/
Blocky models via the LL hybrid norm Jon Claerbout ABS Blocky models via the LL hybrid norm Jon Claerbout ABS

Blocky models via the LL hybrid norm Jon Claerbout ABS - PDF document

pamella-moone
pamella-moone . @pamella-moone
Follow
371 views
Uploaded On 2015-05-06

Blocky models via the LL hybrid norm Jon Claerbout ABS - PPT Presentation

It uses an L 2 hybrid norm characterized by a residual of transition between 1 and 2 for data 64257tting and another for model styling Both the steepest descent and conjugate direction methods are included The 1D blind decon volution problem is form ID: 62210

uses

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Blocky models via the LL hybrid norm Jon..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Claerbout2Blockymodels:L1/L2hybridnorm Iwas rstattractedtostrictL1byitspotentialforblockymodels.ButthenIrealizedforeachnonspike(zero)onthetimeaxis,theorysaysIwouldneeda\basisequation".Thatimpliesanimmensenumberofiterations,soitisunacceptableinimagingapplications.Withthehybridsolvers,insteadofexactzeroswehavealargeregiondrivendownbytheL2normandasmallL1regionwherelargespikesarewelcomed.MODELDERIVATIVESHereistheusualde nitionofresidualrioftheoreticaldataPjFi;jmjfromobserveddatadiri=(XjFi;jmj)�diorr=Fm�d:(1)LetC()beaconvexfunction(C000)ofascalar.Thepenaltyfunction(ornormofresidualsisexpressedbyN(m)=XiC(ri)(2)Wedenoteacolumnvectorgwithcomponentsgibyg=vec(gi).WesoonrequirethederivativeofC(r)ateachresidualri:g=vec@C(ri) @ri(3)Weoftenupdatemodelsinthedirectionofthegradientofthenormoftheresidual.m=@N @mk=Xi@C(ri) @ri@ri @mk=Xig(ri)Fi;k=F0g(4)De neamodelupdatedirectionbym=F0g.Sincer=Fm�d,weseetheresidualupdatedirectionwillber=Fm.To ndthedistance tomoveinthosedirectionsm m+ m (5) r r+ r (6) wechoosethescalar tominimizeN( )=XiC(ri+ ri)(7)Thesuminequation(7)isasumof\dishes",shapesbetweenL2parabolasandL1V's.Thei-thdishiscenteredon =�ri=ri.Itissteepandnarrowifriislarge, SEP{139 Claerbout4Blockymodels:L1/L2hybridnorm PLANESEARCHThemostuniversallyusedmethodofsolvingimmenselinearregressionssuchasimag-ingproblemsistheConjugateGradient(CG)method.Ithastheremarkablepropertythatinthepresenceofexactarithmetic,theexactsolutionisfoundina nitenumberofiterations.AsimplermethodwiththesamepropertyistheConjugateDirectionmethod.Itisdebatablewhichhasthebetternumericalroundo properties,sowegenerallyusetheConjugateDirectionmethodasitissimplertocomprehend.Itsaysnottomovealongthegradientdirectionline,butsomewhereintheplaneofthegradientandthepreviousstep.Thebestmoveinthatplanerequiresusto ndtwoscalars,one toscalethegradient,theother toscalethepreviousstep.ThatisallforL2optimization.Weproceedhereinthesamewaywithothernormsandhopeforthebest.Sohereweare,embeddedinagiantmultivariateregressionwherewehaveabivariateregression(twounknowns).Fromthemultivarateregressionwearegiventhreevectorsindataspace.ri,giandsi.Youwillrecognizetheseasthecurrentresidual,thegradient(ri),andthepreviousstep.(Thegradientandpreviousstepappearingherehavepreviouslybeentransformedtodataspace(theconjugatespace)bytheoperatorF.)Ournextresidualwillbeaperturbationoftheoldone.ri=ri+ gi+ si(20)Weseektominimizebyvariationof( ; )N( ; )=XiC(ri+ gi+ si)(21)Letthecoecients(Ci;C0i;C00i)refertoaTaylorexpansionofC(r)aboutri.N( ; )=XiCi+( gi+ si)C0i+( gi+ si)2C00i=2(22)Wehavetwounknowns,( ; )inaquadraticform.Wesettozerothe derivativeofthequadraticform,likewisethe derivativegetting00=XiC0igisi+C00i@ @ @ @ ( gi+ si)( gi+ si)(23)resultingina22setofequationstosolvefor and .(XiC00igisi(gisi)) =�XiC0igisi(24)Thesolutionofany22setofsimultaneousequationsisgenerallytrivial.Theonlydicultiesarisewhenthedeterminantvanisheswhichhereiseasy(luckily)to SEP{139 Claerbout6Blockymodels:L1/L2hybridnorm scalars(independentlyforeachz).loopoveralltimepointsfm=d=(1+2)#Thesearescalars!loopovernon-lineariterationsfrd=m�drm=mGetderivativesofhybridnormB0(rd)andB00(rd)fordatagoal.GetderivativesofhybridnormC0(rm)andC00(rm)formodelgoal.#Planto nd toupdatem=m+ #TaylorseriesfordatapenaltyN(rd)=B+B0 +B00 2=2#TaylorseriesformodelpenaltyN(rm)=C+C0 +C00 2=2#0=@ @ (N(rd)+N(rm)) =�(B0+C0)=(B00+C00)m=m+ gendofloopovernon-lineariterationsgendofloopoveralltimepointsTohelpusunderstandthechoiceofparametersRd,Rm,and,WeexaminethetheoreticalrelationbetweenmanddimpliedbytheabovecodeasafunctionofandRmatRd!1,inotherwords,whenthedatahasnormalbehaviorandwearemostlyinterestedintheroleoftheregularizationdrawingweaksignalsdowntowardszero.Thedata ttingpenaltyisB=(m�d)2=2anditsderivativeB0=m�d.Thederivativeofthemodelpenalty(fromequation(15))isC0=m=p 1+m2=R2m.Settingthesumofthederivativestozerowehave0=B0+C0=m�d+m p 1+m2=R2m(27)Thissaysmismostlyalittlesmallerthand,butitgetsmoreinterestingnear(m;d)0.Theretheslopem=d=1=(1+)whichsaysan=4willdampthesignal(wheresmall)byafactorof5.Movingawayfromm=0weseethedampingpowerofdiminishesuniformlyasmexceedsRm.UNKNOWNSHOTWAVEFORMAone-dimensionalseismogramd(t)isunknownre ectivityc(t)convolvedwithun-knownsourcewaveforms(t).ThenumberofdatapointsNDNCislessthanthenumberofunknownsNC+NS.Clearlyweneeda"smart"regularization.Letusseehowthisproblemcanbesetupsore ectivityc(t)comesoutwithsparsespikessotheintegralofc(t)isblocky.Thisisanonlinearproblembecausetheconvolutionoftheunknownsismadeoftheirproduct.Nonlinearproblemselicitwell-warrantedfearofmultiplesolutionsleadingtousgettingstuckinthewrongone.Thekeytoavoidingthispitfallis SEP{139 Claerbout8Blockymodels:L1/L2hybridnorm Weneedderivativesofeachnormateachresidual.WebasetheseontheconvexfunctionC(r)oftheHybridnorm.LetuscalltheseAiforthedata tting,andBiforthemodelstyling.Ai=C(Rd;ri) (33) Bi=C(Rm;ci) (34) (Actually,wedon'tneedAi(becauseforLeastSquares,A0i=riandA00i=1),butIincludeithereincasewewishtodealwithnoiseburstsinthedata.)Asearlier,expandingthenormsinTaylorseries,equation(32)becomes0=XiA0iri+ XiA00ir2i+ XiB0ici+ XiB00ic2i!(35)whichgivesthe weneedtoupdatethemodelcandtheresidualrd. =�PiA0iri+PiB0ici PiA00ir2i+PiB00ic2i(36)Thisisthesteepestdescentmethod.Fortheconjugatedirectionsmethodthereisa22equationlikeequation(24).Non-linearsolverThenon-linearapproachisalittlemorecomplicatedbutitexplicitlydealswiththeinteractionbetweensandcsoitconvergesfaster.Werepresenteverythingasa\known"partplusaperturbationpartwhichwewill ndandaddintotheknownpart.ThisismosteasilyexpressedintheFourierdomain.0(S+S)(C+C)�D(37)LinearizebydroppingSC.0SC+CS+(CS�D)(38)Letuschangetothetimedomainwithamatrixnotation.PuttheunknownsCandSinvectors~cand~s.PuttheknownsCandSinconvolutionmatricesCandS.ExpressCS�Dasacolumnvectord.Itstimedomaincoecientsared0=c0s0�d0andd1=c0s1+c1s0�d1,etc.Thedata ttingregressionisnow0S~c+C~s+d(39)Thisregressionisexpressedmoreexplicitlybelow. SEP{139 Claerbout10Blockymodels:L1/L2hybridnorm Thatwassteepestdescent.Theextensiontoconjugatedirectionisstraightforward.Aswithallnonlinearproblemsthereisthedangerofbizarrebehaviorandmultipleminima.Toavoidfrustration,whilelearningyoushouldspendabouthalfofyoure ortdirectedtoward ndingagoodstartingsolution.Thisnormallyamountstode ningandsolvingoneortwolinearproblems.Inthisapplicationwemightgetourstartingsolutionfors(t)andc(t)fromconventionaldeconvolutionanalysis,orwemightgetitfromtheblockcyclicsolver. SEP{139