PPT-Understanding the Difficulty of Training Deep Feedforward Neural Networks

Author : pamella-moone | Published Date : 2018-09-21

Qiyue Wang Oct 27 2017 1 Outline Introduction Experiment setting and dataset Analysis of activation function Analysis of gradient Experiment validation and conclusion

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "Understanding the Difficulty of Training..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

Understanding the Difficulty of Training Deep Feedforward Neural Networks: Transcript


Qiyue Wang Oct 27 2017 1 Outline Introduction Experiment setting and dataset Analysis of activation function Analysis of gradient Experiment validation and conclusion 2 Introduction. 1 Basic ideas of feedforward control A basic control problem is to generate a control signal so that the output of a physical system follows a given reference signal The simplest con64257guration is shown in 64257gure 111 where is the controlled sys Aaron Crandall, 2015. What is Deep Learning?. Architectures with more mathematical . transformations from source to target. Sparse representations. Stacking based learning . approaches. Mor. e focus on handling unlabeled data. Deep Learning @ . UvA. UVA Deep Learning COURSE - Efstratios Gavves & Max Welling. LEARNING WITH NEURAL NETWORKS . - . PAGE . 1. Machine Learning Paradigm for Neural Networks. The Backpropagation algorithm for learning with a neural network. ISHAY BE’ERY. ELAD KNOLL. OUTLINES. . Motivation. Model . c. ompression: mimicking large networks:. FITNETS : HINTS FOR THIN DEEP NETS . (A. Romero, 2014). DO DEEP NETS REALLY NEED TO BE DEEP . (Rich Caruana & Lei Jimmy Ba 2014). Deep Neural Networks . Huan Sun. Dept. of Computer Science, UCSB. March 12. th. , 2012. Major Area Examination. Committee. Prof. . Xifeng. . Yan. Prof. . Linda . Petzold. Prof. . Ambuj. Singh. Abhishek Narwekar, Anusri Pampari. CS 598: Deep Learning and Recognition, Fall 2016. Lecture Outline. Introduction. Learning Long Term Dependencies. Regularization. Visualization for RNNs. Section 1: Introduction. Introduction 2. Mike . Mozer. Department of Computer Science and. Institute of Cognitive Science. University of Colorado at Boulder. Hinton’s Brief History of Machine Learning. What was hot in 1987?. Fall 2018/19. 7. Recurrent Neural Networks. (Some figures adapted from . NNDL book. ). Recurrent Neural Networks. Noriko Tomuro. 2. Recurrent Neural Networks (RNNs). RNN Training. Loss Minimization. Bidirectional RNNs. Introduction to Back Propagation Neural . Networks BPNN. By KH Wong. Neural Networks Ch9. , ver. 8d. 1. Introduction. Neural Network research is are very . hot. . A high performance Classifier (multi-class). Secada combs | bus-550. AI Superpowers: china, silicon valley, and the new world order. Kai Fu Lee. Author of AI Superpowers. Currently Chairman and CEO of . Sinovation. Ventures and President of . Sinovation. Dr. Abdul Basit. Lecture No. 1. Course . Contents. Introduction and Review. Learning Processes. Single & Multi-layer . Perceptrons. Radial Basis Function Networks. Support Vector and Committee Machines. Dr David Wong. (With thanks to Dr Gari Clifford, G.I.T). The Multi-Layer Perceptron. single layer can only deal with linearly separable data. Composed of many connected neurons . Three general layers; . . 循环神经网络. Neural Networks. Recurrent Neural Networks. Humans don’t start their thinking from scratch every second. As you read this essay, you understand each word based on your understanding of previous words. You don’t throw everything away and start thinking from scratch again. Your thoughts have persistence.. Eli Gutin. MIT 15.S60. (adapted from 2016 course by Iain Dunning). Goals today. Go over basics of neural nets. Introduce . TensorFlow. Introduce . Deep Learning. Look at key applications. Practice coding in Python.

Download Document

Here is the link to download the presentation.
"Understanding the Difficulty of Training Deep Feedforward Neural Networks"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents