/
Cauchys criterion for convergence Cauchys criterion for convergence

Cauchys criterion for convergence - PDF document

pamella-moone
pamella-moone . @pamella-moone
Follow
401 views
Uploaded On 2015-01-19

Cauchys criterion for convergence - PPT Presentation

The de57356nition of convergence The sequence converges to when this holds for any 57359 0 there exists such that for all Informally this says that as gets larger and larger the numbers get closer and closer to Butthe de57356nition is ID: 33175

The de57356nition convergence

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Cauchys criterion for convergence" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Cauchy'scriterionforconvergenceThede nitionofconvergenceThesequenceconvergestowhenthisholds:forany0thereexistssuchthatforallInformally,thissaysthatasgetslargerandlargerthenumbersgetcloserandcloserto.Butthede nitionissomethingyoucanworkwithprecisely.Ine ect,thede nitionsaysthatinordertoshowthataconvergestoyouhavetoexplainhowtogetfrom.Itisimportanttorealizethatyoudonothave ndthebestpossiblevaluefor-justanythingthatworkswillenableyoutoverifyconvergence.ConvergentsubsequencesAnyboundedsequenceofrealnumbershasaconvergingsubsequence.Letthesequencebe.Wecanassumeallofonesign,becausewecanchooseanin nitesubseueqnceofonesign.Saynon-negative.Becauseofboundedness,wecanassumeallforsome.Anin nitenumberofthemusthavea rstdigitincommon;throwawaytherest.Letbethe rstinwhatisleft.Amongthoseleft,anin nitenumbermusthavethesameseconddigit.Letbethe rstamongthese.Throwawaytherest.Etc.Thenafterthe rstallthewillhavethesame rstdigits.Wecanconstructaparticularrealnumbertobethatnumberwhose rstdigitsagreewiththoseof.Thedi erencebetweenandwillbeatmost10.ThismakesiteasytoverifytheconvegencetoWhatthismeansforseriesAseriesisaformalexpressionanditcorrespondstothesequenceofpartialsumsTheseriesissaidtoconvergeifthesequenceofpartialsumsconverges.Ifaseriesconverges,thenitsindividualtermsmusthavelimit,butthisisnotasucientconditionforconvergence.Applyingthede nitionliterally,weseethattheseriesconvergestothenumberifforanythereexistssuchthatwhenever�nK.We'llseehowthisworksinpracticeinthenextsection.Thegeometricseries1,andconsidertheseriesAlgebratellsusthatthe-thpartialsumis=1+ Intuitively,thisshouldconvergeto)asgetslarger.Let'strytoverifythede nitioninthis Mathematics220-Cauchy'scriterion2 Wehaveexplicitly 1�x�1�xn 1�x=xn Sonowwehavetoverifythatforany0thereexistssuchthat .Butwecanpracticallytakeasgiveninthiscoursethatthisisso,orinotherwordsthatifthenthesequenceconvergesto0.Explicitly,wecansolve=(1;K ln(,andhenceSointhiscasewecanusethede nitiontoprovedirectlythatthegeometricserieswith1convergesto).Itisraretoknowexactlywhjataseriesconvergesto.Thegeometricseriesplaysacrucialroleinthesubjectforthisandotherreasons.Cauchy'scriterionThede nitionofconvergencereferstothenumbertowhichthesequenceconverges.Butitisraretoknowexplicitlywhataseriesconvergesto.Infact,thewholepointofseriesisoftenthattheyconvergetosomethinginterestingwhichyoumightnotknowhowtodescribeotherwise.Forexample,itisessentiallythede nitionofthatitisthenumbertowhichtheseries2+13!+converges.Thereforewhatisneededisacriterionforconvergencewhichisinternaltothesequence(asopposedtoexternal).Cauchy'scriterion.Thesequenceconvergestosomethingifandonlyifthisholds:foreverytheresuchthatwheneverThisisnecessaryandsucient.Toproveoneimplication:Supposethesequenceconverges,sayto.Thenbyde nition,foreverywecan ndsuchthatwhenever.Butthenifwearegiven0wecan ndsuchthat=2for,andthen=forToprovetheother:Supposethecriterionholds.Weknowthatwehaveasubsequencewhichconvergestosome.Iclaimthatinfactthewholesequenceconvergestothissame.Weknowthatforanywecan ndsuchthatfor.Wealsoknowthatifwearegiven0wecan ndsuchthatforNowwewanttoprovethatforany0wecan ndsuchthatforFirstchoosesuchthat=2for.Second,choosesuchthat= Mathematics220-Cauchy'scriterion3 for.Suppose.Choosesomewithbothand.Thenjj=ConvergencebycomparisonTheorem.Iftheseriesofnon-negativetermsconvergesandforeach,thentheseriesconvergesalso.Supposewearegiven0.ByCauchy'scriterion,weknowthatwecan ndsuchthatfor.ButthenforthesameBecauseofthisLemma.(Cauchy'sinequality)WehavejjProvethisbyinduction,startingwith2.Wehavealreadyusedthisinequalitywithtwotermsinaprevioussection.Corollary.Iftheseriesconverges,thensodoesTheseriesissaidtoconvergeabsolutelyiftheseriesconverges.Corollary.forall,where,thentheseriesconverges.AnewexampleLet'snowlookattheseries Mathematics220-Cauchy'scriterion4 IclaimthatitconvergesforallNoneofthetechniquesmentionedsofarapplydirectlytoit.Itlookssomethinglikethegeometricseries,butthecoecientofgrowswithinsteadofremainingbounded.Weneedanewideatodealwithit.Itistruethatthecoecientsgrowwith,buttheydon'tgrowveryfast.Theyformanarithmeticprogres-sion,andinparticularTheorem.ThesequencegrowslessslowlythananygeometricsequenceThisisnotimmediatelyapparent.Ifiscloseto1thenthegeometricsequencestartsoutslowly,perhapsveryslowly.Nonethelesssoonerorlateritsurpassesthearithmeticprogression.Thisisnotquiteaseasytoseeasonemightlike,sinceitisnoteasytospecifythesmallestsuchthatLemma.thenforsomewehavewhenever=1+,andchooselargeenoughthatMx�N1.Thenbythebinomialtheorem,for=(1+=1++positivetermsMx�1)=Wecannowusethistoseethattheseriesconvergesfor1.Since1,wecan nd1suchthat1also(say ).Wecanthen ndsuchthatforall.ThisimpliesthatforwehaveButthenafterthe rsttermstheseriesisdominatedbythegeometricseriesfor,henceconvergesTheratiotestThesameargumentusedforoneseriesintheprevioussectioncanbeappliedtoprovethisaswell:Theorem.(Theratiotest)Supposeisaseriessuchthatthelimitofislessthan.Thentheseriesconverges.Thiswillshow,forexample,thattheseriesconvergesforTotestyourself:HowmanytermsofthisseriesarerequiredtocomputeitslimittowithinPowerseriesAnotherrelatedresultisthis:Theorem.Supposetheseriestoconverge.Thensodoallseries