/
Introduction to Coding Theory CMU Spring  Notes  List Introduction to Coding Theory CMU Spring  Notes  List

Introduction to Coding Theory CMU Spring Notes List - PDF document

pamella-moone
pamella-moone . @pamella-moone
Follow
454 views
Uploaded On 2015-05-19

Introduction to Coding Theory CMU Spring Notes List - PPT Presentation

Now we turn to list decoding arbitrary received words with a bounded distance from the ReedSolomon code using Sudans algorithm This algorithm decodes close to a fraction 1 of errors for low rates Then we will see an improvement by Guruswami and Su ID: 69743

Now turn

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Introduction to Coding Theory CMU Spring..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Lemma8Givenadegree-kpolynomialf(x)2F[X]withf( i)=yifortdi erentpoints( i;yi)2F2:Q( i;yi)=0,if(1;k)-weighteddegreeofQist,theny�f(x) Q(x;y).Proof:Asusual,letR(x):=Q(x;f(x))andnotethatR(x)hastdi erentroots.NowdegreeofRisatmostmaxij:qij6=0i+degx(f)jmaxij:qij6=0i+kjt.HereqijisthecoecientofmonomialxiyjofQ(x;y).Hencey�f(x) Q(x;y).Puttingthesetogether,weobtain:Theorem9(6)Givenparametersn,t,kandnpairs( i;yi)2F2,ift&#x-278;p 2kn,wecan ndalldegreekpolynomialsf2F[X]suchthat i f( i)=yi tintimepolynomialinn,kandjFj.Moreoverthereareatmostp 2n=kmanysuchf's.Proof:LetD t�1.Then(D+1)(D+2) 2k=t2+t 2k�2nk+1 2k�n.ByLemma??,aQwith(1;k)-weighteddegreet�1exists.ByLemma8,weknowthatiffhast-agreement,y�f(x) Q(x;y).Assumingthatwecan ndsuchfactorsinpolynomialtime,wearedone.1.1.3FindingfactorsofQ(X;Y)oftheformY�f(X)Wewilldescribeasimplerandomizedalgorithmgivenin[1,Section4.2].WearegivenabivariatepolynomialQ(X;Y)2F[X;Y]withq=jFjandwewantto ndfactorsy�f(x)withdegx(f)k.Ifwecan ndanalgorithmthateither ndssuchpolynomialf(x)orconcludesthatnoneexists,wearedone.Wecanrunthisalgorithm,andifit ndsf(x),wecanrecurseonthequotientQ(x;y)=(y�f(x)).LetE(X)2F[X]beanirreduciblepolynomialwithdegreek+1.AnexplicitchoiceisE(x)=xq�1� where isageneratorofF.AswehaveseeninHomework2,thisisirreducible.GivensuchE(x),wecanviewQ(x;y)modE(x)asapolynomial,eQ(Y)2eF[Y]withcoecientsintheextension eldeF=F[X]=(E(X))ofdegreeq�1overF.Theproblemreducesto ndingrootsofeQ(Y)ineF,whichcanbedoneusingBerlekamp'salgorithmintimepolynomialindegeQandq.2MethodofMultiplicitiesInthissection,wewillremovethefactorp 2andobtainalistdecodingalgorithmwitht�p knduetoGuruswamiandSudan[4].Firstwewillseeanexampleshowingthatwecan'thopetoimprovetheaboveparameters.Example2Considerthefollowingpointcon gurationofn=10points.Fork=1(lines),havingtp nkimpliest�3.Sowewantto ndlinespassingthrough4points.4 Next gureshowssetofalllinesgoingthroughatleast4points: Ifwewanttooutputallthese5lines,Qmusthavetotaldegreeatleast5.Buttheagreementparametert=4issmallerthan5,soQ(x;f(x))(foroneoftheselines;y=f(x))mightnotbe0.Notethatinthisexample,eachpointhastwolinescrossing.ThusanyQ(x;y)containingtheselinesasfactorsmustalsocontaineachpointtwice.NowwewilltrytounderstandwhatitmeansforQ(x;y)tocontaineachpointtwice.Example3IfQ(X;Y)2F[X;Y]hasrzeroesatpoint(0;0),thenithasnomonomialsoftotalweightlessthanr.SincewecantranslateQbyany( ; )2F2,wecangeneralizetheaboveexampletoaformalde nition:De nition10(Multiplicityofzeroes)ApolynomialQ(X;Y)issaidtohaveazeroofmulti-plicityw1atapoint( ; )2F2ifQ ; :=Q(x+ ;y+ )hasnomonomialoftotaldegreelessthanw.5 Armedwiththisde nitionandanideaonhowtoputadditionalconstraintsonQ,wewilllookatwhathappenstoLemmas7and8.Corollary11GivenpositiveintegersD;w1;:::;wnsuchthatkPi�wi+12�D+22,andpointsf( i;yi)gni=1F2,thefollowingholds:ThereexistsQ(X;Y)602F[X;Y]suchthatQ(x;y)hasazeroofmultiplicitywiat( i;yi)foralli,and(1;k)-weighteddegreeofQisD.MoreoversuchQcanbefoundbysolvingalinearsystem.Proof:NoticethatcoecientofxiyjinQ ; isXi0i;j0ji0ij0j i0�i j0�jqi0;j0:Hencewecanexpresswi-multiplicityconditionas�wi+12homogeneouslinearequations.Bypre-viouscalculation,weknowthatthenumberofQ'scoecientsis(D+1)(D+2) 2k.Thusanon-zerosolutionexistsifnPi�wi+12�D+22Lemma12Supposef( )= ifQ(x;y)hasr-zeroesat( ; ).Then(x� )r Q(x;f(x)).Proof:WehaveR(x):=Q(x;f(x))=Q ; (x� ;f(x)� )=Q ; (x� ;f(x)�f( ))HereQ ; hasnomonomialsofdegreer.Also(x� ) (f(x)�f( )).Foranynon-zeromonomialxiyjofQ ; ,wehave(x� )i+j (x� )i(f(x)�f( ))j.Sincei+jr,wehave(x� )r Q ; (x� ;f(x)� )=Q(x;f(x)).Lemma13Ifadegreekpolynomialfhasf( i)=yifortvaluesofiandPi:f( i)=yiwi&#x-496;D,theny�f(x) Q(x;y)assumingQhas(1;k)weighteddegreeD.Proof:Iff( i)=yiandQ(x;y)hadamultiplicityofwizeroesat( i;yi)then(x� i)wi Q(x;f(x))bypreviouslemma.ThereforeQi:f( i)=yi(x� i)wi Q(x;f(x)).If(1;k)weighteddegreeofQ(x;y)isD,thenQ(x;f(x))0andy�f(x) Q(x;y).Puttingalltogether,weobtain:Theorem14Thealgorithm ndsallpolynomialsf(x)suchthatPi:f( i)=yiwi&#x-496;q 2kPi�wi+12.Inparticular,ifwi=w,thenwecandecodefupton�terrorswitht�q nk�1+1 w.Corollary15(4)ForaReed-SolomoncodeofrateR,wecanlistdecodeupto1�p Rfractionoferrorsintimepolynomialintheblocklengthandthe eldsize.6 3SoftDecodingOnereasonwepickedeachwiindividuallyisbecausewe\encode"likelihoodinformation.Onemightthinkofwi'srepresentingacon dencevalueonthereceivedsymbolandplacingmoreemphasisonsmallervalues.ThisconnectionhasbeenmadeformalbyKoetter-Vardy[5],whereitwasshownhowtochooseweightsoptimallybasedonchannelobservationsandchanneltransitionprobabilities.Oneimportantpointisthatthisapplicationrequiresdealingwithnon-negativerealweights.ThisismadepreciseinthefollowingTheoremwhichappearsin[2,Chapter6]:Theorem16Forallnon-negativerationalsfwi; gi2[n]; 2Fandnon-negativereal,thereisapoly�n;jFj;1 -timealgorithmto ndalldegreekpolynomialsfsuchthatnXi=1wi;f( i)s kXi; w2i; +wmax:4ListDecodingofBinaryConcatenatedCodesThemainshortcomingoftheabovemethodsisthatthealphabetsizeispolynomialinblocklength.Wewilluseconcatenatedcodestoreducealphabetsize.AssumewearegivenaReed-SolomoncodeasouroutercodeCout:Fn2!Fn=R2withrateRandaninnercodeCin:Fm2!Fm=r2withrater=rate(Cin).Considerthebasiccomposition: ThiscodehasrateR0=R=r.Firstwewillstartwiththemostnaiveideaandworkourwayup.OurmaingoalinthissectionistogetabinarycodewhichisclosetoZyablov'sbound.4.1UniquelyDecodingInnerCodesConsideruniquelydecodingeachinnercodesandthenapplyinglistdecodingalgorithmontheoutercode.Therewillbeh�1(1�r) 2fractionoferrorsifaninnerblockisdecodedtoawrongcodeword.ThelistdecodingcapacityofCoutis1�q R r=1�p R0.Hencethisalgorithmcanlistdecodeupto�1�p R0h�1(1�r) 2-fractionoferrors.Howeverthisisquitebad,aswepickedupafactorof1 2thatweweretryingtoavoidbyusinglistdecodingatthe rstplace.7 Lemma17Givenpositivereals0r;R1,thereexistsabinarycodewhichcanbelist-decodedupto1�q R rh�1(1�r) 2fractionoferrorsinpolynomialtime.4.2ListDecodingInnerCodesInsteadofuniquelydecodinginnercodes,considerlistdecodingthem,by{say{bruteforce.RecallthatbyJohnsonBound,anybinarycodecanbelist-decodeduptoh�1(1�r�)-fractionoferrorswithalistsizeof`=`()O(1=).AslightcomplicationarisesonhowtoapplyReed-Solomonlist-decodingonamessagewhereeachsymbolisitselfanotherlist.Duringlist-decodingalgorithm,weonlyassumedall( i;yi)pairsweredistinct,andeverythingworked neevenif i= jfordi erenti;jaslongasyi6=yj.Usingthisobservation,wecanapplyourlistdecodingalgorithmonthesetf( i;yij)gi;j.Thiswillreturnusalistofmessageswhichagreeswitht�p kNpointswhereNn`.Thereforethismethodwillgiveuslistdecodingupto1�q R rh�1(1�r�)fractionoferrors.Lemma18Givenpositivereals0r;R1andforanyreal0r,thereexistsabinarylinearcodewhichcanbelist-decodedupto1�q R rh�1(1�r�)fractionoferrors.Inordertogetabinarycodelistdecodableupto1� 2fractionoferrors,wecantake`=1= 2andr=O( 2),whichimplies=O( 2).BytakingR=r5,weobtain:Theorem19Foranyreal0 1,thereexistsalinearbinarycodeofrate ( 6)list-decodableupto1� 2fractionoferrorswithalistsizeofO1 3.Remark20Comparethistotheoptimalparameterofrate ( 2)andlistsizeO(1= 2).4.3WeightedListDecodingInnerCodesOneroomforimprovementtothepreviousalgorithmisthat,insteadoftreatingeachcodeinthelistequally,assigningdi erentweights.IfwerememberTheorem16,wecanobtainalistdecodingwitha(weighted)agreementofPni=1wi;f( i)q kPi; w2i; +wmax.Inordertominimizethis,weneedtoensurethattheweightsofinnercodesaroundapointshoulddecayin`2normrapidly.Althoughitisnotknownhowtogetthisforgeneralbinarycodes,Hadamardcodeshavethisproperty.5GoingbeyondReed-Solomoncodes&JohnsonradiusForReed-Solomoncodes,weshowedthatonecanecientlylistdecodeuptoaradius(fractionoferrors)equalto1�p R.Howeverweknowthatlistdecodinguptoafraction1�R�oferrors8 1 s::: n�s+1 1 y1ys+1yn�s+2 y2ys+2... 2 y3ys+3...... ... s�1 ysyn| {z }N=n=smanycolumnsIfwethinkofReed-Solomondecodingasinterpolatingapolynomialoveraplane(whichledtothep Rboundonagreementrequired),itmightseempossibletodecodewithagreementfractionaboutRs=(s+1)byinterpolatingin(s+1)-dimensions.Problem21Wewantto ndapolynomialQ(X;Y1;Y2;:::;Ys)602F[X;Y1;Y2;:::;Ys]suchthatQ( is;yis+1;yis+2;:::;y(i+1)s)=0for0in=s.6References1.S.Ar,R.Lipton,R.Rubin eldandM.Sudan,\Reconstructingalgebraicfunctionsfrommixeddata,"SIAMJournalonComputing,vol.28,no.2,pp.488{511,1999.2.V.Guruswami,\Listdecodingoferror-correctingcodes,"LectureNotesinComputerScience,no.3282,Springer,2004.3.V.GuruswamiandA.Rudra,\ExplicitCodesAchievingListDecodingCapacity:Error-CorrectionWithOptimalRedundancy,"IEEETransactionsonInformationTheory54(1):135-150(2008).4.V.GuruswamiandM.Sudan,\ImproveddecodingofReed-Solomonandalgebraic-geometriccodes,"IEEETransactionsonInformationTheory,vol.45,pp.1757{1767,1999.5.R.KoetterandA.Vardy,\Algebraicsoft-decisiondecodingofReed-Solomoncodes,"IEEETransactionsonInformationTheory,49(11):2809-2825(2003)6.M.Sudan,\DecodingReed-Solomoncodesbeyondtheerror-correctionbound,"JournalofComplexity,vol.13,no.1,pp.180{193,1997.10