/
MODULAR FORMS ELLIPTIC CURVES AND THE ABC CONJECTURE Dorian Goldfeld Dedicated to Alan MODULAR FORMS ELLIPTIC CURVES AND THE ABC CONJECTURE Dorian Goldfeld Dedicated to Alan

MODULAR FORMS ELLIPTIC CURVES AND THE ABC CONJECTURE Dorian Goldfeld Dedicated to Alan - PDF document

pamella-moone
pamella-moone . @pamella-moone
Follow
475 views
Uploaded On 2015-03-10

MODULAR FORMS ELLIPTIC CURVES AND THE ABC CONJECTURE Dorian Goldfeld Dedicated to Alan - PPT Presentation

1 The ABC Conjecture The ABC conjecture was 57519rst formulated by David Masser and Joseph Osterl57526e see Ost in 1985 Curiously although this conjecture could have been formulated in the last century its discovery was based on modern research in ID: 43230

The ABC Conjecture

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "MODULAR FORMS ELLIPTIC CURVES AND THE AB..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

MODULARFORMS,ELLIPTICCURVESANDTHEABCDorianGoldfeldDedicatedtoAlanBakerontheoccasionofhissixtiethbirthday.1.TheABCABC{conjecturewas¯rstformulatedbyDavidMasserandJosephOsterl¶e(see(see)in1985.Curiously,althoughthisconjecturecouldhavebeenformulatedinthelastcentury,itsdiscoverywasbasedonmodernresearchinthetheoryoffunction¯eldsandellipticcurves,whichsuggeststhatitisastatementaboutrami¯cationinarithmeticalgebraicgeometry.TheABC{conjectureseemsconnectedwithmanydiverseandwellknownproblemsinnumbertheoryandalwaysseemstolieontheboundaryofwhatisknownandwhatisunknown.Wehopetoelucidatethebeautifulconnectionsbetweenellipticcurves,modularformsandtheABCConjecture(ABCLetA;B;Cbenon{zero,pairwiserelativelyprime,rationalintegers=0ABCtobethesquarefreepartofABC.Thenforevery²�thereexistssuchthatmax(·AweakerversionoftheABC{conjecture(withthesamenotationasabove)maybegivenasfollows.Conjecture(ABC)(weak).Forevery²&#x-269;&#x 000;thereexistssuchthatABC ·Oesterl¶e,e,showedthatifwede¯ne)=infmax( N1+² SupportedinpartbyagrantfromtheNSF.TheauthorwouldliketothankIrisAnshelandShu-WuZhangformanyhelpfulconversations. )=Thebestresultinthisdirection,knowntodate,seemstobeinthepaperofStewartandTijdemanTijdeman.Theyprovethatforany¯xedpositivethereexistin¯nitelymanysolutionsof=0A;B)=1;NABCp�max(�N logN loglogIn1996AlanBakererproposedamorepreciseversionoftheABCConjecture(ABC(Baker)Forevery²�thereexistsaconstantsuchthatmax(·wheredenotesthenumberofdistinctprimefactorsofABCThisconjecturewouldgivethebestlowerboundsonecouldhopeforinthetheoryoflinearformsinlogarithms.InthesamepapererBakerattributestoGranvillethefollowingintriguingconjecture.Conjecture(ABC(Granville)Letdenotethenumberofintegerslessthanorequaltothatarecomposedonlyofprimefactorsof.Thenmax(NAtpresentthebestknownresultsinthedirectionoftheABC{conjectureareexponen-tialinsmallpowersofandareobtainedusingmachineryfromBaker'stheoryoflinearformsinlogarithms.The¯rstsuchresultwasobtainedbyStewartandTijdemanTijdemanin1986.Theorem1.LetA;B;CbepositiveintegerssatisfyingC;A;B)=1;C&#x-266;&#x 000;Thenthereexistsaconstant·&#x-266;&#x 000;(e®ectivelycomputable)suchthatCeThiswasimprovedin1990byStewartandYuutoTheorem2.LetA;B;CbepositiveintegerssatisfyingC;A;B)=1;C&#x-269;&#x 000;Thenthereexistsaconstant·&#x-269;&#x 000;(e®ectivelycomputable)suchthatCe 3+· loglogTheconstant hasrecentlybeenimprovedbyYuto 3:2 2.ApplicationsoftheABCInordertoshowtheprofoundimportanceoftheABC{conjectureinnumbertheory,weenumeratesomeremarkableconsequencesthatwouldfollowiftheABC{conjecturewereproven.Theorem3.AssumetheABC{conjecture.Fix²,and¯xnon{zerointegers®;¯;°.Thenthediophantineequation®x¯y°z=0hasonly¯nitelymanysolutionsinintegersx;y;z;r;s;txyz=0x;y)=(x;z)=(y;z)=1;r;s;t&#x 000; r+1 s+1 Moreover,thenumberofsuchsolutionscanbee®ectivelycomputedprovidedtheconstantintheABC{conjectureise®ective.Proof:®x;B¯y;C°zWithoutlossofgenerality,wemayassumethatisthemaximumofABC{conjecture(·)thenimpliesthat°z·¢j®¯°xyzj·jitimmediatelyfollowsthatj· ®¯¯1 ¢j j· ¯¯¯¯¯1 ¢j Pluggingtheseboundsinto(21)andtakingtherootofbothsides,weobtain· r+1 s+1 ·wheretheimpliedconstantscanbee®ectivelycomputedanddependatmoston®;¯;°:Theinequality(22)plainlyimpliesthattherecanbeatmost¯nitelymanyintegerssatisfying(2Withoutlossofgenerality,wemaynowassumethatj·jItfollowsthatj· ®¯¯1 ¢j WritingtheABC{conjectureintheform¯y·¢j®¯°xyz andusingthepreviouslyprovedfactthatliesina¯niteset,itfollowsfrom(23)and4)that r+1 Thus,alsoliesina¯niteset.WritingtheABC{conjectureintheform¯x·¢j®¯°xyzandnotingthatmustbe2,itimmediatelyfollowsthatx sothatalsomustlieina¯niteset.Finally,weagainusetheABC{conjecturetowrite®x¯y°zx;y;zlieina¯niteset.Thus,r;s;talsomustlieina¯niteset.In1988Silvermanermanprovedthefollowingtheorem.Theorem4.AssumetheABC{conjecture.Thenthereexistin¯nitelymanyprimessuchthat1(modIn1991ElkiesElkiesprovedthattheABC{conjectureimpliestheMordellconjecture(thiswas¯rstprovedbyFaltingsaltings)whichstatesthateveryalgebraiccurveofgenusde¯nedoverhasonly¯nitelymanyrationalpoints.AnotherinterestingapplicationisduetoGranvilleville1998.Heprovedthefollowing.Theorem5.Letbeapolynomialwithintegercoe±cientswhichisnotdivisiblebythesquareofanotherpolynomial.Thenthereexistsaconstantsuchthat)issquarefree!1ThemostrecentapplicationofABCisduetoGranvilleandStarkStark(1999).TheyshowthataverystronguniformABC{conjecturefornumber¯eldsimpliestherearenoSiegelzerosforDirichletL{functionsassociatedtoimaginaryquadratic¯elds d0,andissquarefreewith1(4)orVojta((,1987)¯rstshowedhowtoformulatetheABC{conjecturefornumber¯elds.K=beanumber¯eldofdegreewithdiscriminant.Foreachprimeidealde¯neavaluationjjnormalizedsothat=NormK= Foreachembedding de¯neavaluationjjby ,andwherejjdenotestheordinaryabsolutevalueon.For;®;:::;®wede¯netheheight:;:::;®)=;:::;wheretheproductgoesoverallplaces(primeidealsandembeddings).Wealsode¯netheconductor:;:::;®)=denotesthesetofprimeidealssuchthat;:::;arenotallequal.Wecannowstate.ABCLet®;¯;°=0Thenforevery²�thereexistssuchthat®;¯;° ®;¯;°AssumingtheuniformABC{conjectureStarkandGranvilleobtainedthefollowinglowerboundfortheclassnumber)of ¡d):h(¡d)¸³¼ 3+o(1)´p d or0 3.EllipticcurvesoverQ(GlobalMinimalModels).Anellipticcurveovera¯eldisaprojectivenon{singularalgebraiccurveofgenusonede¯nedoverK;furnishedwitha{rationalpoint.EverysuchcurvehasageneralizedWeierstrassequationormodeloftheform:K;=16)with{rationalpoint(pointatin¯nity)giveninprojectivecoordinatesby(0Itwas¯rstprovedbyMordellMordell(forK=Q)andgeneralizedbyWeileiltoarbitrarythatthe{rationalpointson))forma¯nitelygeneratedabeliangroup(Mordell{Weilgroup).TherankoftheMordell{Weilgroupisde¯nedtobethenumberofgeneratorsofin¯niteorder. FollowingTate'sformulaireulaire,wede¯ne+4+2+4+4¢=+9where¢denotesthediscriminantofbeanotherellipticcurvede¯nedover.ThenE;Eareisomorphicifandonlyifthereisacoordinatechangeoftheformr;yr;s;twhichtransforms.Inthiscasewehavej;Foreachrationalprimenumber,considerthelocal¯eld.Letdenotethevaluationnormalizedsothat)=1denotestheringof{adicintegers.Fixarationalprime.Amongallisomorphicmodelsofagivenellipticcurvede¯nedover,wecan¯ndonewhereallcoe±cients,andthusiseasilyseenbythecoordinatechangex;ywhichsendseachChoosingtobeahighpowerofdoeswhatwewant.Sinceisdiscrete,wecanlookforanequationwith(¢)assmallaspossible.(GlobalMinimalModel).LetbeanellipticcurveoverwithWeierstrassequationgivenbyisde¯nedtobeminimalat=1isminimal(amongallisomorphicmodelsoverWede¯netobeaglobalminimalmodelifisminimalateveryprime 4.ConjectureswhichareequivalenttoABCbeanellipticcurvede¯nedover(globalminimalmodel)withWeierstrassThenassociatedtowehavetwoimportantinvariants:Discriminant¢=+9)isnonsingular;)hasanodalsingularity;2+±;)hasacuspidalsingularity,with=0if=2Therecipefortheconductorwas¯rstshownbyOggOggin1967.AnalgorithmtocomputeinallcaseswasproposedbyTateinalettertoCassels(see(see).Anellipticcurvewhichneverhasbadreductionofcuspidaltypeissaidtobesemistable,andinthiscaseisalwaysthesquarefreepartof¢.ThisisthebridgebetweenthetheoryofellipticcurvesandtheABC(Szpiro,1981)Letbeanellipticcurveoverwhichisaglobalminimalmodelwithdiscriminantandconductor.Thenforevery²�,thereexistssuchthat·WeshowthatSzpiro'sconjectureaboveisequivalenttotheweakABC{conjecture.LetA;B;Cbecoprimeintegerssatisfying=0andABC=0ABCConsidertheFrey{HellegouarchcurveAminimalmodelforhasdiscriminant(ABCandconductorcertainabsolutelyboundedintegerss;t;(seeFreyrey).PluggingthisdataintoSzpiro'sconjectureimmediatelyshowstheequivalence.AnotherconjectureequivalenttoaversionoftheABC{conjectureisthedegreeconjec-ture.Let¡)denotethegroupofmatricesabcdSL)with0(modandset)tobethecompacti¯edRiemannsurfacerealizedasthequotientoftheupper{halfplaneby¡Anellipticcurvede¯nedoverissaidtobemodularifthereexistsanon{constantcoveringmapE;normalizedsothat)=0theoriginon.Itisnowknown(byworkofChristopheBreuil,BrianConrad,FredDiamond,RichardTaylor,andAndrewWiles)thatevery ellipticcurveoverismodular.Thedegreeconjectureconcernsthegrowthinofthetopologicaldegreeofthemap!1DegreeConjecture.(Frey1987)Forevery²�thereexistssuchthat·FreyreyprovedthatsomeboundforthedegreeimpliesaweakversionoftheABCconjecture.ItwasshownbyMai{Murtyy(1994)thattheABC{conjectureimpliesthedegreeconjectureforallFrey{HellegouarchcurvesandbyMurtyyin1996thatthedegreeconjectureimpliestheABC{conjecture.TheseresultsuseworkofWiles{Diamond[Wi],[D]aswellasworkofGoldfeld{Ho®stein{Liemann{Lockhart[G-H-L-L]onthenon{existenceofSiegelzeroson(3)whicharesymmetricsquareliftsfromABCconjectureisalsointimatelyrelatedtothesizeoftheperiodsoftheFrey{HellegouarchcurveBA:Thiscurvehastwoperiods:=2 p =2 p PeriodConjecture.(Goldfeld1988)LetbetheFrey{HellegouarchcurvewithA;BA;B)=1,andBA:Letdenotetheconductorof.Thenforevery²&#x-500;&#x 000;,thereexistssuchthat&#x-500;&#x 000;· ItwasshownininthattheperiodconjectureimpliestheweakABCThe¯nalconjectureweshalldiscuss(whichisequivalenttoABC)isaconjectureonthesizeoftheShafarevich{Tategroup[Sha],[T2])ofanellipticcurvede¯nedover.Itwasonlyrecently(see(see,[R2],[Kol1],[Kol2],[Kol3])thatwasproved¯niteforasingleellipticcurveandthisexplainswhytheABCconjectureissointractable.Weshallnowde¯nefrom¯rstprinciples.beaset.Wesayagroupactsonwithleftset{actionifforallG;xX;thebinaryoperation,andsatis¯es(forallg;gG;x)theidentities:istheidentityindenotesthegroupoperationin.Ifisanabeliangroupwithinternaloperation+,wesayactsonwithleft{groupactionisaleftset{actionwhichalsosatis¯es)=foralla;a beanabeliangroupwithinternaloperation+andletbeanothergroupwhichactsonwithleftgroup{action.Wede¯neG;A)tobethegroupofallfunctions(cocycles)whichsatisfythecocyclerelation)=)+denotesthegroupoperationin.ThesubgroupG;A)ofcoboundariesconsistsofallcocyclesoftheform.Wede¯nethe¯rstcohomologygroupG;A)tobethequotientgroupG;A)=G;AG;AFixanabeliangroupandanothergroupactingonwithaleftgroup{.AprincipalhomogeneousactionforG;A;isaleftset{actionwhichsatis¯estheidentityforalla;aWenowde¯neanequivalencerelationonthesetofprincipalhomogeneousactions.TwoprincipalhomogeneousactionsG;A;aresaidtobeequivalentforall,all,andsome¯xedWCG;A)denotethesetofequivalenceclassesofprincipalhomogeneousactionsfor(G;A;).WewillshowthatWCG;A)(Weil{Ch^ateletgroup)isinfactagroupbydemonstratingthatthereisabijection(ofsets)WCG;AG;AFirst,ifisaprincipalhomogeneousactionfor(G;A;)thenforsome¯xedwehavethat):=G;A)because)=()=)+Further,ifwereplacebyforanythenthecocyclechangesto)+whichisequivalentto)modG;AThuseachprincipalhomogeneousactiontoauniqueelementofG;AOnealsoeasilychecksthatequivalenthomogeneousactionsmaptothesameelementofG;AFinally,toshowthesurjectivity,letG;ADe¯nealeftactionby)+forallIfwechange)totheequivalentcocycle)+thenthisgivesrisetoanewgivenby)+.Clearlyareequivalentprincipalhomogeneousactions.TheidentityelementinthegroupWCG;Aistheequivalenceclassofallactionsequivalentto.Aprincipalhomogeneousactionisequivalenttoifandonlyifhasa¯xedpointundertheleftset{action,i.e.,ifandonlyifthereexistsforall(clearlytruebecauseisthezerococycle). Inordertoexplicitlyrealizeprincipalhomogeneousactions,itisoftenconvenienttoconsideraset)whereisabijection.Thebijectionleadstoatransitiverightset{actionof)andde¯nedby)forallandallInthissituation,theexistenceofaprincipalhomogeneousactionG;A;)givesrisetoaleftset{actionde¯nedbyforall,and.Onechecksthat=(forallThushasthepropertiesofaprincipalhomogeneousspace(see(see),i.e.,thereisarightset{actionofandaleftprincipalhomogeneousactionTode¯netheShafarevich{Tategroupforanellipticcurvede¯nedoverwe¯rstconsidertheWeil{Ch^ateletgroupWCG;E))where=Gal()whichactson),thegroupof{rationalpointson.ElementsofWCG;E))canberealizedascurvesofgenusone,denoted,de¯nedoverwhicharebirationallyequivalenttoovertogetherwithanappropriateactionNotethatacurveofgenusonede¯nedovermaynothaveapointin.Letbesuchabirationalequivalence.ThenforanythemapgÁisofthetype(see(see)a!a+c(g)witha2E(¹Q),c(g)2Z1(G;Eandadditionabovedenotingadditionontheellipticcurve.Therightactionof)on)isthengivenbytranslation(ontheellipticcurve)for;a;a).Theleftaction)isgivenby))with)whichisinducedfromthecocycle)associatedtothebirationalequivalence.TheTate{Shafarevichgroupoverisde¯nedtobethesubgroupofWCG;E))associatedtocurvesabovewhichhaveapointinandinevery{adic¯eld,orequivalently,theelementsWCG;E))whichhavetrivialimagesinWC;E)andWC;E),where=Gal()forall¯niteprimes,and=Gal().Ifhasapointinthenbytheremarkabove,theactionisintheidentityclassofprincipalhomogeneousactions.Thus,measurestheobstructiontotheHasseprinciple(Hasse'sprinciplestatesthatifacurvehaspointsinandinevery-adic¯eldthenithasapointininde¯nedthenotionofacompaniontoanellipticcurveasaofgenusonewhichisisomorphictoandoverforallprimes.TheShafarevich{Tategroupmaythenbede¯nedasthesetofisomorphismclassesoverofcompanionsof,eachendowed(asabove)withthestructureofaprincipalhomogeneousspace.ConjectureI.(BoundforLetbeanellipticcurvede¯nedoverofconductorwithShafarevich{Tategroup.Thenforevery²�,thereexistssuchthat· !1 OneofthemostremarkableconjecturesinnumbertheoryistheBirch{Swinnerton{DyererwhichrelatestherankoftheMordell{WeilgroupofanellipticcurveandtheShafarevich{Tategroupoftothespecialvalueat=1oftheHasse{WeilL{functionassociatedtotoforthede¯nitionoftheHasse{WeilL{function).ItwasshowninGoldfeld{Szpiro(1995)(1995)thatassumingtheB{S{D(forrank0curvesonly),theaboveconjecturedboundforimpliesthefollowingversionoftheABCABC NIfonefurtherassumesthegeneralizedRiemannhypothesis(fortheRankin{Selbergzetafunctionassociatedtotheweight cuspformcomingfromtheShintani{Shimuralift)thenitwasalsoshownininthattheaboveconjecturedboundfor(forrank0curvesonly)impliestheweakABCABC NActually,similarimplicationscanbeobtainedfromthefollowingweakerconjecture.ConjectureII.(AverageBoundforLetbeanellipticcurveofconductora;b.Forasquare{freeinteger,de¯nethetwistedcurvewithMordell{WeilrankandShafarevich{TategroupThenthereexistsaconstantc&#x-287;&#x 000;andforevery²&#x-287;&#x 000;thereexistsaconstantsuchthatqN· !1WenowsketchtheproofthatConjectureIIplusB-S-DimpliesaversionoftheABCconjecture.TheB-S-DconjecturestatesthattheHasse{WeilL{function)ofanellipticcurvede¯nedoverhasazerooforder=rankoftheMordell-Weilgroupof)andthattheTaylorseriesof)about=1isgivenby)=¢jj¢vol( Here­iseithertherealperiodortwicetherealperiodof(dependingonwhetherornot)isconnected),istheorderoftheTate{ShafarevichgroupofE=,vol(isthevolumeoftheMordell{WeilgroupfortheN¶eron{Tatebilinearpairing,istheorderofthetorsionsubgroupofE=,and=1unlessbadreductionatinwhichcaseistheorder)(Here)isthesetofpointsreducingtonon-singularpointsof)(see(see).Itisknownthat256(Mazur1977 andthatvol())=1if=0Sointherank=0situation,alowerboundfor(1)togetherwithanupperboundfortheorderofwouldimplyalowerboundfortheperiod­.IfthelowerboundfortheperiodwerestrongenoughtogivetheperiodconjecturewewouldgetaversionofABC.Itisenoughtodothisforonetwistedcurvesincetheperiodchangesby .Now,byatheoremofWaldspurger(see[Wa],[Koh]onecan¯ndenoughtwists(qNc&#x-290;&#x 000;&#x-290;&#x 000;1)ofwithMordell{Weilrankzerowheretodowhatwewant.Inthecase0c1itisnecessarytousethegeneralizedRiemannhypothesis.ConjectureIcanbeprovedforCMellipticcurveswith=01728(weactuallygetbetterbounds).Thiswas¯rstdoneinGoldfeld{Lieman(1996)(1996)(seeTheorem6below).ForCMellipticcurvesde¯nedoverweexpect.LetbeaCMellipticcurvede¯nedoverwithShafarevich{Tategroup.ThenN =01728)N =0)N =1728)Theconstantdependsonlyonandise®ectivelycomputable.Theorem6.LetbeaCMellipticcurvede¯nedoverwithMordell{WeilrankandShafarevich{Tategroup.ThenN =01728)N =0)N =1728)Theconstantdependsonlyonandise®ectivelycomputable.ThisresultusesthedeepworkofK.RubinRubin(wheretheB-S-DconjectureisprovedforCMellipticcurvesoverofMordell{Weilrank0),togetherwiththeupperboundsforspecialvaluesof{functionsobtainedbyDuke{Friedlander{Iwaniecaniec.x5.LargeShafarevich{Tategroups.groups.in1964showedthattheTate{Shafarevichgroupofanellipticcurveovercanbearbitrarilylarge.Casselsmethodactuallyshowsthatthereexista¯xedconstantc�0andin¯nitelymanyintegersforwhichthereexistanellipticcurveofconductor,de¯nedover,with��N loglog Thisresultwasobtainedbyadi®erentmethodbyKramerKramerin1983.AssumingtheBirch{Swinnerton{Dyerconjecture,Mai{Murtyyshowedin1994thattherearein¯nitelymanyellipticcurves,de¯nedoverforwhich��N ThiswasimprovedbyDeWegerin1996[We]whoshowedthat��N in¯nitelyoften,undertheassumptionofboththegeneralizedRiemannhypothesisandtheBirch{Swinnerton{Dyerconjecture.TheconnectionbetweentheABC{conjectureandthegrowthofallowsonetocon-structellipticcurveswithlargeShafarevich{TategroupsfrombadABCexamples.B.DeWeger(1997)[We]hasfound11examplesofcurveswith N:Cremona(1993)(1993)(byothermethods)hadalsofoundseveralsuchcurves.ThebestknownexampleofaFrey{Hellegouarchcurvewithlarge+2)comingfromtheABC=3;B=2;C=23duetoReyssatwith=15042Inthiscase: p =06.ModularSymbols.)=¼inzbeaholomorphicHeckenewformofweighttwofor¡normalizedsothat(1)=1For)wede¯nethemodularsymbol°;f&#x-269;&#x 000;¼i°¿whichisindependentofofQ[fShimura(1973)(1973)showedthatthemodularsymbolisahomomorphismof¡)intotheperiodlatticeassociatedwithspeci¯cally,ifthecoe±cients)alllieinthenthehomomorphismisintotheperiodlatticeofanellipticcurve,i.e.,°;f&#x-290;&#x 000;;mm;­1;­2]:Forabcd,de¯netheheightof)tobethemaximumofModularSymbolConjecture.(Goldfeld1988)Let°;f&#x-290;&#x 000;asabove.;mhaveatmostapolynomialgrowthin Itisnothardtoshowthatthereexists·�0suchthat°;f&#x-269;&#x 000;islargerthanwithheightNTheaboveconjecturethenimpliesalowerboundfortheperiodswhichcanbeused(viatheperiodconjecture)toproveaversionoftheABCconjecture.Alternatively,thespecialvalue(1)(attheB-S-Dpoint)canbeexpressedasalinearcombinationofmodularsymbolswhichalsoprovidesabridgetothegrowthofInordertostudythegrowthpropertiesofmodularsymbols,wehaveintroducedanewtypeofEisensteinseriestwistedbymodularsymbols,whichisde¯nedasfollows:z;s)=°;f&#x-269;&#x 000;Im(°zNowisnotanautomorphicform,butitsatis¯es(forall))thefollowingautomorphicrelation°z;s)=z;s°;f&#x-269;&#x 000;Ez;sz;s)=Im(°zistheclassicalEisensteinseries.WehaveshownwnthatE¤(z;s)hasameromorphiccontinuationtotheentirecomplex{planewithonlyonesimplepoleat=1withresiduegivenby ¼N1+ )=2¼idw:Asaconsequence,itfollows(see(see)thatfor¯xedM;N!1°;f&#x-269;&#x 000;e x»3 ¼N ThisresultwasrecentlyimprovedbyO'SullivananwhoexplicitlyevaluatedtheerrortermasafunctionofM;Nandfoundexponentialdecayin.Anintriguingpossibilityistochoosesothat)ispreciselytherealperiodoftheassociatedellipticcurve.Theproblemisthatthereisalotofcancellationinthemodularsymbolssothattheasymptoticrelation(61)givesnoinformationinthedirectionofthemodularsymbolsconjecture.Itwouldbeofgreatinteresttotrytoconstructothersuchserieswhichhavepositivecoe±cientsandhaveasimplepoleat=1withresiduegivenbytheperiodofanellipticcurve.Iftheperiodweretoosmall,suchserieswouldhavetohaveaSiegelzero. 7.REFERENCES.REFERENCES.BAKER,A.,Logarithmicformsandthe{conjecture,NumberTheory(Eger,1996)deGruyter,Berlin(1998),37{44.37{44.BIRCH,B.,SWINNERTON{DYER,H.P.F.,Notesonellipticcurves(I)andJ.reineangew.Math.(1963),7{25and(1965),79{108.79{108.CASSELS,J.W.S.,ArithmeticoncurvesofgenusI(VI).TheTate{Safarevicgroupcanbearbitrarilylarge,J.reine.angew.Math.(1964),65{70.65{70.CASSELS,J.W.S.,Lecturesonellipticcurves,LondonMath.Soc.Stud.Texts,vol.24,CambridgeUniv.Press,LondonandNewYork,(1991).(1991).CREMONA,J.E.,Theanalyticorderofformodularellipticcurves,J.Th.Nom-bresBordeaux(1993),179{184.179{184.DIAMOND,F.,OndeformationringsandHeckerings,Ann.ofMath.(2)(2)DUKEW.,FRIEDLANDER,J.,IWANIEC,H.,BoundsforautomorphicL-functions.II,Invent.math.(1994),219{239.219{239.ELKIES,N.D.,ABCimpliesMordell,Intern,Math.Res.Notices7(1991),99{109,in:DukeMath.Journ.64(1991).(1991).FALTINGS,G.,Arakelov'stheoremforabelianvarieties,Invent.Math.,Math.,FREY,G.,Linksbetweenstableellipticcurvesandcertaindiophantineequations,AnnalesUniversiatisSaraviensis,Vol1,No.1(1986),1{39.1{39.FREY,G.,LinksbetweenellipticcurvesandsolutionsofA-B=C,JournaloftheIndianMath.Soc.(1987),117{145.117{145.GOLDFELD,D.,ModularellipticcurvesandDiophantineproblems,in:NumberTheory(editedbyR.Mollin)WalterdeGruyter,Berlin,NewYork(1990),157{175.157{175.GOLDFELD,D.,Zetafunctionsformedwithmodularsymbols,Proc.oftheSym-posiainPureMath.,Vol66,1,AutomorphicForms,AutomorphicRepresentations,andArithmetic(1999),111{122.111{122.GOLDFELD,D.,Thedistributionofmodularsymbols,in:NumberTheoryinProgress,Vol2,ElementaryandAnalyticNumberTheory(EditedbyK.GyÄory,H.Iwaniec,J.Ur-banowicz)WalterdeGruyter,Berlin,NewYork(1999),849{866.849{866.GOLDFELD,D.,LIEMAN,D.,E®ectiveboundsonthesizeoftheTate{Shafarevichgroup,Math.ResearchLetters,Vol.,(1996),309{318.309{318.GOLDFELD,D.,SZPIRO,L.,BoundsfortheorderoftheTate-Shafarevichgroup,CompositioMath.(1995),71{87. GRANVILLE,A.,ABCmeanswecancountsquarefrees,InternationalMathematicalResearchNotices19(1998),991{1009.991{1009.GRANVILLE,A.,STARK,H.M.,ABCimpliesnoSiegelzerosforL{functionsofcharacterswithnegativediscriminant,toappear.ear.HOFFSTEIN,J.,LOCKHART,P.,Coe±cientsofMaassformsandtheSiegelzero,Ann.ofMath.(2)(1994),161{181.Withanappendixby:GOLDFELD,D.,HOFFSTEIN,J.,LIEMAN,D.,Ane®ectivezerofreeregion.gion.KOHNEN,W.,Fouriercoe±cientsofmodularformsofhalf-integralweight,(1985),237-268.237-268.KOLYVAGIN,V.A.,FinitenessofforasubclassofWeilcurves,Izv.Akad.NaukUSSRSer.Mat.(1988),522{540;Englishtransl.,MathUSSR-Izv.(1989),523{543.523{543.KOLYVAGIN,V.A.,OntheMordell{WeilgroupandtheShafarevich{Tategroupofellipticcurves,Izv.Akad.NaukSSSRSer.Mat.(1988),1154{1180.1154{1180.KOLYVAGIN,V.A.,Eulersystems,TheGrothendieckFestschrift,vol.II(Acollectionofarticleswritteninhonorofthe60thbirthdayofAlexanderGrothendieck),BirkhÄauser,Basel,(1991),435{483.435{483.KRAMER,K.,AfamilyofsemistableellipticcurveswithlargeTate{Shafarevichgroups,Proc.Amer.Math.Soc.,(1983),379{386.379{386.MAZUR,B.,ModularellipticcurvesandtheEisensteinideal,Inst.HautesSci.Publ.Math.(1977),33{186.33{186.MAZUR,B.,Onthepassagefromlocaltoglobalinnumbertheory,Bull.A.M.S.,Vol.29,No.1,(1993),14{50.14{50.MURTY,R.,Boundsforcongruenceprimes,Proc.oftheSymposiainPureMath.,Vol66,1,AutomorphicForms,AutomorphicRepresentations,andArithmetic(1999),(1999),MAI,L.,MURTY,R.,Anoteonquadratictwistsofanellipticcurve,ProceedingsandLectureNotes,(1994),121{124.121{124.MORDELL,L.J.,Ontherationalsolutionsoftheindeterminateequationsofthethirdandfourthdegrees,Proc.CambridgePhilos.Soc.,(1922),179{192.179{192.OGG,A.P.,Ellipticcurvesandwildrami¯cation,Amer.J.Math.(1967),1{21.1{21.OSTERL¶E,J.,NouvellesapprochesduTh¶eorµemedeFermat,Sem.Bourbaki,n(1987-88),694-01-694-21.694-21.O'SULLIVAN,C.,PropertiesofEisensteinseriesformedwithmodularsymbols,appear. RUBIN,K.,Tate-Shafarevichgroupsandfunctionsofellipticcurveswithcomplexmultiplication,Invent.math.(1987),527{559.527{559.RUBIN,K.,TheworkofKolyvaginonthearithmeticofellipticcurves,ofComplexManifolds,LectureNotesinMath.,SpringerVerlag,NewYork(1989),(1989),SERRE,J.P.,GaloisCohomology,Springer{Verlag,Berlin,Heidelberg(1997).(1997).SHAFAREVICH,I.R.,Onbirationalequivalenceofellipticcurves,Dokl.Akad.NaukSSSR114(1957),267{270.Reprintedin:CollectedMathematicalPapers,SpringerVerlag,Berlin,Heidelberg(1989),192{196.192{196.SHIMURA,G.,Onthefactorsofthejacobianvarietyofamodularfunction¯eld,Math.Soc.Japan(1973),523-544.523-544.SILVERMAN,J.H.,Wieferich'scriterionandthe{conjecture,J.NumberTheory,30(1988),226{237.226{237.SILVERMAN,J.H.,TheArithmeticofEllipticCurves,Springer-VerlagGTM106106STEWART,C.L.,TIJDEMAN,R.,OntheOesterl¶e-MasserConjecture,Monatsh.Math.102(1986)251-257.251-257.STEWART,C.L.,YU,K.R.,Onthe{conjecture,Math.Ann.291(1991),no.2,225{230.225{230.TATE,J.,AlgorithmfordeterminingtheTypeofaSingularFiberinanEllipticin:ModularFunctionsofOneVariableIV,LectureNotesinMath.Math.TATE,J.,WC{groupsover{adic¯elds,S¶eminaireBourbaki,Exp.156(1957).(1957).VOJTA,P.,DiophantineApproximationsandValueDistributionTheory,NotesinMath.[Wa]WALDSPURGER,J-L.,Surlescoe±cientsdeFourierdesformesmodulairesdepoidesdemi-entier,J.Math.PuresAppl.(1981),375-484.375-484.WEIL,A.,Surunth¶eorµemedeMordell,Bull.Sci.Math.,(1930),182{191.Reprintedin:OeuvresScienti¯ques,CollectedPapers,vol.1,SpringerVerlag,NewYork(1980),11-45.[We]DEWEGER,B.,andbigSha's,Math.Inst.UniversityofLeiden,TheNetherlands,Reportno.W96{11(1996).(1996).WILES,A.,ModularellipticcurvesandFermat'slasttheorem,Ann.ofMath.(1995),443{551.ColumbiaUniversityDepartmentofMathematics,NewYork,NY10027E-mailaddress:goldfeld@columbia.edu