/
Poisson-BasedContinuousSurfaceGenerationforGoal-BasedYonghaoYueColumbi Poisson-BasedContinuousSurfaceGenerationforGoal-BasedYonghaoYueColumbi

Poisson-BasedContinuousSurfaceGenerationforGoal-BasedYonghaoYueColumbi - PDF document

olivia-moreira
olivia-moreira . @olivia-moreira
Follow
362 views
Uploaded On 2016-03-05

Poisson-BasedContinuousSurfaceGenerationforGoal-BasedYonghaoYueColumbi - PPT Presentation

YYueetal Fig1ThefabricatedobjectrightanditscausticsleftonthescreenPleaseseeFigure7fortheshapeoftherefractivesurfaceoftheobject Light sourceNearlyparallel light eg sunlight projector Trans ID: 243070

Y.Yueetal. Fig.1.Thefabricatedobject(right)anditscaustics(left)onthescreen.PleaseseeFigure7fortheshapeoftherefractivesurfaceoftheobject. Light sourceNearlyparallel light e.g. sunlight projector Trans

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Poisson-BasedContinuousSurfaceGeneration..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Poisson-BasedContinuousSurfaceGenerationforGoal-BasedYonghaoYueColumbiaUniversityKeiIwasakiWakayamaUniversityandUEIResearchBing-YuChenNationalTaiwanUniversityandUEIResearchYoshinoriDobashiHokkaidoUniversityandUEIResearchTomoyukiNishitaUEIResearchandHiroshimaShudoUniversityWepresentatechniqueforcomputingtheshapeofatransparentobjectthatcangenerateuser-deÞnedcausticpatterns.Thesurfaceoftheobjectgeneratedusingourmethodissmooth.Thankstothisproperty,theresult- Y.Yueetal. Fig.1.Thefabricatedobject(right)anditscaustics(left)onthescreen.PleaseseeFigure7fortheshapeoftherefractivesurfaceoftheobject. Light sourceNearlyparallel light e.g. sunlight, projector Transparent objectScreenCaustic pattern Incident surface: plane Refraction surface Screen: plane Fig.2.Anillustrationoftheproposeddisplaysystem.2.PREVIOUSAPPROACHESTheapproachestakeninthepreviousmethods[Finckhetal.2010;Papasetal.2011;Yueetal.2012]canbeclassiÞedintothefol-lowingtwotypes.TheÞrstapproach,takenbyFinckhetal.[2010],randomlyperturbstherefractivesurfacetoÞndthesolution.Thesecondapproach,takenbyPapasetal.[2011]andYueetal.[2012],Þrstdeterminestherelationshipbetweenthelightontheincidentsurfaceandthatonthescreen,andthencomputestheshapeoftherefractivesurface.IntheÞrstapproach,thesolutionspaceiscomplex,andtherecanbemanysolutionsthatareoptimallocally.Papasetal.[2011]pointedoutthattheresultgeneratedusingthisapproachcanconvergetoasolutionthatdoesnotspanthefullcon-trastrangeofacomplextargetimage(criterion(i)inSection1).Inthesecondapproach,thekeyelementisthewayinwhichtherelationshipbetweenthelightontheincidentsurfaceandthatonthescreenisfound.Withpreviousmethodsonlyadiscreterelation-shipcouldbefound.Inthosepreviousmethods,theincidentsur-face(ortherefractivesurface)andthescreenaresubdividedintosetsofsmallregions,andtherelationshipsbetweenthesesmallre-gionsareestablished.Papasetal.Õsmethod[2011]subdividestheincidentsurfaceintoagridandthecausticsintoasetofGaussiankernels,andusessimulatedannealingtoÞndtherelationship.InYueetal.Õsmethod[2012],theobjectcanberearrangedusingasetofdiscretesticks.Inthesemethods[Papasetal.2011;Yueetal.2012],thelightincidentonneighboringregionsgenerallyarrivesatdistantregionsonthescreen.Duetothisdiscontinuity,thefollowingproblemsoc- Transparent objectScreen xyzCoordinate system p(x,y) ’ Fig.3.Anillustrationofthecomputationoftherelationship.cur.First,eachsmallregionusuallyneedstobeofacertainsize,whichrestrictstheresolutionofthecausticpattern(criterion(ii)inSection1).Second,thedynamicrangeofthecausticsissomewhatrestricted(criterion(iii)inSection1).Thisisbecausetheinten-sityofthecausticsisbasicallydeterminedbythenumberofover-lappingregionsonthescreen,andsinceeachsmallregionontheincidentsurfaceisofasimilarsize,theintensityofthecausticsbe-comesdiscrete.Furthermore,therangeoverwhichthecausticsareinfocusisshort(criterion(iv)inSection1),andiftheobjectisplacedoutoffocus,theresultingcausticpatternwouldbeasetofdiscretespots(criterion(v)inSection1).Ourgoalistoeliminatediscretizationoftheresultingimageandtoenhancethestabilityoftheprojectedimagetoperturbationsinthephysicaldisplaysetting.Inthisarticle,weproposeanewmethodforcomputingtheshapeoftheobject.OurmethodcanbeclassiÞedasthesecondapproachdescribedpreviously.Thedistinctaspectofourmethodisthatwecomputeacontinuousrelationship.Owingtothisproperty,there-fractivesurfacebecomescontinuous,andthedistributionofthelightleavingtherefractivesurfaceisalsocontinuous.Theprob-lemsdescribedearliercanberesolvedasaresultofthis.3.OURMETHODOurmethodconsistsoftwosteps.IntheÞrststep,wecomputetherelationshipbetweenthelightreachingtheincidentsurfaceandthatreachingthescreen.Inthesecondstep,wecomputetheshapeoftherefractivesurfacefromtherelationship.3.1ComputingtheRelationshipAsshowninFigure3,the-axisisalignedwiththedirectionoftheincidentparallellight(thelightiscomingfromtoward),andtheincidentsurfaceisaplaneperpendiculartothe-axis.PointsontheincidentsurfacecanberepresentedusingAsthelightisperpendiculartotheincidentsurface,itenterstheobjectwithoutrefractionandreachestherefractivesurface.Thecoordinateofanypointontherefractivesurfacecanberepresentedasasingle-valuedfunctionof.Thelightrefractsattherefractivesurfaceandthenreachesthescreen.Todistinguishthecoordinatesonthescreenfromthoseontheincidentsurface,wetodescribethecoordinatesonthescreen.Forsimplicity,weusex,yu,vanddropthecoordinatetodescribethepointsontheincidentsurfaceandthescreen.Thelightpathcanbedescribedbytherelationshipbetweenax,yontheincidentsurfaceandapointu,vonthescreen.Inourmethod,weconsiderthecasewhenthisrelationshipisone-to-one,andrepresentthecausticsbychangingthedensityofthelightreachingthescreen.Thus,weneedtoÞndfromwhichregionsoftheincidentsurfaceweneedtogatherlightinordertoformtheintensitydistributionofthedesiredcausticpattern.ThisproblemcanbeformulatedastheproblemofÞndingamappingu,vx,ysatisfyingthefollowingtwoconditions.ACMTransactionsonGraphics,Vol.31,No.3,Article31,Publicationdate:May2014. Poisson-BasedContinuousSurfaceGenerationforGoal-BasedCaustics (a)(b)(c)Fig.4.(a)Thedifference(redandblueregionsindicatepositiveandnegativeportions);(b)pressureÞeld;(c)vectorÞeldTheÞrstconditionisthatthemappingiscontinuousovertheentiredomain.Ifthismappingiscontinuous,wecanobtainacon-tinuousrefractivesurface.Thesecondconditionisthatthismap-pingpreservesthelightenergy.ImaginethelightbeamshowninFigure3.IfthelightincidentonaninÞnitesimalregionx,yontheincidentsurfacehasintensityx,y(letusforsimplicity),andtheintensityofthislightonaninÞnitesi-malregionaroundpointu,vonthescreenisu,v(letusforsimplicity),then.TheaimofourmethodistoÞndthismapping.SinceitisdifÞculttoanalyticallycomputethismapping,weuseageometricßowapproach,asdescribednext.Themappingfromu,vx,ycanberegardedasparam-eterizationof.Thatis,westartfromaninitial,andthenmaintainthecontinu-ityoftheparameterizationwhilemodifyingitsothatitincreasinglysatisÞestheconservationoflightenergy.Undertheparameterizationof,theratioisequiv-alenttothedeterminantoftheJacobiangivenby uy ux vy .Iftheparameterization,orthemapping,satisÞesatanarbitrarypoint,whereistheintensityofthecaus-ticsatthecorrespondingpointonthescreen,thenthatmappingisthesolutiontotheproblem.Duringcomputation,isnotalwayssatisÞed,andthereisadifference.Letthisdifferencex,y(again,weusesimplicity)beWereducethisdifference(seeFigure4(a))byupdatingthepa-rameterizationtocontinuouslymodifythepointx,yontheincidentsurface,whileÞxingthecorrespondingpointu,vthescreen.Althoughwecouldconsiderthegradient  )andmodifythepointsas isavirtualtimetorepresentthecomputationprocess),isusuallynotcontinuousandmaytakeaninÞnitevalue.ThusitisdifÞculttostablyperformthecomputationusingInstead,inspiredbyaconceptincomputationalßuiddynamics,wemodifytheparameterizationasfollows(ourmethodisrelatedtoonethatgeneratesarea-preservingparameterization[Zouetal.2011]).First,thereareregionswherethedifferenceispositiveornegative.Analogoustothoseincomputationalßuiddynamics,weregardthepositiveandnegativeregionsassourceandsink,respec-tively.Torelaxthesourceandsink,wesolvePoissonÕsequationinordertocomputethepressureÞeld(seeFigure4(b)),andup-datethepointsx,yalongthegradientof.Thatis,welet Unlike(seeFigure4(c))isamuchsmoothervectorÞeld,thuswecanstablyupdatethepointsx,y.Inourmethod,werepeatedlyupdatetheparameterizationbycomputingthedifferenceusingEq.(2),solvingthePoissonÕsequation(3),andupdatingaccordingtoEq.(4).Aphysicalinterpretationoftheprecedingtechniqueisasfol-lows.Ifwewantaregiononthescreentobebrighter/darker,thecorrespondinglightbeamneedstocollectlightfromawider/narrowerregion(i.e.,shouldbelarger/smaller).Thisim-pliesthatwehavetolocallyÒexpandÓorÔshrinkÓ.BysolvingEq.(3)andcomputing,wegetaÒcompressibleÓßowÞeldthatrealizesthisexpansionorshrinkage.Byiterativelyupdatingthepa-rameterization,thecontrastoftheresultingcausticsincreasesandapproachesthecontrastoftheinputpattern.Inourimplementation,weuseatriangularmeshtorepresenttheparameterization.Tocomputethelightenergy,insteadofcomput-ingtheJacobian,wecomputeamediandualmesh(wherewehaveafaceforeachvertexinthetriangularmesh,eachofwhichisgener-atedbyconnectingthemidpointsoftheedgesandthecentroidsofthetrianglesadjacenttothecorrespondingvertexinthetriangularmesh).Wethenintegratetheintensitiesineachfaceinthemediandualmeshtocomputethelightenergy.PoissonÕsequations(3)and(7)aresolvedusingaÞrst-orderGalerkinÞnite-elementmethod.Toupdatetheverticesofthetriangularmesh,wediscretizeEq.(4)usingtheequation,where-thcomputationstep,andisdeterminedsothattherewillbenoßippedtriangles.WeobtainbyÞrstregardingafunctionof.Next,foreachtriangle,wecomputethemaximumthatthe(-th)trianglecantakesuchthattheareaassignedtoitremainsnonnegative.Then,wecomputetheminimumvalue=min).Finally,weset3.2ComputingtheRefractiveSurfaceAswehaveassumedtherefractivesurfacetobeasingle-valuedfunction,itscoordinatecanberepresentedasx,ynormalvectortotherefractivesurfacecanberepresentedby x isnormalizedsothatitscoordinateis.Consideringonlythecomponents,wehaveisavectorcomposedoftheponentsof.TakingthedivergenceofbothsidesofEq.(6),weobtainanotherPoissonÕsequation(similartoYuetal.[2004])Thus,ifthenormalvectoratanarbitrarypointontherefractivesurfaceisknown,wecanuseEq.(7)tocomputetheshapeoftherefractivesurface.Tocomputethenormalvectors,weuseSnellÕslawbasedontheparameterizationobtainedfromSection3.1,and ACMTransactionsonGraphics,Vol.31,No.3,Article31,Publicationdate:May2014.