PPT-Matrix Factorization
Author : pamella-moone | Published Date : 2016-06-17
via SGD Background Recovering latent factors in a matrix m movies n users m movies x1 y1 x2 y2 xn yn a1 a2 am b1 b2 bm v11
Presentation Embed Code
Download Presentation
Download Presentation The PPT/PDF document "Matrix Factorization" is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
Matrix Factorization: Transcript
via SGD Background Recovering latent factors in a matrix m movies n users m movies x1 y1 x2 y2 xn yn a1 a2 am b1 b2 bm v11 . . Factorization. Yingzhou. . Li,. . Haizhao. . Yang,. . Eileen. . Martin,. . Kenneth. . Ho,. . Lexing. . Ying. Complementary. . low-rank. . property. Non-uniform Fourier Transform. Hankel. Hadronic heavy-quark decays. Hsiang-nan Li. Oct. 22, 2012. . 1. Outlines. Naïve factorization. QCD-improved factorization. Perturbative QCD approach. Strong phases and CP asymmetries. Puzzles in B decays. Academia Sinica, Taipei. Presented at AEPSHEP . Oct. 18-22, 2012. Titles of lectures. Lecture I: Factorization theorem. Lecture II: Evolution and resummation. Lecture III: PQCD for Jet physics. Lecture IV: Hadronic heavy-quark decays. Data Analysis on . MapReduce. Chao Liu, Hung-. chih. Yang, Jinliang Fan, Li-Wei He, Yi-Min Wang. Internet Services Research Center (ISRC). Microsoft Research Redmond. Internet Services Research Center (ISRC). 1. Recovering latent factors in a matrix. m. columns. v11. …. …. …. vij. …. vnm. n . rows. 2. Recovering latent factors in a matrix. K * m. n * K. x1. y1. x2. y2. ... ... …. …. xn. yn. a1. Recovering latent factors in a matrix. m. movies. v11. …. …. …. vij. …. vnm. V[. i,j. ] = user i’s rating of movie j. n . users. Recovering latent factors in a matrix. m. movies. n . users. T(A) . 1. 2. 3. 4. 6. 7. 8. 9. 5. 5. 9. 6. 7. 8. 1. 2. 3. 4. 1. 5. 2. 3. 4. 9. 6. 7. 8. A . 9. 1. 2. 3. 4. 6. 7. 8. 5. G(A) . Symmetric-pattern multifrontal factorization. T(A) . 1. 2. 3. 4. 6. 7. 8. by Carol Edelstein. Definition. Product. – An answer to a multiplication problem.. . 7 x 8 = 56. Product. Definition. Factor. – a number that is multiplied by another to give a product.. . 7 x 8 = 56. Author: Maximilian Nickel. Speaker: . Xinge. Wen. INTRODUCTION . –. Multi relational Data. Relational data is everywhere in our life:. WEB. Social networks. Bioinformatics. INTRODUCTION . –. Why Tensor . m. columns. v11. …. …. …. vij. …. vnm. n . rows. 2. Recovering latent factors in a matrix. K * m. n * K. x1. y1. x2. y2. ... ... …. …. xn. yn. a1. a2. ... …. am. b1. b2. …. …. bm. v11. Inference. Dave Moore, UC Berkeley. Advances in Approximate Bayesian Inference, NIPS 2016. Parameter Symmetries. . Model. Symmetry. Matrix factorization. Orthogonal. transforms. Variational. . a. Gemar. 11-10-12. Advisor: Dr. . Rebaza. Overview. Definitions. Theorems. Proofs. Examples. Physical Applications. Definition 1. We say that a subspace S or . R. n. is invariant under . A. nxn. , or A-invariant if:. Everyday Math Lesson 1.9. Lesson Objectives. I can tell the difference between powers of ten written as ten raised to an exponent. .. I can show powers of 10 using whole number exponents. . Mental Math. Sebastian . Schelter. , . Venu. . Satuluri. , Reza . Zadeh. Distributed Machine Learning and Matrix Computations workshop in conjunction with NIPS 2014. Latent Factor Models. Given . M. sparse. n . x .
Download Document
Here is the link to download the presentation.
"Matrix Factorization"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.
Related Documents