/
The Cheerios effect Dominic Vella and L The Cheerios effect Dominic Vella and L

The Cheerios effect Dominic Vella and L - PDF document

olivia-moreira
olivia-moreira . @olivia-moreira
Follow
402 views
Uploaded On 2015-05-15

The Cheerios effect Dominic Vella and L - PPT Presentation

Mahadevan a Division of Engineering and Applied Sciences Harvard University Pierce Hall 29 Oxford Street Cambridge Massachusetts 02138 Received 22 November 2004 accepted 25 February 2005 Objects that 64258oat at the interface between a liquid a ID: 66529

Mahadevan Division

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "The Cheerios effect Dominic Vella and L" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

The‘‘Cheerioseffect’’DominicVellaandL.MahadevanDivisionofEngineeringandAppliedSciences,HarvardUniversity,PierceHall,29OxfordStreet,Cambridge,Massachusetts02138Received22November2004;accepted25February2005Objectsthatßoatattheinterfacebetweenaliquidandagasinteractbecauseofinterfacialdeformationandtheeffectofgravity.Wehighlightthecrucialroleofbuoyancyinthisinteraction,which,forsmallparticles,prevailsoverthecapillarysuctionthatoftenisassumedtobethe duetosurfacetensionwhichisproportionaltothecurvatureoftheinterfaceisequaltothehydrostaticpressurediffer-encecausedbythedeformationoftheinterfaceseeRef.4,p.65forathoroughdiscussion.Forsmallinterfacialdeßec-tions,thisbalancemaybewrittenas: isthesurfacetensioncoefÞcientoftheliquidÐgasisthedensityoftheliquid,andistheaccelera-tionduetogravity.Equationistobesolvedwiththeboundaryconditionsthatthecontactangles,,aregivenateachoftheplatesandthedeßectionoftheinterfaceshoulddecayfarawayfromtheplates.Intheregionslabeled1,2,3inFig.4,thesolutionofEq.,where isthecapillarylength,whichdeÞnesthelengthscaleoverwhichinterac-tionsoccur.Theconditions)give,which,combinedwiththecontactanglecondi-,givetheinterfaceshapeoutsidetheplatesas:Thecontactangleconditions,,givetheinterfaceshapebetweenthetwoplates: Lccot1coshdx Lccot2coshx/Lc BecauseoftheinterfacialdeformationgivenbyEqs.,theplatesarenowsubjectedtoacapillarypressurethatresultsinahorizontalforceontheplates.Thereisnoresult-anthorizontalsurfacetensionforcebecauseitscomponentsoneithersideofaplatecancelexactly.Thisforcemayacteithertobringthemtogetherortopullthemapartdependingonthecontactangles.Thevalueofthehorizontalforceperunitlength,,canbecalculatedbyintegratingthehydrostaticpressurealongeachofthewettedsidesofoneoftheplatessaytheoneontheleftinFig.4andtakingthedifferenceasfollows: sothatwehave: 2cot1coshd/Lccot22 wherethesignconventionissuchthat0correspondstoattractionbetweentheplates.Typicallythisforceiseitherattractiveforallplateseparationsorrepulsiveatlargesepa-rationsandattractiveatshortseparationswithanunstableequilibriumatanintermediatedistance.Anexampleofaforce-displacementcurveinthelattercaseisshowninFig.5.canbeusedtoshowthatrepulsionispossibleonlyifcot0,thatis,ifoneplateiswettingandtheothernonwetting.Wenotethatifcot,thefact0asimpliesthatrepulsioncanoccuronlyifhasamaximumvaluesomewhere,becauseas.Asimplecalculationshowsthattheonlyturningpointofthefunction(cotcursat,wherecosh,whichonlyhasarealsolutionifcot0.Whencot,theshortrangeattractiondoesnotexist,andinsteadthereisrepulsionatdisplacements.However,theresultthatrepulsioncanonlyoccurwhencot0stillThisresultshowsthatverticalplatesataliquidÐgasinter-facewillattractiftheyhavelikemenisciandotherwisere-pel,aswesawinSec.IIwithßoatingobjects.However,thephysicalmechanismhereissubtlydifferent.Wecannolongerargueintermsofoneplatefollowingthemeniscusimposedbytheotherbecausetheseplatesdonotßoat,mean-ingthatthereisnoanalogueoftheconditionofverticalforcebalanceinthiscase.Instead,wemustconsidertheeffectsofhydrostaticpressurewhichresultfromthedeformationoftheinterface,asexplainedinRef.8followingearlierargumentsbyKelvinandTait.WegivehereanabbreviatedversionoftheirargumentintermsoftheconÞgurationsshowninFigs.and6inwhichplatesoflikewettabilityareatthe Fig.4.ThegeometryoftwoinÞniteplatesinasemi-inÞniteßuid.Theplaneshavecontactanglesandareatahorizontaldistance Fig.5.Atypicalforce-separationcurveforawettingandnonwettingplateandaliquidÐgasinterface.Here,/3and/4,andweobserverepulsionatlargeseparationsandattractionatshortrange.Am.J.Phys.,Vol.73,No.9,September2005D.VellaandL.Mahadevan ancyforceduetothedisplacedbulkßuid.TheÞrstoftheseforcesiseasilyseentobegivenby.Thesecondisgivenbytheweightofthewaterthatwouldoccupytheareabetweenthewettedregionofthesphereandtheundisturbedinterface,whichisshownasthehatchedareainFig.7.TounderstandphysicallythisgeneralizationofArchimedesÕprinciple,noticethattheliquidhasnoknowl-edgeofthegeometryoftheobjectthatisattheinterfaceoutsideofitswettedperimeter.TheliquidmustthereforeproduceanupwardforceequaltowhatitwouldprovidetoanobjectÞllingtheentirehatchedregion,whichweknowfromtheusualArchimedesresultistheweightofthedis-placedliquidthatwouldÞllthisvolume.Forelegantrigor-ousderivationsofthisresult,seeRefs.10or11.Thisvol-umecanbecalculatedbysplittingitintoacircularcylinderofradiusandheight,andasphericalcapof)andbase.Theseconsiderationsgivethebuoyancyforce Rsin c2 3cos c1 Thebalanceoftheverticalforcesmaynowbewrittenex-plicitlyas: 32Rsin czc  1zc2gR3zc Rsin c2 3cos c1 Ifwesubstituteandkeeponlythosetermslinearin,weobtainanexpressionforcuratetoÞrstorderintheBondnumber 31 2cos1 Asaconsistencycheck,observethat0when/2and1/2,whichweexpect,becauseinthiscasetheArchimedesbuoyancyaloneisenoughtobal-ancetheweightofthespherewithoutanyinterfacialdefor-containstwodimensionlessparameters,.TheBondnumber,,isthemostimportantdimensionlessparameterinthissystem.Itgivesameasureoftherelativeimportanceoftheeffectsofgravityandsurfacetension:largecorrespondstolargeparticlesorsmallsur-facetensioncoefÞcientÑinbothcasesthesurfacetensionisinconsequential.TheexpressionfortheslopeoftheinterfaceinthevicinityofthesphericalparticlegiveninEq.validforcorrespondingtoaradiusof1mmorsmallerforasphereatanairÐwaterinterface,inwhichcasesurfacetensionisveryimportant.Theotherdimensionlessparameter,,canbethoughtofasaantweightoftheparticleoncetheArchimedesforcehasbeensubtracted.Thisinterpretationarisesnaturallyfromtheverticalforcebalancecondition,becausethere-sultantweightoftheobjectinthelinearizedapproximationis2TocalculatetheinteractionenergyusingtheNicolsonap-proximation,wealsomustcalculatetheinterfacialdisplace-mentcausedbyanisolatedßoatingsphere,whichisdeter-minedbythehydrostaticbalance,thecoordinateinvariantstatementofEq..Withtheassump-tionofcylindricalsymmetry,thisgeneralizationofEq. rd r drh withtheboundaryconditionsthat0as.EquationhasasolutionintermsofmodiÞedBesselfunctionsoftheÞrstkindandoforder wherewehaveusedtheasymptoticresultsee,forexample,Ref.121tosimplifytheprefactor.B.TwointeractingparticlesHavingcalculatedtheeffectiveweightofasphereatadeformedinterfaceas2asdeÞnedinEq.aswellastheinterfacialdeformationcausedbythepres-enceofasinglesphere,wearenowinapositiontocalculatetheenergyofinteractionbetweentwospheres.Toleadingorderin,thisenergyistheproductoftheresultantweightofonesphereanditsverticaldisplacementduetothepres-enceofanotherspherewithitscenterahorizontaldistanceaway.Wemaythereforewritetheenergy,),as: andfromEq.,theforceofinteractionisgivenby,or: Lc.13 Problem1.Repeatthepreviouscalculationfortwocylin-dersofinÞnitelengthlyinghorizontallyandparalleltooneanotherataninterface.FirstconsidertheinterfacialproÞlecausedbyanisolatedcylinderandshowthatitisgivenby1.Nextusethelinearizedverticalforcebalanceandthegeometricalrelationshipshowthat: 2D11 sin2 Theresultantweightoftheobjectcanbefoundfromtheforcebalancetobe.WiththiseffectiveweightandtheinterfacialproÞleinEq.,calculatetheenergyofperunitlength),betweentwocylinderswithcenterÐcenterseparation.Showthat dl 2B2C2expl deÞnedasinEq.Am.J.Phys.,Vol.73,No.9,September2005D.VellaandL.Mahadevan