/
Cloaking via Change of Variables in Electric Impedance Cloaking via Change of Variables in Electric Impedance

Cloaking via Change of Variables in Electric Impedance - PDF document

pamella-moone
pamella-moone . @pamella-moone
Follow
477 views
Uploaded On 2015-05-16

Cloaking via Change of Variables in Electric Impedance - PPT Presentation

V Kohn HShen MS Vogelius and MI Weinstein Revised version December 3 2007 Submitted to Inverse Problems Abstract A recent paper by Pendry Schurig and Smith Science 312 2006 17801782 used the coordinateinvariance of Maxwells equations to show how a ID: 67814

Kohn HShen

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Cloaking via Change of Variables in Elec..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

CloakingviaChangeofVariablesinElectricImpedanceTomographyR.V.Kohn,H.Shen,M.S.Vogelius,andM.I.WeinsteinRevisedversion:December3,2007SubmittedtoInverseProblemsAbstractArecentpaperbyPendry,Schurig,andSmith[Science312,2006,1780-1782]usedthecoordinate-invarianceofMaxwell'sequationstoshowhowaregionofspacecanbe\cloaked"{inotherwords,madeinaccessibletoelectromagneticsensing{bysurroundingitwithasuitable(anisotropicandheterogenous)dielectricshield.EssentiallythesameobservationwasmadeseveralyearsearlierbyGreenleaf,Lassas,andUhlmann[MathematicalResearchLetters10,2003,685-693andPhysiologicalMeasurement24,2003,413-419]inthecloselyrelatedsettingofelectricimpedancetomography.Thesepapers,thoughbrilliant,havetwoshortcomings:(a)thecloakstheyconsiderarerathersingular;and(b)theanalysisbyGreenleaf,Lassas,andUhlmanndoesnotapplyinspacedimension=2.Thepresentpaperprovidesafreshtreatmentthatremediestheseshortcomingsinthecontextofelectricimpedancetomography.Inparticular,weshowhowaregularnear-cloakcanbeobtainedusinganonsingularchangeofvariables,andweprovethatthechange-of-variable-basedschemeachievesperfectcloakinginanydimensionContents1Introduction2Themainideas2.1Electricimpedancetomography..............................32.2Invariancebychangeofvariables.............................52.3Cloakingviachangeofvariables.............................62.4Relationtoknownuniquenessresults...........................82.5Commentsoncloakingatnonzerofrequency.......................9 CourantInstitute,NewYorkUniversity,kohn@cims.nyu.eduCourantInstitute,NewYorkUniversity,haiping@cims.nyu.eduDepartmentofMathematics,RutgersUniversity,vogelius@math.rutgers.eduDepartmentofAppliedPhysicsandAppliedMathematics,ColumbiaUniversity,miw2103@columbia.edu 3Analysisoftheregularnear-cloak103.1TheDirichlet-to-Neumannmap..............................113.2Dielectricinclusions....................................123.3Theregularnear-cloakisalmostinvisible........................144Analysisofthesingularcloak154.1Explicitformofthecloak.................................164.2Thepotentialoutsidethecloakedregion.........................174.3Thepotentialinsidethecloakedregion..........................194.4Thesingularcloakisinvisible...............................201IntroductionWesayaregionofspaceis\cloaked"withrespecttoelectromagneticsensingifitscontents{andeventheexistenceofthecloak{areinaccessibletosuchmeasurements.Iscloakingpossible?Theanswerisyes,atleastinprinciple.Acloakingschemebasedonchange-of-variableswasdiscussedforelectricimpedancetomographybyGreenleaf,Lassas,andUhlmannin2003[19,20],andforthetime-harmonicMaxwell'sequationbyPendry,Schurig,andSmithin2006[35,38].Otherschemeshavealsobeendiscussed,includingonebasedonopticalconformalmapping[28,29],anotherbasedonanomalouslocalizedresonances[32],andathirdbasedonuseofsensorsandactivesources[30,36].Recentdevelopmentsincludenumerical[6,12,45]andexperimental[39]implementationsofchange-of-variable-basedcloaking;adaptationsofthechange-of-variable-basedschemetoacousticorelasticsensing[13,31];andtheintroductionofrelatedschemesforcloakingactiveobjectssuchaslightsources[17].Iscloakinginteresting?Theanswerisclearlyyes.Onereasonistheoretical:theexistenceofcloaksrevealsintrinsiclimitationsofelectromagnetic-basedschemesforremotesensing,suchasinversescatteringandimpedancetomography.Asecondreasonispractical:cloakingprovidesaneasymethodformakinganyobjectinvisible{bysimplysurroundingitwithacloak.Theappealofthisideahasattractedalotofattention,e.g.[8,44].Iscloakingpractical?Theanswerisnotyetclear.Allapproachestocloakingrequirethedesignofmaterialswithexoticdielectricproperties.Onehopesthatthedesiredpropertiescanbeachieved(oratleastapproximated)bymeansof\metamaterials"[40];fortheschemesbasedonchange-of-variablesthisseemstobethecase[39].Foracloakingschemetobepracticalitmustbereasonablyinsensitivetoimperfection;therobustnessofthechange-of-variable-basedschemehasjustbeguntobeaddressed[10,18,37](seeSection2.3forcommentsonthiswork.)Thepresentpaperisrelatedtothe rstandlastoftheprecedingquestions.Weask:(i)Doesthechange-of-variables-basedschemereallyachieveaperfectcloak?(ii)Whataboutaregularizedversionofthethisscheme?Howclosedoesitcometoachievingcloaking?Ouranalysisisrestrictedtoelectricimpedancetomography.Thisamountstoconsideringelectro-magneticsensinginthelow-frequencylimit[26];itissimplerthanthe nite-frequencysetting,due tothereadyavailabilityofvariationalprinciples.Butwedodiscussthe nite-frequencysetting,inSection2.5.Concerning(i):thereiscauseforconcern,becausetheunderlyingchangeofvariablesishighlysingular(seeSection2.3).Singularitiesaresometimessigni cant;forexample,thefundamentalsolutionofLaplace'sequationisharmonicexceptatapoint.Thephysicsliteraturerecognizesthisissue;forexample,Cummeretal.writein[12]that\whetherperfectcloakingisachievable,evenintheory,is...anopenquestion."Theyalsosuggest,usinganargumentbasedongeometricaloptics,thatthepresenceofasingularity\maydegradecloakingperformancetoanunknowndegree."Actually,(i)wassettledforelectricimpedancetomographyby[19]inspacedimension3,usingamethodthatdoesnotworkinspacedimensiontwo.Onegoalofthepresentpaperistoshowthatthesituationisnotsigni cantlydi erentwhen=2:perfectcloakingisalsopossibleinspacedimensiontwo.Ourdiscussionofperfectcloaking,presentedinSection4,isnotfundamentallydi erentfromthatin[19];inparticular,ourmaintool(like[19])isaresultabouttheremovabilityofsingularitiesforharmonicfunctions.Howeverourdiscussiondi ersfrom[19]bytreatingalldimensions2simultaneously,andbyworkingdirectlywiththedivergence-formPDEofelectrostaticsratherthanrewritingitastheLaplace-BeltramiequationofanassociatedRiemannianmetric.Inaddition,ourexpositionisperhapsmoreelementary(thusmoreaccessibletonon-expertreaders).Concerning(ii):thequestionisasimportantastheanswer.Wesuggestthatthe\perfectcloak,"obtainedusingasingularchangeofvariables,notbetakenliterally.Instead,itshouldbeusedtodesignamoreregular\near-cloak,"basedonalesssingularchangeofvariable.Thenear-cloakisphysicallymoreplausible(forexample,itsdielectrictensorisstrictlypositiveand nite).Moreover,themathematicalanalysisofthenear-cloakisactuallyeasier,sincenothingissingular.Basically,theproblemreducestounderstandinghowboundarymeasurementsarein uencedbydielectricinclusions(seeSection2.3forfurtherexplanation).Thepaperisorganizedasfollows.Webegin,inSection2,byintroducingelectricimpedancetomographyandgivingabrief,nontechnicalexplanationofthechange-of-variable-basedcloakingscheme.Thatsectionalsoputsourworkincontext,discussingitsrelationtoknownuniquenessresultsandexplainingwhythe nite-frequencycaseissimilartobutdi erentfromtheoneconsid-eredhere.Then,inSections3and4,wegivearigorousanalysisofthechange-of-variable-basedcloakingscheme.InSection3weusearegularchangeofvariablesandprovethattheinclusionisalmostcloaked.InSection4weuseasingularchangeofvariablesandprovethattheinclusionisperfectlycloaked.2Themainideas2.1ElectricimpedancetomographyInelectricimpedancetomography,oneusesstaticvoltageandcurrentmeasurementsatthebound-aryofanobjecttogaininformationaboutitsinternalstructure.Mathematically,wesupposetheobjectoccupiesa(known)boundedregion 2.Its(unknown)electricalconductivity)isanon-negativesymmetric-matrix-valuedfunctionon . ThePDEofelectrostaticsisi;j ij(x) =0in ;(1)itrelatesthevoltageandtheassociatedelectric eldtotheresultingcurrent(seeSection2.5).ThePDE(1)determinesa\DirichlettoNeumannmap";byde nition,ittakesanarbitraryboundaryvoltagetotheassociatedcurrent ux:whereistheoutwardunitnormalto .Electricimpedancetomographyseeksinformationongivenknowledgeofthemapping.Inthemathematicsliteraturethisproblemwas rstproposedandpartiallyaddressedbyCalderon[7].Doesdetermine?Ingeneral,theanswerisno:thePDEisinvariantunderchangeofvariables,socanatbestbedetermined\uptochangeofvariables."WeshallexplainthisstatementinSection2.2.If,however,isscalar-valued,positive,and nite,thentheanswerisbasicallyyes:undersomemodest(apparentlytechnical)conditionsontheregularityof,knowledgeoftheDirichlet-to-Neumannmapdeterminesaninternalisotropicconductivity)uniquely.WeshallreviewtheseresultsinSection2.4. Figure1:Theregioniscloakedbyif,regardlessoftheconductivitydistributiontheboundarymeasurementsatareidenticaltothoseofauniformregionwithconductivityWhatdoesitmeaninthiscontextforasubsetof tobecloaked?Inprinciple,itmeansthatthecontentsof{andeventheexistenceofthecloak{areinvisibletoelectrostaticboundarymeasurements.Tokeepthingssimple,however,weshalluseaslightlymorerestrictivede nition:wesay iscloakedbyaconductivitydistribution)de nedoutsideiftheassociatedboundarymeasurementsat areidenticaltothoseofahomogeneous,isotropicregionwithconductivity1{regardlessoftheconductivityin(seeFigure1).Moreprecisely: Whenwesayis\positiveand nite"wemeanitisabounded,measurablefunctionwitha.e.in forsome De nition1Letbe xed,andletbeanon-negative,matrix-valuedconductivityde nedonthecomplementof.Wesaycloakstheregionifitsextensionsacrossforforproducethesameboundarymeasurementsasauniformregionwithconductivity,regardlessofthechoiceoftheconductivityThenameisappropriate:acloakmakestheassociatedregioninvisiblewithrespecttoelectricimpedancetomography.Indeed,suppose inthesenseofofDe nition1,andletbeanydomaincontaining .ThentheDirichlet-to-Neumannmapof)for)for1forisindependentof,andidenticaltothatofthedomain withconstantconductivity1.Thisholdsbecause communicateswithitsexterioronlythroughitsDirichlet-to-Neumannmap.Noticethatfromasingleexampleofcloaking,thisextensionargumentproducesmanyotherexamples.Indeed,accordingto(4),if inthesenseofDe nition1,thentheextensionofby1cloaksinanylargerdomain WeshallexplaininSection2.3,following[20,35],howtheinvarianceofelectrostaticsunderchangeofvariablesleadstoexamplesofcloaks.2.2InvariancebychangeofvariablesTheinvarianceofthePDE(1)bychange-of-variablesiswellknown.Soisthefactthatdetermineatbest\uptochangeofvariables."Thisobservationisexplicite.g.in[22,25],withanattributiontoLucTartar.Itisconvenienttothinkvariationally.Recallthatif)isboundedandpositivede nite,thenthesolutionof(1)withDirichletdatasolvesthevariationalproblemminMoreovertheminimum\energy"isdeterminedby,sincewhensolves(1)wehaveThus,knowledgeofdeterminestheminimumenergy,viewedasaquadraticformonDirichletdata.Theconverseisalsotrue:knowledgeoftheminimumenergyforallDirichletdatadeterminestheboundarymap.Thisfollowsfromthewellknownpolarizationidentity:foranyand Therighthandsideistheminimumenergyforminusthatfor,whilethelefthandsideistheboundarymap,viewedasabilinearformonDirichletdata.Weturnnowtochangeofvariables.Suppose)isaninvertible,orientation-preservingchangeofvariableson .Thenwecanchangevariablesinthevariationalprinciple(5): @x @xZ Xij @y @y det dy:Wecanwritethismorecompactlyaswhere det(inwhichisthematrixwithi;jelement=@xandtherighthandsideisevaluatedat).Wecallthepush-forwardbythechangeofvariablesWecome nallytothemainpoint:,thentheboundarymeasurementsassociatedwithareidentical,inotherwords)=)forallIndeed,if thenthechangeofvariablesdoesnota ecttheDirichletdata.Soforany=min=minThusanddetermineidenticalquadraticforms,fromwhichitfollowsby(7)that2.3CloakingviachangeofvariablesWenowexplainhowchange-of-variables-basedcloakingworks.Forsimplicitywefocusontheradialcase: =isaballofradius2,andtheregiontobecloakedis,theconcentricballofradius1(seeFigure2).Itwillbeclear,however,thatthemethodismuchmoregeneral.Westartbyexplaininghowcanbenearlycloakedusingaregularchangeofvariables.Fixingasmallparameter0,considerthepiecewise-smoothchangeofvariables x2�2 2�+1 2�jxjx Itskeypropertiesarethat iscontinuousandpiecewisesmooth,expands,whilemappingthefulldomaintoitself,attheouterboundary=2. Figure2:Thechangeofvariablesleadingtoaregularnear-cloak:expandsasmallballtoaballofradiusTheassociatednear-cloakisthepush-forwardviaoftheconstantconductivity=1,re-strictedtotheannulus.(Abusingnotationabit,wewritethisas1.)Toexplainwhy,consideranyconductivityoftheform)for)forBythechange-of-variablesprinciple(9)itsboundarymeasurementsareidenticaltothoseof)for1forwheredenotesthepush-forwardoftheconductivitydistributionbythemap.Thus,theboundarymeasurementsassociatedwitharethesameasthoseofauniformballperturbedbyasmallinclusionatthecenter.Thecontentsoftheinclusionareuncontrolled,sinceisarbitrary.Buttheradiusoftheinclusionissmall,namely.AsweexplaininSection3,thisisenoughtoassurethattheboundarymeasurementsareclosetothoseofacompletelyuniformball.Thus:whensucientlysmall,thisschemecomesclosetocloakingtheunitball(seeTheorem1inSection3.3).Nowweshowhowcanbeperfectlycloakedusingasingularchangeofvariables.Theideaisobvious:justtake=0in(10).Theresultingchangeofvariables 2jxjx isthesameoneusedin[19,20]forelectrostaticsandin[35]forelectromagnetics.Itskeypropertiesarethat: issmoothexceptat0;blowsupthepoint0totheball,whilemappingthefulldomaintoitself;andattheouterboundary=2.Aheuristic\proof"that1givesaperfectcloakusesthesameargumentasbefore.Thistimeoccupiesapointratherthanaball.Changingtheconductivityatapointshouldhavenoe ectontheboundarymeasurements.Thereforeweexpectthatwhenisgivenby(11)withgivenby(12),theboundarymeasurementsshouldbeidenticaltothoseobtainedforauniformballwithThisheuristicproofneedssomeclari cation.Thevalidityofthechangeofvariablesformulaisopentoquestionwhenissosingular.Worse:ourcloak1isquitesingularnearitsinnerboundary=1;somecareisthereforeneededconcerningwhatwemeanbyasolutionofthePDE(1).ThesetopicswillbeaddressedinSection4.Wehavefocusedontheradialcasebecausethesimple,explicitformofthedi eomorphismleadstoanequallysimple,explicitformulafortheassociatedcloak(seeSection4.1).Howeverthemethodisclearlynotlimitedtotheradialcase(seeTheorems2and4).Our\regularnear-cloak"isquitedi erentfromtheapproximatecloakingschemeconsideredin[18,37].Thosepapersstartwithaperfectcylindricalcloak,obtainedusingthe2Dversionofthefamiliarconstruction(12).Thiscloak llstheannulus12withananisotropic,heterogeneousmedium,whosebehaviorisrathersingularneartheinnerboundary=1(seeSection4.1).Theapproximatecloakconsideredin[18,37]isobtainedbyrestrictingtheperfectcloaktoaslightlysmallerannulus1+2.Perfectcloaking(atanyfrequency)isobtainedashowevertheconvergenceisextremelyslow.Theconvergencecanbegreatlyimprovedbyintroducingalayerattheedgeofthecloakthatpermitssurfacecurrents[18].Insummary:our\regularnear-cloak"avoidssingularbehaviorbyusingaregularizedchangeofvariables,whereas[18,37]avoidsingularbehaviorbytruncation.Wealsonotetheinterestingarticle[10],whichexploresthesensitivityoftheidealcloaktovarioustypesofmaterialormanufacturingimperfections.Thefocusofthispaperisoncloaking.Butwenoteinpassingthatitmightbepossibletodesignotherinterestingdevicesusingsimilarchange-of-variable-basedtechniques.Arecentexampleofthistypeistheschemeof[9]forrotatingelectromagnetic elds.2.4RelationtoknownuniquenessresultsTheuniquenessproblemforelectricimpedancetomographyaskswhetheritispossible,inprinciple,todetermine)usingboundarymeasurements.Inotherwords,doesdetermineIfitisknowninadvancethattheconductivityisscalar-valued,positive,and nite,thentheanswerisbasicallyyes.Theearliestuniquenessresults{intheclassofanalyticorpiecewiseanalyticconductivities{datefromtheearly80's[14,23,24].Afewyearslater,usingentirelydi erentmethods,uniquenesswasprovedforconductivitiesthatareseveraltimesdi erentiableindimension3[42]andindimension=2[33].Recently,usingyetanothermethod,uniquenesshasbeenshownintwospacedimensionswithnoregularityhypothesisatall,assumingonlythat)is scalar-valued,strictlypositive,and nite[4].Wehavegivenjustafewofthemostimportantreferences;formorecompletesurveyssee[11,21,43].WeobservedinSection2.2thatwhen)issymmetric-matrix-valued,boundarymeasurementscanatbestdetermineit\uptochangeofvariables."Isthistheonlyinvariance?Inotherwords,iftwoconductivitiesgivethesameboundarymeasurements,musttheyberelatedbychangeofvariables?Ifcloakingispossiblethentheanswershouldbeno,sincetheconductivitiesin(3)arenotrelated,asvaries,bychangeofvariables.Paradoxically,Sylvesterprovedthatintwospacedimensions,boundarymeasurementsdo deter-mineuptochangeofvariables[41]!Theheartofhisproofwastheintroductionofisothermalcoordinates{i.e.constructionofa(unique)map suchthatisisotropicand .Byuniquenessintheisotropicsetting,determines;thusboundarymeasurementsdetermineuptochangeofvariables.DoescloakingcontradictSylvester'sresult?Notatall.TheresolutionoftheparadoxisthattheintroductionofisothermalcoordinatesdependscruciallyonhavingupperandlowerboundsforIndeed,if isaballand1withgivenby(10),thentheassociatedisothermalcoordinatetransformationis.As0in(10)theisothermalcoordinatesbecomesingular.Whenispositivewedonotgetperfectcloaking(consistentwithSylvester'stheorem).When=0wedogetcloaking{buttheeigenvaluesofareunboundedbothaboveandbelownear=1(seeSection4.1),Sylvester'sargumentnolongerapplies,andindeedthereisnoisothermalcoordinatesystem.Doboundarymeasurementsdetermineuptochangeofvariablesinthreeormorespacedimensions?Ifweassumeonlythatisnonnegativethentheanswerisno,sincecloakingispossible.If,however,weassumethatisstrictlypositiveand nite,thensucharesultcouldstillbetrue.Aproofforreal-analyticconductivitiesisgivenin[27].2.5CommentsoncloakingatnonzerofrequencyThispaperfocusesonelectricimpedancetomography,becausewecanexplaintheessenceofchange-of-variable-basedcloakinginthiselectrostaticsettingwithaminimumofmathematicalcomplexity.Thepracticalapplicationsofcloakingare,however,mainlyatnonzerofrequencies{forexam-ple,makingobjectsinvisibleatopticalwavelengths,orundetectablebyelectromagneticscatteringmeasurements.Wethereforediscussbrie yhowthepositive-frequencyproblemissimilarto,yetdi erentfrom,thestaticcase.Fortime-harmonic eldsinalinearmedium,Maxwell'sequationsbecomei!i!H:Hereandarecomplexvector eldsrepresentingtheelectricandmagnetic elds;,andarereal-valued,positive-de nitesymmetrictensorsrepresentingtheelectricalconductivity,dielectricpermittivity,andmagneticpermeabilityofthemedium;and0isthefrequency.Thephysicalelectricandmagnetic eldsareRei!tandRei!t Sylvester'spaperprovedonlyalocalresult,andrequiredtobe.Whencombinedwith[33],however,hisanalysisgivesaglobalresult.Therecentimprovementin[5]assumesonlythatisboundedandpositive-de nite. When=0,(13)reducesformallyto(1).Indeed,Maxwell'sequationsbecomeand=0.Thelatterimpliesandtheformerimpliesthatisdivergence-free.TheanalogueoftheDirichlet-to-Neumannmapat nitefrequencyisthecorrespondencebetweenthetangentialcomponentofandthetangentialcomponentof .Whenisnotaneigenfrequencythiscanbeexpressedasamapfrom,sometimesknownastheadmittance.(Whenisaneigenfrequencythemapisnotwell-de nedandoneshouldconsiderinsteadallpairs(;H).)Mathematically,theadmittancespeci esthesetofpossibleCauchydatafor(13)atfrequency.Physically,abodyinteractswithitsexterioronlythroughitsadmittance;thereforetwoobjectswiththesameadmittanceareindistinguishablebyelectromagneticmeasurementsatfrequency{forexample,byscatteringmeasurements.Digressingabit,weremarkthatmanyoftheuniquenessresultssketchedinSection2.4havebeenextendedto nitefrequency.Inparticular,theadmittanceofa3Dbodyatasinglefrequencydetermines;,andprovidedtheyareknowninadvancetobescalar-valued,sucientlysmooth,andconstantneartheboundary[34].Adi erentconnectionbetweenthepositive-frequencyandelectrostaticcasesisprovidedby[26],whichshowsthattheadmittancedeterminestheelectrostaticDirichlet-to-NeumannmapinthelimitLetusfocusnowoncloaking.Thepositive-frequencyanalogueofourde nitionofcloakingisclear:threenonnegativematrix-valuedfunctions;,andde nedon cloakaregiontheassociatedadmittanceat doesnotdependonhow;,andareextendedacross.Thepositive-frequencyanalogueofourchange-of-variablesschemeisalsoclear:if =and 2jxjx asin(12)and[19,20,35],weshouldbeabletocloakbytaking,andeachtobethe\push-forward"oftheconstant1.Thecorrectnessofthisschemeisdemonstratedin[17],thoughitisnotthemainfocusofthatpaper.Theirargumentis,roughlyspeaking,a nite-frequency(andmoregeneral)analogueoftheoneinpresentedhereinSection4.Whataboutourregularnear-cloak?ThediscussioninSection3hasanobviousextensiontothetime-harmonicMaxwellsetting.Toanalyzetheperformanceofthisnear-cloak,wewouldneedanestimateforthee ectofasmallinclusion(withuncontrolleddielectricproperties)upontheboundarymeasurements(admittance).Unfortunately,thisquestionistothebestofourknowledgeopen,thoughthee ectofauniforminclusionisverywellunderstood[3].Weanticipatearesultsimilartotheelectrostaticsetting{thee ectofaninclusionshouldtendtozeroasitsradiustendstozero.Sucharesultwould,asanimmediateconsequence,extendtheanalysisofSection3tothetime-harmonicMaxwellsetting.Wereferto[17]forfurtherdiscussionofthetime-harmonicproblem.Thatpaperincludes,amongotherthings,anewchange-of-variable-basedschemeforcloakinganactivedevice(suchasalightsource).3Analysisoftheregularnear-cloakThissectionreviewssomewellknownfactsabouttheDirichlet-to-Neumannmap,thenanalyzesthenear-cloakobtainedusingthechangeofvariable(10). 3.1TheDirichlet-to-NeumannmapIndiscussingthePDE(1),weassumethroughoutthissectionthattheconductivityisstrictlypositiveandboundedinthesensethatforsomeconstants0;M;forall and.Ourdiscussionofcloakingfocusedonthecasewhen isaball,butinthissection canbeanyboundeddomaininwithsucientlyregularboundary.Wewillmakeessentialuseofthevariationalprinciple(5).ThereforewemustrestrictourattentiontoDirichletdataforwhichthereexistsa\ niteenergy"solution.Whensatis es(14)itiswellknownthatthisoccurspreciselywhen )=forsomesuchthatdxWhenisconstantthesolutionisalsoconstant{atrivialcase{soitisnaturaltorestrictattentiontothesubspace )=,withthenaturalnorm=minThisisafractionalSobolevspace,consistingoffunctionswith\one-halfderivativein )"(seee.g.[1]).Weshallnottrytoexplainwhatthismeansingeneral,butwenotethatwhen isaballtheinterpretationisquitesimple.Infact,ifcos()attheboundarythentheoptimalfor(15)istheharmonicfunctionr=Rcos()),anddirectcalculationgivesSometimesitisconvenienttospecifyNeumannratherthanDirichletdata.Notethatwhenisanisotropic,thephrase\Neumanndata"refersto.Itiswellknownthatthespaceof niteenergyNeumanndatais )=.Itconsistsofmean-value-zerofunctionswith\minusone-halfderivativein )".Ingeneral=supwhen isaballofradiusandcos()thisreducestoWede nedtheDirichlet-to-Neumannmapin(2)astheoperatorthattakesDirichlettoNeumanndata.Itisaboundedlinearmapfrom )to ).Moreoveritispositive andsymmetric(intheinnerproduct)andinvertible,soitde nesapositivede nitequadraticformon ).Thisformcanbewritten\explicitly"aswhereandsolvethePDE(1)withDirichletdataandrespectively.Thenaturalnormonsymmetriclinearmapsofthistypeis=supf;fThisisequivalenttotheoperatornormofviewedasamapfrom,asaconsequenceofthepolarizationidentity(7).Whentwoconductivitiesareordered,theassociatedDirichlet-to-Neumannmapsarealsoor-dered.Moreprecisely:ifandsatisfy;ih;forall andalltheninthesensethatihforall ).Thisfollowseasilyfromthevariationalprinciple(5),sinceifand)=0in with ,thenf;ff;f3.2DielectricinclusionsThesimplestspecialcaseofourPDE(1)iswhen1.Thenthesolutionisharmonic.WeunderstandalmosteverythingaboutharmonicfunctionsandtheassociatedDirichlet-to-Neumannmap.Anotherrelativelysimplecaseariseswhenisuniformexceptforaconstant-conductivitysphericalinclusionofradiuscenteredatsome ;for1forInviewof(17),thee ectoftheinclusiondependsmonotonicallyonitsconductivity.Itisthereforenaturaltoconsidertheextremelimitsas0and Wenowdiscusstheselimitsindetail,sincetheyareimportanttoouranalysis.Givenany )letdenotethesolutionto=0in with =0onandSimilarlyletletdenotethesolutionto=0in withandwheretheconstantis(uniquely)determinedby Usingverystandardenergyargumentsitiseasytoseethatandweaklyin )).Indeed,energyconsiderationsimmediatelyyieldthat isboundeduniformlyin,that0as,andthat0.Byextractionofsubsequenceswenowgetweak ))limits,and,thatsatisfy(19)and(20),respectively.Theboundaryconditionson)followfromthecontinuityof(acrossthis\interface."Thecondition(21),determining,followssince =Z(x0) andtherefore =lim Itisnothardtoseethatthissamemayalsobecharacterizedastheconstantthatgivesrisetothesmallestenergy(of).Thefactthatwegetsinglelimitsas0and,respectively,isaconsequenceoftheuniquenessofthesolutionto(19),andthesolutionto(20).Wenowde neandIntegrationbyparts,togetherwiththeweakconvergence,givesthatand0and,respectively.Inparticularf;ff;fandf;ff;f Finallywenotethatif isaballofradiusandtheinclusionliesatitscenter,thentheaboveconvergenceoftheDirichlet-to-Neumannmapscaneasilybederivedbyexplicitsolutionof(19)and(20),usingseparationofvariables.Inthesmall-particlelimit0,theperturbationintroducedbythepresenceofasmallinclusion(extremeornot)iswellunderstood.Weshallnotuseitsexactform;ratherwhatmatterstousisitsmagnitude,whichisproportionaltothevolumeoftheinclusion:Proposition1LetbetheDirichlet-to-Neumannmapwhen,andletbetheDirichlet-to-Neumannmapsassociatedwiththeproblems(19)and(20)respectively.Thenwhenissucientlysmall.Hereisthespatialdimensionandwemeantheoperatornorm(16)onthelefthandsideofeachinequality.AproofoftheestimateforisgiveninSection2of[16]andthesameargumentcanbeusedfor.Theconstantdependsofcourseonthelocationofandtheshapeof .Muchmoredetailedresultsareknown,includingafullasymptoticexpansionforthedependenceoftheDirichlet-to-Neumannmapon;seee.g.[2]forarecentreview.Wehavefocusedonsphericalinclusionsonlyforthesakeofsimplicity.Theprecedingdiscussionextendsstraightforwardlytoinclusionsofany xedshape,i.e.tothesituationwhen)isreplacedbywhereisany\inclusionshape"(aboundeddomainin,containingtheorigin,withsucientlyregularboundary).3.3Theregularnear-cloakisalmostinvisibleNowconsiderthe\regularnear-cloak"discussedinSection2.3: =isaballabouttheoriginofradius2,andhastheform)for)forwhereisgivenby(10).Thesymbolstandsfor\arbitrary:")isthe(scalarormatrix-valued)conductivityintheregionbeingcloaked.Weassumeitispositivede niteand nite,;forsothesolutionofthePDE(1)iswell-de nedandunique.HoweverourestimateswillnotdependonthelowerandupperboundsandAsweexplainedinSection2.3,theDirichlet-to-Neumannmapofisidenticaltothatof)for1forBytheorderingrelation(17),andtheconvergenceresultsdescribedintheprevioussection,weconcludethat=lim whenceItfollowsusingProposition1thattheboundarymeasurementsobtainedusingthisnear-cloakarealmostidenticaltothoseofauniformballwithconductivity1:wherethelefthandsideistheoperatornorm(16).Theconstantisindependentof;infactitdoesnotevendependonthevaluesofandin(22).Wehaveproved:Theorem1Supposetheshellhasconductivity,whereisgivenby(10).Ifsucientlysmallthenisnearlycloaked,inthesensemadepreciseby(23).Wehavefocusedonthesphericallysymmetricsettingduetoitssimple,explicitcharacter.Howeverourargumentdidnotusethissymmetryinanyessentialway.Indeed,thesameargumentproves(seeFigure3):Theorem2LetbeaLipschitzcontinuousmapwithaLipschitzcontinuousinverse,andlet.ThenispiecewiseLipschitz;moreoverexpands,andIftheshellhasconductivityisnearlycloakedwhenissmall.Moreprecisely:whentheconductivityofhastheformforfortheDirichlet-to-Neumannmapisnearlyindependentofinthesensethat4AnalysisofthesingularcloakThissectiondiscussestheperfectcloakobtainedusingthesingularchangeofvariables(12).Wefocusontheradialcaseforsimplicity,butourargumentextendsstraightforwardlytoabroadclassofnon-radialexamples(seeTheorem4).AsweexplainedinSection2.3,thebasicassertionofcloakingisthatforconductivitiesoftheform(11)withgivenby(12),theDirichlet-to-Neumannmapisidenticaltothatoftheuniformballwithconductivity1.Thus,iftheshellhasconductivity1thentheballiscloaked.ThisassertionfollowsfromTheorem1bypassingtothelimit0(seeRemark1inSection4.2).Butitcanalsobeproveddirectly,andthedirectargument{beingverydi erent{gives Figure3:Themapblowsupwhileactingastheidentityonadditionalinsight.Inparticular,itrevealsthemechanismofcloaking:thepotentialinconstant,renderingtheconductivityinthisregionirrelevant.Theessenceoftheargumentpresentedinthissectionissimilartothatof[19].Inparticular,ourmaintoolisawell-knownresultontheremovabilityofisolatedsingularitiesforsolutionsofLaplace'sequation(seetheproofofProposition2).4.1ExplicitformofthecloakRecallthat1isde nedby(8).Whenisgivenby(12)itiseasytomakeexplicit.Indeed,theJacobianmatrix=@x)is 2+1 jxjI�1 for=0,whereistheidentitymatrixand^.Thusissymmetric;^isaneigenvec-torwitheigenvalue12,and(inspacedimensionisan1-dimensionaleigenspacewitheigenvalue 2+1 .Thedeterminantisevidentlydet( 21 2+1 +2) Itfollowsbyabriefcalculationthatintheshell1 (2+ 4jxjn�1+jxjn�2+jxjn�3�^x^xT+1 wheretherighthandsideisevaluatedat)=2( jyj:16 Sinceissingularat=0weexpect1tobeabitstrangeneartheinnerboundaryoftheshell.Thedetailsdependonthespatialdimensionwhen=2,oneeigenvalueof1tendsto0andtheotherto;(28)when=3,oneeigenvaluetendsto0whiletheothersremain nite;(29)when4,alleigenvaluestendto0.(30)Infact:writing=2(1),when=2theeigenvaluesbehavelikeandwhen=3oneeigenvaluebehaveslikeandtwolike;when4oneeigenvaluebehaveslikeandtheremaining1like.Noticethatfor3,theconductivity1dependssmoothlyonneartheinnerboundaryoftheshell.The\strangeness"wementionedaboveisnotalackofsmoothnessbutratheradegeneracy(lackofauniformlowerbound).Inspacedimension=2thesituationisalittledi erent:1becomesdegeneratebutalsolackssmoothnesssincethecircumferentialeigenvaluebecomesin nite.Thisdi erencebetween=2and3willplaynoessentialroleinouranalysis.4.2ThepotentialoutsidethecloakedregionLetbethepotentialassociatedwithDirichletdata)=0in,with,(31)whereisgivenby(11)usingthesingularchangeofvariable(12).Weassume,asinSection3,thatisboundedaboveandbelowinthesensethat(22)holds.DoesthisPDEhaveauniquesolution?Theanswerisnotimmediatelyobvious,duetothedegeneracyof1near=1.Weshallshow,hereandinSection4.3,thattheonlyreasonablesolutionof(31)is)for(0)forwhereistheharmonicfunctionwiththesameDirichletdata=0in,withandWhatcanweassumeaboutthesolutionof(31)?Later,inSection4.3,wewillaskthatandbothbesquare-integrable.Forthemoment,however,weaskonlythatbeboundednear=1.Moreprecisely,weaskthatforforsomeconstantsand1.(WedonotassumeisboundedintheentireballbecausetheDirichletdatacanbeunbounded{anfunctionneednotbe.)Thisisaverymodesthypothesis.Indeed,since1issmoothfor1,ellipticregularityassuresusthatuniformlyboundedinanycompactsubsetof.Theessentialcontentof(34)isthusthat doesnotdivergeas1.Iftheconductivitywerepositiveand nitesuchgrowthwouldberuledoutbythevariationalprinciple(5)andaneasytruncationargument.Withthismodesthypothesison,wecanidentifyitsvaluesinbychangingvariablesthenusingastandardtheoremabouttheremovabilityofpointsingularitiesforharmonicfunctions.Proposition2solves(31)andsatis es(34)thenfor2(35)whereistheharmonicfunctiononwiththesameDirichletdataasProof.Since)issmoothandboundedawayfromzeroforstrictlylargerthan1,ellipticregularityappliesandisaclassicalsolutionofthePDEin .Whenissupported ,thePDEcombineswiththede nitionofandthechangeofvariablesformulatogiveSince)issupportedon ,thetestfunction))vanishesat0andbutisotherwisearbitrary.So(36)tellsusthat))isaweaksolutionof=0inthepuncturedball.Byellipticregularity,itisalsoaclassicalsolution.Wenowusethefollowingwellknownresultaboutremovablesingularitiesforharmonicfunctions:if=0inapuncturedballabout0andifindimension3,orindimension0,thenhasaremovablesingularityat0(seee.g.[15]).Inotherwords,(0)isdeterminedbycontinuityand(soextended)isharmonicintheentireball.))satis es(37){indeed,itisuniformlyboundednear0asaconsequenceof(34).Soisharmonicon.MoreoverhasthesameDirichletdataas,since.Thusispreciselythefunctionthatappearsin(35),andtheproofiscomplete.Remark1Wehaveshownusingelliptictheorythatforthecloakconstructedusingthesingularchangeofvariable(12),thepotentialoutsidethecloakedregionisgivenby(35).Analternative,morephysicaljusti cationof(35)isthis:itgivesthelimitingvalueofthepotentialassociatedwithourregularnear-cloak(10)inthesingularlimitTojustifytheRemark,letbetheregularizedchangeofvariable(10),andletbethepotentialinthenear-cloakforagivenchoiceoftheDirichletdata.Then))isharmonicoutside.Itisalsouniformlybounded(awayfromtheouterboundary=2),withaboundindependentof.Sobyastandardcompactnessargument,thelimitas0existsandisharmonic.Sincethelimitisbounded,0isaremovablesingularityand)=lim)istheuniqueharmonicfunctioninwiththegivenDirichletdata.Nowforany xed1wecanpasstothelimit0intherelation))togetcon rming(35). 4.3ThepotentialinsidethecloakedregionWehaveassertedthatthesolutionof(31)isgivenby(32).Proposition2justi esthisassertionoutside;thissectioncompletesthejusti cationbyshowingthat(i)theproposedisindeedasolution,and(ii)itistheonlyreasonablesolution.Toshowthatisasolution,wemustdemonstratethatisdivergence-free.ThisisthemaingoalofthefollowingProposition.Proposition3,letbede nedby(32).ThenisLipschitzcontinuousawayfrom,i.e.isuniformlyboundedinforeveryisalsouniformlyboundedawayfromuniformlyas,whereisthenormalto,andisweaklydivergence-freeintheentiredomainProof.Weobserve rstthat(d)followsimmediatelyfrom(b),(c),and(36).Indeed,aboundedvector- eldisweaklydivergence-freeonifandonlyifitisweaklydivergence-freeonthesubdomainsand anditsnormal uxiscontinuousacrosstheinterface.(Thenormal uxiswell-de nedfromeitherside,asaconsequenceofbeingdivergencefreeinanditscomplement.)Weapplythisto,whichisclearlyclearlydivergence-freein(whereitvanishes)andin (byequation(36)).If(c)holdsthenthenormal ux=0vanishesonbothsidesof.Inparticularitiscontinuous,so(d)holds.Theproofsof(a)-(c)arestraightforwardcalculationsbasedonthechangeofvariableformulaandthesmoothnessof)),togetherwithourexplicitformulasfor(24)and(26).Toseethatisboundedawayfromweobservethat,bychainruleandthesymmetry,wehavefor12.Thematrix(isuniformlybounded,by(24);andisbounded(exceptperhapsnear)sinceisharmonicin.ThusisboundedandisLipschitzcontinuouson1forany2.Itismoreoverconstanton,andcontinuousacross.ThereforeisLipschitzcontinuousontheentireballforeveryIndimensions3(b)followsimmediatelyfrom(a),since1isuniformlybounded.Indimension=2howeverwemustbemorecareful,since1becomesunboundedas1.Usingthede nitionof,chainrule,andthesymmetryofwehavefor12.Thesymmetricmatrices1and(havethesameeigenvectors,namely^and^.Taking=2in(24)and(26)weseethattheeigenvalueof1indirection^behaveslike,whilethatof(behaveslike.Theeigenvaluesofbothmatricesindirection^ arebounded.Thustheproductisbounded.Thisyields(b),sinceisboundedawayfromand=0forTheproofof(c)issimilartothatof(b).Since1correspondsto0and,wemustshowthatthe^componentof(38)tendstozeroas0.Sinceissymmetricand^isaneigenvector,itsucestoshowthatthecorrespondingeigenvaluetendsto0.Infact,itsvalueaccordingto(24)and(26)is (2+whichtendstozerolinearly(if=2)orbetter(if3).Theproofisnowcomplete.Wehaveshownthatthefunctionde nedby(32)solvesthePDE(31).Isittheonlysolution?werestrictlypositiveand nite,uniquenesswouldbestandard.Whenisdegenerate,however,uniquenesscansometimesfail.Forexample,ifwereidentically0inthenthesolutionwouldnotbeunique:wouldbearbitraryin.Oursituation,however,ismuchmorecontrolled:thedegeneracyoccursonlyat,andithasaveryspeci cform.Uniquenessshouldbeprovedinaspeci cclass.WeassumedinSection4.2thatwasuniformlyboundednear.Hereweassumefurtherthat)andProposition4isaweaksolutionofthePDE(31)whichalsosatis es(34)and(39)thenmustbegivenbytheformula(32).Proof.WeknowfromProposition2that)outside.Whatremainstobeprovedisthat(0)inRecallthathasaremovablesingularityat0.Inparticularitiscontinuousthere.Sincemapsto0,itfollowsthat(0)asapproachesfromoutside.Since)byhypothesis,therestrictionofmakessense,anditisthesamefromoutsideorinside.Evidentlythisrestrictionisconstant,identicallyequalto(0).Itfollows,byuniquenessforthePDE)=0in,that(0)throughout,asasserted.Theprecedingargumentactuallyusessomewhatlessthan(39).Anyconditionthatmakescontinuousacrosswouldbesucient.Howeverwealsoneedahypothesison(forexamplethatitbeintegrable)forthePDE(31)tomakesense.4.4ThesingularcloakisinvisibleOurmainpointisthatiftheshellhasconductivity1thentheballiscloaked.Thisisaneasyconsequenceoftheprecedingresults:Theorem3Supposeisgivenby(11),whereisgivenby(12)andisuniformlypositiveand nite(22).ThentheassociatedDirichlet-to-Neumannmapisthesameasthatofauniformballwithconductivity Proof.ItsucestoprovethatanddeterminethesamequadraticformonDirichletdata,whereistheDirichlet-to-Neumannmapoftheuniformball.Butby(32)wehavedy;andthede nitionofcombinedwiththechangeofvariablesformulagiveswhereisharmonicwiththesameDirichletdataas.Thusf;ff;fforall,whenceasasserted.Wehavefocusedontheradialsettingforthesakeofsimplicity.HowevertheanalysisinthissectionextendsstraightforwardlytothenonradialcloaksdiscussedattheendofSection3.Theorem4LetbeaLipschitzcontinuousmapwithLipschitzcontinuousinverse,and.Thenactsastheidentityon,while\blowingup"thepoint.(ThisisthelimitofFigure3).Consideraconductivityde nedonoftheformforforwhereissymmetric,positive,and nitebutotherwisearbitrary.TheassociatedDirichlet-to-Neumannmapisindependentof;infact,istheDirichlet-to-NeumannmapassociatedwithconductivityProof.Weclaimthat)for)forwhere)andsolves=0in withthesameDirichletdataas.Theproofisparalleltoourargumentintheradialcase,soweshallberelativelybrief.TheproofofProposition2madenouseofradialsymmetry;itappliesequallyinthepresentsetting.Wemustassumeofcoursethatisboundedawayfrom ,andweconcludethat(40)iscorrectoutsideTheanalogueofProposition3(a)isthestatementthatisuniformlyLipschitzin exceptperhapsnear .Withtheconventions),and),wehavebychainrule.Byhypothesis,andareuniformlybounded.Therefore(isuni-formlyboundedtoo.Since=0,isasmoothfunctionofexceptperhapsnear .Itfollowsthat))isuniformlyLipschitzcontinuousawayfrom TheanalogueofProposition3(b)isthestatementthatisuniformlyboundedawayfrom .Recallingthede nition detDHDHandusingthat,weseethat detSinceisharmonic,itissmoothawayfrom .Asfordet():ithasthesamebehaviorDF=det(),sinceandarebounded.Oneveri esusingtheexplicitformula(24)thatDF=det()staysboundedasTheanalogueofProposition3(b)isthestatementthatthenormal ux(0asapproachesfromoutside,whereistheunitnormalat.Weusethefactthatisparallelto(),ifistheunitnormaltoatthecorrespondingpoint).(Toseethis,notethatifistangenttothenDGistangentto,andDG;;=0.)ItfollowsthatNow,=(det=(detDGDFDGSotheinnerproductontherightsideof(41)isequalto(detDGDFDG=(detDFDGu;Sinceandarebounded,thisisboundedbyaconstanttimes(detDFDGu;Butrecallthatisaneigenvectorofthesymmetricmatrix(det,withaneigenvaluethattendsto0as0.Therefore0asasasserted.TheargumentsusedforProposition3(d),Proposition4andTheorem3didnotuseradialsymmetryortheexplicitformofthecloak,sotheyextendimmediatelytothepresentsetting.Wenotethatfor3theresultsinTheorem3andTheorem4coincidewiththosealreadyestablishedin[19].AcknowledgementsThisworkwassupportedbyNSFthroughgrantsDMS-0313744andDMS-0313890(RVKandHS),DMS-0412305andDMS-0707850(MIW),andDMS-0604999(MSV).Wethanktheanonymousrefereeforhisconstructivecriticism,whichsigni cantlyimprovedthepaper. [1]R.A.Adams,SobolevSpaces.AcademicPress,NewYork(1975)[2]H.AmmariandH.Kang,ReconstructionofSmallInhomogeneitiesfromBoundaryMeasure-ments,LectureNotesinMathematics1846,Springer-Verlag[3]H.Ammari,M.S.Vogelius,andD.Volkov,Asymptoticformulasforperturbationsintheelectromagnetic eldsduetothepresenceofinhomogeneitiesofsmalldiameterII.ThefullMaxwellequations,J.Math.PuresAppl.(2001)pp.769{814[4]K.Astala,andL.Parinta,Calderon'sinverseconductivityproblemintheplane,Ann.ofMath.(2006)pp.265{299[5]K.Astala,L.ParintaandM.Lassas,Calderon'sinverseproblemforanisotropicconductivityintheplane,Comm.PDE(2005)pp.207{224[6]W.Cai,U.K.Chettiar,A.V.KildishevandV.M.Shalaev,Opticalcloakingwithmetamaterials,NaturePhotonics(2007)224-227[7]A.P.Calderon,Onaninverseboundaryvalueproblem.SeminaronNumericalAnalysisanditsApplicationstoContinuumPhysics.Soc.BrasileiradeMatematica,RiodeJaneiro(1980)pp.65{73.[8]K.Chang,Flirtingwithinvisibility,NewYorkTimes,ScienceTimes,June12,2007[9]H.ChenandC.T.Chan,Transformationmediathatrotateelectromagnetic elds,Appl.Phys.Lett.(2007)article241105[10]H.Chen,B.-I.Wu,B.Zhang,andJ.A.Kong,Electromagneticwaveinteractionswithametamaterialcloak,Phys.Rev.Lett.(2007)article063903[11]M.Cheney,D.Isaacson,andJ.C.Newell,Electricalimpedancetomography,SIAMReview(1999)pp.85{101[12]S.A.Cummer,B.-I.Popa,D.Schurig,andD.R.Smith,Full-wavesimulationsofelectromag-neticcloakingstructures,Phys.Rev.E(2006)article036621[13]S.A.CummerandD.Schurig,Onepathtoacousticcloaking,NewJ.Phys.(2007)article[14]V.L.Druskin,Uniquenessofthedeterminationofthree-dimensionalundergroundstructuresfromsurfacemeasurementsforastationaryormonochromatic eldsource(Russian),Akad.Nauk.SSSRSer.Fiz.Zemli,no.3,pp.63{69;abstractavailablefromMathReviews:MR788076[15]G.B.Folland,IntroductiontoPartialDi erentialEquations,PrincetonUniversityPress [16]A.FriedmanandM.Vogelius,Identi cationofsmallinhomogeneitiesofextremeconductivitybyboundarymeasurements:atheoremoncontinuousdependence,Arch.RationalMech.Anal.(1989)pp.299{326[17]A.Greenleaf,Y.Kurylev,M.Lassas,andG.Uhlmann,Full-waveinvisibilityofactivedevicesatallfrequences,Comm.Math.Phys.,inpress;preprintavailableatarXiv:math/0611185v3[math.AP][18]A.Greenleaf,Y.Kurylev,M.Lassas,andG.Uhlmann,ImprovementofcylindricalcloakingwiththeSHSlining,OpticsExpress(2007)12717{12734[19]A.Greenleaf,M.Lassas,andG.Uhlmann,OnnonuniquenessforCalderon'sinverseproblem,MathematicalResearchLetters(2003)pp.685{693[20]A.Greenleaf,M.Lassas,andG.Uhlmann,AnisotropicconductivitiesthatcannotbedetectedbyEIT,PhysiologicalMeasurement(2003)pp.413{419[21]V.Isakov,InverseProblemsforPartialDi erentialEquations,Springer-Verlag,1997.[22]R.V.KohnandM.Vogelius,Identi cationofanunknownconductivitybymeansofmeasure-mentsattheboundary,inInverseProblems,D.W.McLaughlined.,SIAM{AMSProceedingsVolume14,Amer.Math.Soc.,Providence(1984)pp.113{123[23]R.V.Kohn,andM.Vogelius,Determiningconductivitybyboundarymeasurements,PureandAppl.Math.(1984)pp.289{298[24]R.V.Kohn,andM.Vogelius,DeterminingconductivitybyboundarymeasurementsII.Interiorresults,Comm.PureandAppl.Math.(1985)pp.643{667[25]R.V.Kohn,andM.Vogelius,Relaxationofavariationalmethodforimpedancecomputedtomography,Comm.PureandAppl.Math.(1987)pp.745{777[26]M.Lassas,Theimpedanceimagingproblemasalow-frequencylimit,InverseProblems(1997)1503{1518[27]J.Lee,andG.Uhlmann,Determininganisotropicreal-analyticconductivitiesbyboundarymeasurements,Comm.PureandAppl.Math.(1989)pp.1097{1112[28]U.Leonhardt,Opticalconformalmapping,Science(2006)pp.1777{1780[29]U.Leonhardt,Notesonconformalinvisibilitydevices,NewJ.Phys.(2006)article118[30]D.A.B.Miller,Onperfectcloaking,OpticsExpress(2006)pp.12457{12466[31]G.Milton,M.Briane,andJ.R.Willis,Oncloakingforelasticityandphysicalequationswithatransformationinvariantform,NewJ.Phys.(2006)article248[32]G.W.Milton,andN.-A.P.Nicorovici,Onthecloakinge ectsassociatedwithanomalouslocalizedresonance,Proc.Roy.Soc.A(2006)pp.3027{3059 [33]A.I.Nachman,Globaluniquenessforatwo-dimensionalinverseboundaryvalueproblem,Ann.ofMath.(1996)pp.71{96[34]P.Ola,L.Parinta,andE.Somersalo,Aninverseboundaryvalueprobleminelectrodynam-DukeMath.J.(1993)pp.617{653[35]J.B.Pendry,D.Schurig,andD.R.Smith,Controllingelectromagnetic elds,Science(2006)pp.1780{1782[36]A.Ramm,Minimizationofthetotalradiationfromanobstaclebyacontrolfunctiononapartofitsboundary,JournalofInverseandIll-PosedProblems(1996)pp.531-534[37]Z.Ruan,M.Yan,C.W.Ne ,andM.Qiu,Idealcylindricalcloak:Perfectbutsensitivetotinyperturbations,Phys.Rev.Lett.(2007)article113903[38]D.Schurig,J.B.Pendry,andD.R.Smith,Calculationofmaterialpropertiesandraytracingintransformationmedia,OpticsExpress(2006)pp.9794{9804[39]D.Schurig,J.J.Mock,B.J.Justice,S.A.Cummer,J.B.Pendry,A.F.Starr,andD.R.Smith,Metamaterialelectromagneticcloakatmicrowavefrequencies,Science(2006)pp.977{980[40]D.R.Smith,J.B.Pendry,andM.C.K.Wiltshire,Metamaterialsandnegativerefractiveindex,Science(2004)pp.788{792[41]J.Sylvester,Ananisotropicinverseboundaryvalueproblem,Comm.PureandAppl.Math.(1990)pp.201{232[42]J.Sylvester,andG.Uhlmann,Aglobaluniquenesstheoremforaninverseboundaryvalueproblem,Ann.ofMath.(1987)pp.153{169[43]G.Uhlmann,DevelopmentsininverseproblemssinceCalderon'sfoundationalpaper,Har-monicAnalysisandPartialDi erentialEquations(Chicago,IL,1996),ChicagoLecturesinMath.,Univ.ChicagoPress(1999)pp.295{345[44]M.Wilson,Designermaterialsrenderobjectsnearlyinvisibletomicrowaves,PhysicsTodayno.2(2007)pp.19{23[45]F.Zolla,S.Guenneau,A.Nicolet,andJ.B.Pendry,Electromagneticanalysisofcylindricalinvisibilitycloaksandthemiragee ect,OpticsLetters(2007)pp.1069{1071