimizeE(S0),undersomeuser-denedmodel-ingconstraints.Thismeanswedonotknowtherigidtrans-formationsfRigaprioriandthusneedtosolveforthemaswell.Therefore,werstinterpretE(S0)asafunctionofp0andfRigandinanymodelingsituationweseekthemini-mumenergyunderthevariationinbothsets.Tosolveforthenextlocalminimumenergystate(start-ingfromagiveninitialvectorofpositionsandrotations),weproposetouseasimplealternatingminimizationstrat-egy.Thismeans,foragivenxedsetofrigidtransforma-tions,wendpositionsp0thatminimizeE(S0).Then,wendtherigidtransformationsfRigthatminimizeE(S0)forthegivensetofpositionsp0.Wecontinuetheseinterleavediterationsuntilthelocalenergyminimumisreached.LetusrstlookhowtondoptimalrigidtransformationsfRigforagivensetofmodiedpositionsp0.Eachterminthesum( 7 )involvesonlytheper-cellrigidtransformationRi,i.e.,wecancomputeanoptimaltransformationforeachcellwithoutregardfortheothercellsandtheirrigidtrans-formations.Thus,weseekanRithatminimizesthepercellenergyin( 3 ).Thesolutiontothis,however,isdetailedinSection 2.1 ,namely,Equation( 6 ). c TheEurographicsAssociation2007. O.Sorkine&M.Alexa/As-Rigid-As-PossibleSurfaceModeling initialguess1iteration2iterationsinitialguess1iteration4iterationsFigure3:Successiveiterationsoftheas-rigid-as-possibleeditingmethod.TheinitialguessisthenaiveLaplacianeditingresult(asin[ LSCO04 ]butwithoutanylocalrotationestimation).TheoriginalstraightbarmodelisshowninFigure 6 . Inordertocomputeoptimalvertexpositionsfromgivenrotations,wecomputethegradientofE(S0)withrespecttothepositionsp0.Letuscomputethepartialderivativesw.r.t.p0i.NotethattheonlytermsinE(S0)whosederivativedoesnotvanisharethoseinvolvingverticesiandj2N(i):¶E(S0) ¶p0i=¶ ¶p0i åj2N(i)wij �p0i�p0j�Ri(pi�pj) 2++åj2N(i)wji �p0j�p0i�Rj(pj�pi) 2!==åj2N(i)2wij��p0i�p0j�Ri�pi�pj++åj2N(i)�2wji��p0j�p0i�Rj�pj�pi:Usingthefactthatwij=wji;wearriveat¶E(S0) ¶p0i=åj2N(i)4wij�p0i�p0j�1 2(Ri+Rj)�pi�pj:Settingthepartialderivativestozerow.r.t.eachp0iwearriveatthefollowingsparselinearsystemofequations:åj2N(i)wij�p0i�p0j=åj2N(i)wij 2�Ri+Rj�pi�pj:(8)Thelinearcombinationontheleft-handsideisnon-otherthanthediscreteLaplace-Beltramioperatorappliedtop0;thesystemofequationscanbecompactlywrittenasLp0=b;(9)wherebisann-vectorwhoseithrowcontainstheright-handsideexpressionfrom( 8 ).Wealsoneedtoincorporatethemodelingconstraintsintothissystem.Inthesimplestform,thosecanbeexpressedbysomexedpositionsp0j=ck;k2F;(10)whereFisthesetofindicesoftheconstrainedvertices.Theseconsistofstaticandhandlevertices,interactivelyma-nipulatedbytheuser.Incorporatingsuchconstraintsinto( 9 )simplymeanssubstitutingthecorrespondingvariables,ef-fectivelyerasingrespectiverowsandcolumnsfromLandupdatingtheright-handsidewiththevaluesck.NotethattherigidtransformationsfRigonlyinuencetheright-handsideofthesystem,whereasthesystemma-trixonlydependsontheinitialmesh.Thus,wecanemploy adirectsolver,andthesystemmatrixhastobefactoredonlyonceforminimizingE(S0).Moreover,sincep0consistsofthreecolumns(forthethreecoordinatefunctions),weonlyneedtoperformthreetimesback-substitutiontosolveforeachcoordinate,usingthesamennfactorization.SinceLissymmetricpositivedenite,thesparseCholeskyfac-torizationwithll-reducingreorderingisanefcientsolverchoice[ Tol03 ].Tosummarize,theoverallminimizationofE(S0)pro-ceedsasfollows.Firstlythecoefcientswijareprecomputedandthesystemmatrixof( 9 )ispre-factored.Givenaninitialguessp00,thelocalrotationsRiareestimated,asdescribedinSection 2.1 .Newpositionsp01areobtainedbysolving( 9 ),pluggingRiintotheright-handside.Thenfurtherminimiza-tionisperformedbyre-computinglocalrotationsandusingthemtodeneanewrighthand-sideforthelinearsystem,andsoon.Thisleadstoanefcientsolutionofthenon-linearproblemathand,sinceonlyback-substitutionsarenecessary.4.ResultsanddiscussionWehaveimplementedtheas-rigid-as-possibledeformationtechniqueusingC++onaPentium42.16GHzlaptopwith2GBRAM.WeusedthesparseCholeskysolverprovidedwiththeTAUCSlibrary[ Tol03 ]andstandardSVDimple-mentation(usedforpolardecompositionof33matrices)from[ PTVF92 ].WepresentsometypicaldeformationresultsobtainedwithourtechniqueinFigures 1 , 4 – 8 .Notethatnaturalde-formationsareobtained,evenwhenthemanipulationhandleisonlybeingtranslated,becausetheoptimizationautomati-callyproducesthecorrectlocalrotations.TheCactus(Fig-ure 7 )isaparticularlychallengingexample,especiallyforlinearvariationaldeformationmethods,duetoitslongpro-trudingfeatures[ BS07 ].TheresultsofourmethodcanbecomparedwithPRIMO[ BPGK06 ],astate-of-the-artnon-lineartechnique,aswellasvariouslinearvariationaltechniques,byobserv-ingthecanonicalexamplesinFigures 5 , 6 , 7 .Suchde-formationsappearinthecomparisontablein[ BS07 ];itisevidentthatourmethodperformsequallywelltoPRIMOandisgenerallysuperiortolinearmethods,especiallywhenhandletranslationisinvolved.Toemphasizethispoint,wecomparetheresultsofourmethodwithPoissonmeshedit-ing[ YZX04 , ZRKS05 ]inFigure 5 .Notethatsincethe c TheEurographicsAssociation2007. O.Sorkine&M.Alexa/As-Rigid-As-PossibleSurfaceModeling Figure4:Largedeformationofthespikyplane(seeFigure 2 fortheoriginalmesh).Notethatthehandle(inyellow)wasonlytranslated,withoutspecifyinganyrotation. PoissonourmethodPoissonourmethodFigure5:ComparisonwithPoissonmeshediting.Theorig-inalmodelsappearinFigures 2 and 7 .Theyellowhan-dlewasonlytranslated;thisposesaproblemforrotation-propagationmethodssuchas[ YZX04 , ZRKS05 , LSLCO05 ]. handlewasonlytranslated,Poissoneditingcannotgener-ateaproperrotationeld(sincethereisnohandlerota-tiontopropagate),whichresultsindetaildistortionandlackofsmoothnessneartheconstraints.Thesametranslation-insensitivitywouldbeobservedinthemethodofLipmanetal.[ LCOGL07 ];ourtechniquehandlestranslationwellbyoptimizingforthelocalrotations,atthepriceofaglobalnon-linearoptimization.Itisworthnotingthoughthattherequirednumericalmachineryandthesetupofthelinearsys-temisalmostidenticaltothelinearvariationalmethods.Theaccompanyingvideoshowsseveralshorteditingses-sionscapturedlive.Ourunoptimizedcoderunsinterac-tively(at10-30fps)forregionsofinterest(ROI)ofupto10Kvertices,using2-3iterationsperedit.Anumberofimprovementsarepossibletospeedupconvergence:afasterpolardecompositionroutine(i.e.,onethatreusespre-viousframecomputationsratherthanstartingfromscratcheachtime)andamultiresolutiontechnique,suchastheonein[ BPGK06 ]or[ HSL06 ],toallowtheoptimizationtorunonacoarseversionofthemeshinordertoquicklypropagatethedeformationacrosstheROI.Animportantimplementationissueistheinitialguesswhichstartstheoptimization;sincetheenergyweminimizeisnon-linear,multiplelocalminimamayexist,andtheso-lutiondependsontheinitialguessinsuchcase.Itisimpor-tanttouseareasonable-qualityinitialguess(i.e.,nottoofarfromtheinitialshapeandtheintuitivelyexpectedresult)toallowquickconvergence,yetitisdesirabletocomputeitquickly.Weexperimentedwithseveralpossibilities,whichcanbeusedindifferentscenarios:Previousframe(forinteractivemanipulation):Iftheuserinteractivelymanipulatesthecontrolhandle(s),itisreason-abletousetheresultofthepreviousframeastheinitial Figure6:Twistandrotationdeformations. ModelFigureRelativeRMSerror DinoFig. 1 0.024 SpikyplaneFig. 4 left0.034 SpikyplaneFig. 4 right0.016 TwistedbarFig. 6 left0.095 ArmadilloFig. 8 (b)0.037 ArmadilloFig. 8 (c)0.013 ArmadilloFig. 8 (e)0.051 Table1:RelativeRMSerrorofedgelengthsforvariousde-formations.Whenthemodelingconstraintsdonotnecessi-tatestretching,theerrorisverylow.Thetwistexampledoesinvolvesomeslightstretchingbecausethetopofthebarisconstrainedtoremainatthesameheight,hencethehigherrelativeerrorinthiscase. guess,sincethehandlemovementand/ordeformationisex-pectedtobecontinuous.Therefore,inthiscasewesimplytakethepreviousframeandassigntheuser-denedpositionstotheconstrainedvertices.Thisapproachwasusedforalltheguresinthispaper,unlessexplicitlymentionedother-wise,andisalsodemonstratedintheaccompanyingvideo.Theuserexperienceremindsalotofinteractingwithphysi-calmaterial.NaiveLaplacianediting:ThestartingguessisobtainedbysimplelinearminimizationofkLp0�dk2undertheposi-tionalmodelingconstrains( 10 ),whered=Lparethedif-ferentialcoordinatesoftheinputmesh.Althoughthisguessproducesdistortedresultsforlargedeformations,thesubse-quentiterationsmanagetorecover,asdemonstratedinFig-ure 3 .Forsignicantlydistortedinitialguesstheconver-gencemaybeslow,however.Rotation-propagation:Ifthemanipulationofthehandlein-volvesexplicitrotation(alongwithtranslation),onecanuseanyofthetechniquesthatexplicitlypropagatethespeciedrotationtotheunconstrainedregions,suchas[ LSLCO05 , ZRKS05 , LCOGL07 ].Subsequentoptimizationofouren-ergyallowstoconsolidatetheotherwisedecoupledrotationandtranslationandimprovestheresults;convergenceistyp-icallyveryfastsincethestartingrotationalcomponentofthedeformationisalreadygood.Aninterestingpropertyofouras-rigid-as-possiblesur-facedeformationisedgelengthpreservation,totheextentallowedbythemodelingconstraints.Ifthemodelingcon-straintsdonotimposestretchingonthesurface,theopti-mizationalwaysstrivestoconvergetoastatewheretheedgelengtherrorissmall.Thisisclearlyvisibleinthedeforming c TheEurographicsAssociation2007. O.Sorkine&M.Alexa/As-Rigid-As-PossibleSurfaceModeling (a)(b)(c)(d)(e)(f)Figure7:BendingtheCactus.(a)istheoriginalmodel;yellowhandlesaretranslatedtoyieldtheresults(b-f).(d)and(e)showsideandfrontviewsofforwardbending,respectively.Notethatin(b-e)asinglevertexatthetipoftheCactusservesasthehandle,andthebendingistheresultoftranslatingthatvertex,norotationconstraintsaregiven. (a)(b)(c)(d)(e)(f)Figure8:EditingtheArmadillo.(a)and(d)showviewsoftheoriginalmodel;therestoftheimagesdisplayeditingresults,withthestaticandhandleanchorsdenotedinredandyellow,respectively. planeexample(Figure 4 ),forinstance,whichbehavessim-ilartorubber-likematerial.Table 1 summarizesroot-mean-squareedgelengtherrormeasurementsforseveraldeforma-tionspresentedinthispaper;itcanbeseenthattherelativeRMSerrorisverylow.5.ConclusionsTheimportantfeaturesofourapproachare(1)robustness,resultingfromtheminimizationprocedurethatisguaranteedtonotincreaseenergyineachstep;(2)simplicity,aseachstepoftheminimizationisconceptuallysimilartoLapla-cianmodeling;and(3)efciency,becausetheLaplacesys-temmatrixisconstantthroughouttheiterationsandhastobefactoredonlyonce.Wehavelearnedduringourexperimentsthatthiscom-binationisnotevident,i.e.,simplyupdatingtheright-handsideofadiscreteLaplacesysteminaseeminglyreasonablewaywouldfailtoconvergeinalmostallcases.Convergenceinourapproachistheresultofderivinganenergythatcan-notincreaseineachstepoftheiterations.Notethattheo-retically,thelocalminimumfoundbydecreasingtheenergymightnotbeunique,i.e.,therecouldbeaconnectedsetofminimumenergystates.However,wehavenotexperiencedthisproblemandbelievethatifitexistsatallthenonlyforparticularlyderivedexamples.Thefactthateachstepintheiterationscanbeperformedbysolvingalinearsystemwithaconstantmatrixthroughout theminimizationprocedurereallyistheresultofacarefuldesignoftheenergyfunctional.Thenumberofiterationsrequiredtogetreasonablyclosetoaminimumdependsontheconditionnumberofthe(anchored)Laplacianmatrix,whichisgenerallyproportionaltothemeshsize.Speci-cally,ifwekeeptheboundaryconditionsthesameandre-nethemesh,theconditionnumberwillgrowproportion-ally,eveniftheshapeofthemeshelementsisperfect(fordetailedanalysisandboundsontheconditionnumberoftheuniformanchoredLaplacianmatrix,see[ CCOST05 ];theuniformLaplaciancoincideswiththecotangentLaplacianfortessellationswithequilateraltriangles,andinothercasestheboundsforthecotangentLaplacianareprobablymorepessimistic).Thismeansasthemeshesarerenedstabilitydeteriorates,andtypicallymoreiterationsareneededuntilconvergence(inadditiontothefactthateachiterationbe-comesmorecostly).Thispracticalefciencyproblemcouldbeeasilyalleviatedwithmulti-resolutiontechniques.Anotherinterestingqualityofourapproachisthatittriv-iallyextendstovolumetriccells,e.g.,tetrahedra.Astherigidityismeasuredbasedontheedgesineachcell,nothingwouldhavetobechangedinthesetupoftheenergy–onewouldonlyhavetoplug-intheconnectivityofavolumet-ricgrid.So,ifpreservationofvolumeisofconcernratherthanpreservationofsurface,thenthiscouldeasilybeac-complished.Ofcourse,aswithotherrecentapproaches,theoptimizationcouldbeappliedtoacoarsevolumetricgrid c TheEurographicsAssociation2007. O.Sorkine&M.Alexa/As-Rigid-As-PossibleSurfaceModeling whichcontrolstheshapeembeddedinit,ratherthandirectlytothediscretesurfaceorvolume.Infuturework,wewishtoexperimentwithseveraldegreesoffreedomthatourmodelingframeworkoffers:changingthesizeandrelativeweightspercell,soastocon-troltheoverallandrelativelocalrigidityofthesurface.AcknowledgementWewishtothankMarioBotschandLeifKobbeltforin-sightfuldiscussionsandtheanonymousreviewersfortheirvaluablecomments.ThisworkwassupportedinpartbytheAlexandervonHumboldtFoundation.References [ACOL00] ALEXAM.,COHEN-ORD.,LEVIND.:As-rigid-as-possibleshapeinterpolation.InProceedingsofACMSIGGRAPH(2000),pp.157–164. [Ale01] ALEXAM.:Localcontrolformeshmorphing.InPro-ceedingsofSMI(2001),pp.209–215. [ATLF06] AUO.K.-C.,TAIC.-L.,LIUL.,FUH.:DualLapla-cianeditingformeshes.IEEETVCG12,3(2006),386–395. [BK04] BOTSCHM.,KOBBELTL.:Anintuitiveframeworkforreal-timefreeformmodeling.ACMTOG23,3(2004),630–634. [BPGK06] BOTSCHM.,PAULYM.,GROSSM.,KOBBELTL.:PriMo:Coupledprismsforintuitivesurfacemodeling.InPro-ceedingsofSGP(2006),pp.11–20. [BS07] BOTSCHM.,SORKINEO.:Onlinearvariationalsurfacedeformationmethods.IEEETVCG(2007).Toappear. [BSPG06] BOTSCHM.,SUMNERR.,PAULYM.,GROSSM.:Deformationtransferfordetail-preservingsurfaceediting.InProceedingsofVMV(2006),pp.357–364. [CCOST05] CHEND.,COHEN-ORD.,SORKINEO.,TOLEDOS.:Algebraicanalysisofhigh-passquantization.ACMTOG24,4(2005),1259–1282. [GSS99] GUSKOVI.,SWELDENSW.,SCHRÖDERP.:Multires-olutionsignalprocessingformeshes.InProceedingsofACMSIGGRAPH(1999),pp.325–334. [Hor87] HORNB.K.P.:Closed-formsolutionofabsoluteorien-tationusingunitquaternions.JournaloftheOpticalSocietyofAmerica4,4(1987). [HSL06] HUANGJ.,SHIX.,LIUX.,ZHOUK.,WEIL.-Y.,TENGS.,BAOH.,GUOB.,SHUMH.-Y.:Subspacegradientdomainmeshdeformation.ACMTOG25,3(2006),1126–1134. [IMH05] IGARASHIT.,MOSCOVICHT.,HUGHESJ.F.:As-rigid-as-possibleshapemanipulation.ACMTOG24,3(2005),1134–1141. [JSW05] JUT.,SCHAEFERS.,WARRENJ.:Meanvaluecoor-dinatesforclosedtriangularmeshes.ACMTOG24,3(2005),561–566. [KCVS98] KOBBELTL.,CAMPAGNAS.,VORSATZJ.,SEI-DELH.-P.:Interactivemulti-resolutionmodelingonarbitrarymeshes.InProceedingsofACMSIGGRAPH(1998),ACMPress,pp.105–114. [KS06] KRAEVOYV.,SHEFFERA.:Mean-valuegeometryen-coding.IJSM12,1(2006),29–46. [LCOGL07] LIPMANY.,COHEN-ORD.,GALR.,LEVIND.:Volumeandshapepreservationviamovingframemanipulation.ACMTOG26,1(2007). [LSCO04] LIPMANY.,SORKINEO.,COHEN-ORD.,LEVIND.,RÖSSLC.,SEIDELH.-P.:Differentialcoordinatesforinter-activemeshediting.InProceedingsofSMI(2004),pp.181–190. [LSLCO05] LIPMANY.,SORKINEO.,LEVIND.,COHEN-ORD.:Linearrotation-invariantcoordinatesformeshes.ACMTOG24,3(2005),479–487. [MDSB03] MEYERM.,DESBRUNM.,SCHRÖDERP.,BARRA.H.:Discretedifferential-geometryoperatorsfortriangulated2-manifolds.InVisualizationandMathematicsIII,HegeH.-C.,PolthierK.,(Eds.).Springer-Verlag,Heidelberg,2003,pp.35–57. [PP93] PINKALLU.,POLTHIERK.:Computingdiscreteminimalsurfacesandtheirconjugates.Experiment.Math.2,1(1993),15–36. [PTVF92] PRESSW.H.,TEUKOLSKYS.A.,VETTERLINGW.T.,FLANNERYB.P.:NumericalRecipesinC:TheArtofScienticComputing.CambridgeUniversityPress,1992. [SLCO04] SORKINEO.,LIPMANY.,COHEN-ORD.,ALEXAM.,RÖSSLC.,SEIDELH.-P.:Laplaciansurfaceediting.InProceedingsofSGP(2004),pp.179–188. [SMW06] SCHAEFERS.,MCPHAILT.,WARRENJ.:Imagede-formationusingmovingleastsquares.ACMTOG25,3(2006),533–540. [Sor06] SORKINEO.:Differentialrepresentationsformeshpro-cessing.ComputerGraphicsForum25,4(2006),789–807. [Tol03] TOLEDOS.:TAUCS:ALibraryofSparseLinearSolvers,version2.2.Tel-AvivUniversity,Availableonlineat http://www.tau.ac.il/~stoledo/taucs/ ,Sept.2003. [TPBF87] TERZOPOULOSD.,PLATTJ.,BARRA.,FLEISCHERK.:Elasticallydeformablemodels.InProceedingsofACMSIG-GRAPH(1987),pp.205–214. [WBH07] WARDETZKYM.,BERGOUM.,HARMOND.,ZORIND.,GRINSPUNE.:Discretequadraticcurvatureenergies.CAGD(2007).Toappear. [XZWB05] XUD.,ZHANGH.,WANGQ.,BAOH.:Poissonshapeinterpolation.InProceedingsofSPM(2005),pp.267–274. [YZX04] YUY.,ZHOUK.,XUD.,SHIX.,BAOH.,GUOB.,SHUMH.-Y.:MesheditingwithPoisson-basedgradienteldmanipulation.ACMTOG23,3(2004),644–651. [ZRKS05] ZAYERR.,RÖSSLC.,KARNIZ.,SEIDELH.-P.:Harmonicguidanceforsurfacedeformation.InComputerGraphicsForum(ProceedingsofEurographics)(2005),pp.601–609. [ZSS97] ZORIND.,SCHRÖDERP.,SWELDENSW.:Interac-tivemultiresolutionmeshediting.InProceedingsofACMSIG-GRAPH(1997),pp.259–268. c TheEurographicsAssociation2007.

Shom More....
By: natalia-silvester
Views: 71
Type: Public

Download Section

Please download the presentation after appearing the download area.


Download Pdf - The PPT/PDF document "To appear at the Eurographics Symposium ..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

Try DocSlides online tool for compressing your PDF Files Try Now

Related Documents