/
Amplitude-only,passive,broadband,opticalspatial Amplitude-only,passive,broadband,opticalspatial

Amplitude-only,passive,broadband,opticalspatial - PDF document

pasty-toler
pasty-toler . @pasty-toler
Follow
384 views
Uploaded On 2016-05-21

Amplitude-only,passive,broadband,opticalspatial - PPT Presentation

cloakingofverylargeobjects JohnCHowell 1 JBenjaminHowell 2 andJosephSChoi 3 1 DepartmentofPhysicsandAstronomyUniversityofRochesterRochesterNewYork14627USA 2 TCMSRochesterNewYork14618USA ID: 328295

cloakingofverylargeobjects JohnC.Howell *J.BenjaminHowell 2 andJosephS.Choi 3 1 DepartmentofPhysicsandAstronomy UniversityofRochester Rochester NewYork14627 USA 2 TCMS Rochester NewYork14618 USA

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Amplitude-only,passive,broadband,optical..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Amplitude-only,passive,broadband,opticalspatial cloakingofverylargeobjects JohnC.Howell, 1, *J.BenjaminHowell, 2 andJosephS.Choi 3 1 DepartmentofPhysicsandAstronomy,UniversityofRochester,Rochester,NewYork14627,USA 2 TCMS,Rochester,NewYork14618,USA 3 TheInstituteofOptics,UniversityofRochester,Rochester,NewYork14627,USA *Correspondingauthor:howell@pas.rochester.edu Received26December2013;accepted5February2014; posted6February2014(Doc.ID203722);published20March2014 Wedemonstratethreeamplitudecloaksthatcanhideverylargespatialobjectsovertheentirevisible spectrumusingonlypassive,off-the-shelfoptics.Thecloakedregionforallofthedevicesexceeds 10 6 mm 3 ,withthelargestexceeding 10 8 mm 3 .Althoughunidirectional,thesecloakscanhidethecloaked object,eveniftheobjectistransverselyilluminatedorself-illuminated.Duetothesmallusablesolid angle,butsimplescaling,thesecloaksmaybeofvalueinhidingsmallfield-of-viewobjectssuchas mid-tohigh-earthorbitsatellitesfromearth-basedobservation.Activephasefrontmanipulationcan alsomakethesecloaksinvisibletosomeformsofimagehomodyning.©2014OpticalSocietyofAmerica OCIScodes: (230.3205)Invisibilitycloaks;(110.3010)Imagereconstructiontechniques;(350.4600) Opticalengineering;(220.2740)Geometricopticaldesign. http://dx.doi.org/10.1364/AO.53.001958 1.Introduction Theintriguingandexcitingpossibilitiesofoptical spatialcloakinghaveattractedboththepopularcul- tureandthescientificcommunity[ 1 – 14 ].Great strideshavebeentakentoachievethe “ HolyGrail ” ofopticalcloaking:broadbandopticalinvisibilityin boththephaseandamplitudeofthefield,omnidir- ectionality,theabilitytocloakmacroscopicobjects andbeinvisible.Manyoftheinitialdevelopments inexperimentalopticalcloakingwerebasedon transformationoptics[ 1 – 3 ]andstudiedinmetama- terials[ 1 , 4 – 10 ]andinpatterneddielectrics[ 11 , 12 ] withtheuseofquasi-conformalmapping.Whilere- markableprogresshasbeenmade,muchworkre- mainsintermsofachievingthecloakingatoptical wavelengths,increasingthebandwidthoverwhich thecloakworks,andscalingtolargedimensions. Towardthesegoals,arecentclassicalopticsmethod usingbirefringentcalcitecrystals[ 14 ]achieveda polarization-dependent,broadband,visible,unidi- rectionalcloakofasmallinclinewithapeakheight of2mm.Anotherintriguingadvancewastherecent demonstrationoftemporalcloaking(hidingatempo- ralevent)work[ 15 ]basedonsplittemporallensing anddispersivepropagationinfibers. Onecanconsidercloakingtobeanopticalinvisibil- ityillusion.Cloaksbasedontransformationoptics havetheillusionofhidingobjectssuchthatboththe phaseandamplitudeofafieldareundisturbed[ 16 ]. Thephaseandamplituderequirementalsomakes themdifficulttoachieve.Withouttherequirement ofphasepreservation,onecanmakeverysimple cloaksbasedonpassivelinearrefractiveandreflec- tiveelements.However,wavefrontsensing,suchas imagehomodyning,canrevealthepresenceof “ am- plitude-only ” cloaksbyfindingphasediscontinuities. Here,wereporton “ amplitude ” cloakingdevices basedonoff-the-shelfopticsthatcanachievebroad- bandinvisibilityandarbitraryspatialscalingandbe hiddenthemselves.Wedemonstratecloakingover 1559-128X/14/091958-06$15.00/0 ©2014OpticalSocietyofAmerica 1958APPLIEDOPTICS/Vol.53,No.9/20March2014 thevisiblespectrumwithcloakingregionsexceeding 10 6 mm 3 ,withthelargestexceeding 10 8 mm 3 .Atits mostbasiclevel,theopticalillusionistosimply guidelightaroundanobjectasiftheobjectisn ’ t there.Onemightarguethatanendoscope,anindex- guidingfibersystemusedtoimageholloworgansin thehumanbody,achievesthisend.Theetymologyof “ smokeandmirrors ” impliestheuseofdistraction andopticalillusionthroughthecarefulguidingof light.Suchillusionshavebeenaroundforalmost twocenturies[ 17 ].Itshouldnotcomeasasurprise thatreflectiveandrefractiveopticscanbeusedto cloakverylargeoptics.Todemonstratethispoint, webuiltandreportonthreecloakingdevices.Impor- tantly,eachdevicecanbeeasilyscaledtomuch largersystems.Itshouldbenotedfromtheoutset thatthepurposeofthispaperistodemonstrate thesimplicityofamplitudecloaking. Thefirstdeviceisbasedonthebendingoflightata dielectricinterface.Wedemonstratearealizationof thedeviceusingtwoL-shapedwater-filledtanks. Theseconddeviceusesquadraticphaseelements, suchaslenses,anddoesn ’ tsufferfromtheedgeeffect problemsofthefirstdevice(thisisthespatialequiv- alentofthetemporalcloak[ 15 ]).Thethirddevice simplyusesmirrorstoguidelightaroundtheobject. Thelattercloak,whilenotnew[ 17 – 19 ],isintended todemonstratetheeaseofscalingofthesesystems. 2.CloakingwithSnell ’ sLaw Theexperimentalsetupofthefirstdeviceisshownin Fig. 1 .Thecloakisbasedontheideathatlightis transverselyshiftedbuthasthesamedirectionafter passingthroughatiltedmedium(havingadifferent indexofrefraction)withtwostraightparallelfaces. Thesetupusestwowater-filledtankstobendlight aroundacloakingregion.Thefirsttankcausesall theraysbelowtheopticalaxistobeshifteddown- wardandtheraysabovetheopticalaxistobeshifted upward.Aftertheraysexitthesecondwallofthe firsttank,theyareparalleltotheopticalaxisbut haveadisplacementrelativetotheiroriginaltrajec- tory.Thedisplacementhidesanyobjectinthe middle.Thesecondtankundoestheeffectsofthe firsttanksothattheraysareonceagainparallel withthedisplacementundone.Thediameterof thecloakingregioncanbefoundfromSnell ’ slawand thewidthofthetank.FromFig. 2 ,wecancompute thesizeofthecloakingregion.WeuseSnell ’ slaw n a sin   a  n w sin   w  ,where n a  1 ( n w  1 . 33 ) istheindexofrefractionofair(water)and  a (  w )is theangleoftherayrelativetothenormalinair (water).Usingstraightforwardtrigonometry,wefind thatthedistance d betweentheincidentrayand therayafterpropagatingthroughthemediumis givenby d  x sin   a  arcsin  n  1 w sin   a  cos  arcsin  n  1 w sin   a  : (1) Thetankshaveawidthof x  200 mm,andtheinci- dentlightrayshaveanangleof   4 ,yieldingacloak- ingregionof 2 d  105 mm,ingoodagreementwith theobservedsize. Analternativeperspectivetothefunctionalityof thiscloakisthattheeffectoftheL-shapedtanks istocreateasplitlinearphaserampacrossthefront oftheelectricfield.Thesplitlinearphaseramp causesparallelraystobedeflectedinoppositedirec- tionsaboutthecloakingregion.Thisisaunidirec- tionalcloakingdevice,becausesomeraysnot paralleltotheopticalaxiscanpenetratethecloaking region[seeFig. 1(b) ].Inaddition,thenonparallel raystraversedifferentlengthsofwaterandhave differentincidentanglesinthetwotanks,causing distortiontothebackground.Thetransversedis- placementsoftheraysnotparalleltotheopticalaxis Fig.1.CloakingdevicebasedonSnell ’ slaw.TwoL-shapedwater- filledtanksbendlightaroundacloakingregion.(a)Raysparallel totheopticalaxis:atthefirstinterface,lightbendsawayfromthe opticalaxisduetotheinterfacewithwater.Thelightthenbends backinthesamedirectionatthesecondinterface.Thesecondtank bringsthelightbackwithboththesamedirectionandnotrans- versedisplacement.(b)CODEVsimulationofrayfans(solid/red arrows)displacedfromtheopticalaxis.Dashedlinesindicate wheretherayswouldgowithoutthedevice.Thefinalrayshave thesameangles.However,theraysnotparalleltotheaxisare displaced,resultinginashiftintheperceivedobjectposition. Fig.2.Distance d betweenanunalteredrayandthepathofthe rayafterexitingthewatercanbefoundfromSnell ’ slawandthe widthofthetank L . 20March2014/Vol.53,No.9/APPLIEDOPTICS1959 canbeseenintheCODEVsimulationinFig. 1(b) .As expected,sincenoopticalpowerispresentinthis device,theanglesremainunchanged.However,the finalraysthatanobserversees(solid/redlines)have anarrowerrangeofanglesthanwhatwouldhappen withoutthecloakingdevice.Thismeansthattheob- jectswillappearcloserthanwheretheyareactually located. Unlikeothercloaksandtheseconddevicedis- cussedlater,thereisn ’ taneffectivecompressionof thefield.Thislackoffieldcompressionleadstoedge effects.Thisfirstdevicewillsufferfromedgeeffects attheextremewingsofthedevice.Duetothedeflec- tionwithoutcompressionoftheraysatthefirst interface,thesecondinterfaceofthetankhastopro- trudefartherthanthefirstinterface.So,unlessthe tanksareinfiniteinextent,theedgeswillhavesome problems.Itshouldalsobenotedthattransverseil- luminationorself-illuminationofthecloakedobject cannotbeobservedinthecloakeddirection,sincethe tankswilldeflectthelightawayfromtheobserver. TheactualexperimentalsetupisshowninFig. 3 . Anaerialviewofthesetupshowsahelicopterinthe cloakingregionbetweenthetwowatertanks.The cloakingabilityofthefirstcloakingdeviceisshown inFig. 4 .Belowthewaterlineinthepicture,theheli- coptercannotbeseenandthetruckappearsinits place.However,abovethewaterline,thehelicopter isvisibleandinfrontofthetruck.Thebendingof thelightcausesthelighttopassaroundthebottom ofthehelicopterandbendbacksothatthetruckcan beviewedinitsplace.Thetransversewidthofthe helicopterisapproximately125mm,beingapproxi- mately20mmlargerthanthecloakingdiameter.A smallwhitebrightlylitpieceofthehelicopteratits widestpointcanbeseen.Itshouldbenotedthatthe helicopterisilluminateddirectlyfromaboveandre- mainsinvisible.Thus,thetransverseilluminationof thecloakedobjectdoesnotrevealitspresence,asone wouldexpectfromacloakingdevice. Whilethefirstcloakingdeviceisstraightforward toimplement,thescalingtoverylargeobjectsbe- comesratherimpracticalunlessonewishestocarry aroundverylargetanksofwater.Ageneralizationof thisdeviceistohaveadevicethatcausesasplit linearphaseramp.Thiscanbeachievedwithaholo- gram,aspatiallightmodulator,andalargepieceof glasswithlongprism-likewedges(equivalenttoa Fresnellensbutwithlinearratherthanquadratic etching). 3.CloakingwithLenses ThesecondschemeisshowninFig. 5 .Thisscheme canbeconsideredasthespatialequivalentofthe temporalcloakusedin[ 15 ].Lensesareusedtoguide lightaroundthecloakingregion.Fresnellensesare usedattheinterfacesofthecloakingdevice,because oftheirlowmass,scalability,andrectangularshape. Unfortunately,passingthroughafocusinvertsthe backgroundbehindtheobject.Inthisspatialcloak, diverginglensesbetweentheFresnellensesprevent thelightfrompassingthroughafocus,whichmeans Fig.3.Aerialviewofthefirstcloakingdevice.Ahelicopteris showninsidethecloakingregionofthefirstdevice.Atruckis shownontheothersideoftheviewingregion.Thetruckwill appearinthehelicopter ’ splacewhenwaterisinsidethetanks andviewedalongtheopticalaxis. Fig.4.Belowthewaterline,thehelicopteriscloakedandthe truckappearsinitsplace.Thelightcomingfromthetruckpasses aroundthehelicopterviathewatertanksandisthenseeninplace ofthehelicopter.Abovethewaterline,thehelicopterisshownin frontofthetruck. Fig.5.Experimentalcloakingschematicoftheseconddevice. Converginganddiverginglensesareusedtomaplightaround thecloakingregion. 1960APPLIEDOPTICS/Vol.53,No.9/20March2014 thattheimagewillbeuprightratherthaninverted. Theyalsohavetheinterestingpropertythatthe separationbetweenlensescanbequitelargeafter theraysarecollimated,sothatthecloakingregion canbeextendedlongitudinally. Analternativebutslightlylargerdesignwasac- tuallyusedtodemonstratethecloaking.Thealterna- tivedesign,showninFig. 6 ,removesthetwo diverginglensesfromthesetup.However,withthe twodiverginglensesremoved,theimageoftheback- groundisinverted.Tomaketheimageupright,we useanothersetofFresnellensesalsoseparatedby 2 f 1 inserieswiththefirsttwolenses.Intheactual experiment,thetwomiddleFresnellenseswere mountedtogetherasiftheywereasinglelens.The designofthedeviceisshowninFig. 7 ,andthe cloakedhelicopterisshowninFig. 8 .Itcanbeseen thatthetailofthehelicopteriscloakedandthetruck behindthehelicopterappearsinitsplace.Onecan noticethatintheuncloakedregion,asmallportion ofthetruckinthebackgroundcanbeseenabovethe helicopter.Four 175 mm× 250 mmFresnellenses wereused,eachhavingafocallengthof200mm. Thetruckisplacedadistanceof750mmfromthe firstlens,anditisobservedwitha 21 ×magnification camera(thehighestmagnificationofthecamera)at  6 . 4 m(thelargestdistanceallowedbythephysical space)fromtherearlens.Theimagequalityis limitedbythequalityoftheFresnellenses. 4.CloakingwithMirrors Thelastcloakisthemostobviousdesignonewould usetomakelightpassaroundanobject.Thedesign ofthedeviceisshowninFig. 9 .Invisibilitywithmir- rorshasbeenpreviouslydone.Thepointwewishto emphasizeisnotthenoveltybuttheeaseofscalingto nearlyarbitrarysize.Thefirstmirrorreflectsthe lightawayfromthecloakingregion.Thelightthen bouncesoffofaretroreflectingmirrorpair(two mirrorsatrightangles),andthenitreflectsoffof themirrorbehindtheobject. Theretroreflectingmirrorsmakeitsothatrays leavingthecloak,evenoff-axisrays,leaveatthesame angle(magnificationis1),albeitwithtransverse shifts[seeCODEVsimulationshowninFig. 9(b) ]. Thetransverseshiftsmeanthatthisdeviceworks optimallyatinfinity(largedistancefromthe observer).Incontrasttothefirstcloakingdevicewith Fig.6.Alternativeschematicfortheseconddevice.FourFresnel lensesinseriesareused.TwosetsofFresnellenseswitheachset separatedbytwicethefocallengthmakeitsotheimageisnotin- verted.Thedistancebetweenlenspairscanbearbitrarilysmall.In theactualexperiment,theyweremountedtogetherasiftheywere asinglelens.(a)On-axismarginalraysforanobjectatinfinity. (b)CODEVsimulationofthesameraysasintheactualexperi- ment.Theobjectwasplaced750mmfromthefirstFresnellens. Thefigureisnottoscaleforeaseofviewing. Fig.7.Setupforthesecondcloakingdevice.Thetailofahelicop- terisatthefocusofaFresnellens(lightpassesaroundit).Four Fresnellenses(thetwointhemiddleareincontact)allowfora one-to-onenoninvertedimagingofthebackground.Thelenses havethedimensionsof 175 mm× 250 mmandhaveafocallength of200mm.Thetruckisplacedadistanceof750mmfromthelast lens. Fig.8.Viewingalongtheopticalaxis,weseethetruckappearing intheplaceofthetailofthehelicopter.Theobservationwasdone witha 21 ×magnificationcameraat6.4mfromthefirstlens. 20March2014/Vol.53,No.9/APPLIEDOPTICS1961 water,heretheoutputrayshaveawiderrangeofan- gles.Theresultisthattheobjectsinthemirrorare actuallycloserthantheyappear(ascanbeseenin Fig. 11 ).Thiscanbeunderstoodbyrealizingthat thecloakingdevicebendslightaroundthehiddenob- ject.Sotheoutputlighthasactuallytraveledfarther andexpandedmorethanonadirectpath.Hence,an observerwillperceivethelighttohavestartedfrom fartheraway.Inthefirstcloakingdevice,theindex ofrefractiondifferencescausedanoppositeeffect, butherelighttravelsonlyinair,soitsrateofexpan- sionremainsthesame.Theidealscenarioisthento havethedistancebetweenthemirrorsbesmall,com- paredtothedistanceofthebackgroundobjectsfrom themirrors.Thiscanalsooccurwhentheobserveris infinitelyfaraway,asmentioned. Welistsomeofthedownsidesforthiscloak.First, thereareedgeeffectsifonemovestotheside (unidirectional).Second,theretroreflectingmirror pairmakesthecloakvisibleunlessthemirrorsare placedbehindawallorsomelargeobjects.Third, whiletheraysleaveinthesamedirections,they leavewithatransversedisplacementthatispropor- tionaltotheincominganglerelativetotheoptical axis.However,evenwiththesedrawbacks,itis clearlyscalabletoverylargedimensions. TheactualexperimentisshowninFig. 10 .Two setsofmirrorsarejoinedatrightangles.Itisimpor- tanttoalignthemirrorssothatthefrontandrear mirrorsareperpendicular.Tominimizebackground distortion,carefulattentionwasgiventosecuring thejoinedmirrorsatrightanglesandtomaking themasverticalaspossible.InFig. 11 onecansee thatpartofthechairiscloakedandtherubbish caninthebackgroundappearsinitsplace.Theim- agewastakenapproximately25mfromthemirrors, thusensuringthatthecloakoccupiedasmallfield ofview(unidirectionality).Themirrorshavedimen- sionsof 600 mm× 900 mm,withatotalcloaking volumeof 1 . 6 × 10 8 mm 3 .Thisvolumeissufficient tocloakahuman,albeitwithnotasmuchconven- ienceasHarryPotter ’ scloak.Thesimplicityofthe devicemeansthatmuchlargercloakingdevicescan easilybebuilt. Wehaveconsideredpassiveamplitude-onlycloaks. However,makingthesecloaksactive,inthesense thatthephasemaybeadjustedbasedonfeedback, mayallowforphaseandamplitudeinvisibility.The phasediscontinuitiescausedbythecloakcanbe amelioratedunidirectionallyforsometypesofimage homodyningbyaddingafrequency-dependentphase shifttothefield.Ifthecloakisbeinginterrogated byanarrowbandcoherentfieldofaparticularfre- quency,amodulationofthecloaktomakethephase frontsmoothcanbemade.Thus,activephasefront manipulationcouldachievebothamplitudeand phasecloakinginthiscontext. 5.Conclusions Insummary,wehavedemonstratedthree “ ampli- tude-only ” opticalcloakingdevices.Thecloakswork overthevisiblespectrumandhavecloakingregions Fig.9.Schematicforthethirddevice.Mirrorsreflectlight aroundthecloakingregion.(a)On-axismarginalraysforanobject atinfinity.(b)CODEVsimulationofthesamemarginalraysforan objectabout1.5mfromthemirrors.Theanglesoftheraysdonot change,buttheobjectwillappeartobefartherawaythanits actuallocation. Fig.10.Setupforthethirddevice.Twosetsofrightanglemirrors guidelightaroundthecloakedregion. Fig.11.Chairiscloaked,andarubbishcanappearsinitsplace. 1962APPLIEDOPTICS/Vol.53,No.9/20March2014 exceeding 10 6 mm 3 ,andwithgoodcoatings,thesec- onddevicecanbemadenearlyinvisible.Thesecond devicedoesnotsufferfromedgeeffectsforstraight- onviewing.Thedownsideisthatallofthesedevices areunidirectional.Thedevicesmayhavevalue,for example,incloakingsatellitesinmid-tohigh-earth orbitsorforanysmallfield-of-viewcloaking.It shouldbepointedoutthattransverseillumination orself-illuminationofthecloakedobjectstillrenders theobjectinvisibletotheobserver.Whileithasbeen shownthatperfectinvisibilitycannotbeattained [ 20 ],anopenquestioniswhetherstandardoptics canachievegeometric(rayoptic)omnidirectional ormultidirectionalcloaking[ 2 ].Currenteffortsare exploringcloakswithsphericalsymmetry(muchlike retroreflectingspheresachievingmultidirectional reflection),whichmayachievemultidirectional cloaking. AftersubmissionofthispapertothearXiv[ 21 – 23 ], anotheramplitude-onlycloakingschemeappeared [ 24 ].Theirschemeusedpassiverefractiveelements tomimicmetamaterialcloaks. TheauthorswouldliketothankC.Levitforpoint- ingoutreference[ 17 ].J.C.Howellwouldliketo thankA.Aluforhelpfuldiscussions. References 1.J.B.Pendry,D.Schurig,andD.R.Smith, “ Controllingelectro- magneticfields, ” Science 312 ,1780 – 1782(2006). 2.U.Leonhardt, “ Opticalconformalmapping, ” Science 312 , 1777 – 1780(2006). 3.H.Chen,C.T.Chan,andP.Sheng, “ Transformationopticsand metamaterials, ” Nat.Mater. 9 ,387 – 396(2010). 4.D.Schurig,J.J.Mock,B.J.Justice,S.A.Cummer,J.B.Pendry, A.F.Starr,andD.R.Smith, “ Metamaterialelectromagnetic cloakatmicrowavefrequencies, ” Science 314 ,977 – 980(2006). 5.W.Cai,U.K.Chettiar,A.V.Kildishev,andV.M.Shalaev, “ Op- ticalcloakingwithmetamaterials, ” Nat.Photonics 1 ,224 – 227 (2007). 6.N.Liu,H.Guo,L.Fu,S.Kaiser,H.Schweizer,andH.Giessen, “ Three-dimensionalphotonicmetamaterialsatoptical frequencies, ” Nat.Mater. 7 ,31 – 37(2008). 7.I.I.Smolyaninov,Y.J.Hung,andC.C.Davis, “ Two- dimensionalmetamaterialstructureexhibitingreducedvis- ibilityat500nm, ” Opt.Lett. 33 ,1342 – 1344(2008). 8.I.I.Smolyaninov,V.N.Smolyaninova,A.V.Kildishev,and V.M.Shalaev, “ Anisotropicmetamaterialsemulatedby taperedwaveguides:applicationtoopticalcloaking, ” Phys. Rev.Lett. 102 ,213901(2009). 9.N.LandyandD.R.Smith, “ Afull-parameterunidirectional metamaterialcloakformicrowaves, ” Nat.Mater. 12 ,25 – 28 (2013). 10.R.Liu,C.Ji,J.J.Mock,J.Y.Chin,T.J.Cui,andD.R.Smith, “ Broadbandground-planecloak, ” Science 323 ,366 – 369 (2009). 11.J.Valentine,J.Li,T.Zentgraf,G.Bartal,andX.Zhang, “ An opticalcloakmadeofdielectrics, ” Nat.Mater. 8 ,568 – 571 (2009). 12.L.H.Gabrielli,J.Cardenas,C.B.Poitras,andM.Lipson, “ Sil- iconnanostructurecloakoperatingatopticalfrequencies, ” Nat.Photonics 3 ,461 – 463(2009). 13.U.LeonhardtandT.Tyc, “ Broadbandinvisibilitybynon- Euclideancloaking, ” Science 323 ,110 – 112(2009). 14.B.Zhang,Y.Luo,X.Liu,andG.Barbastathis, “ Macroscopic invisibilitycloakforvisiblelight, ” Phys.Rev.Lett. 106 , 033901(2011). 15.M.Fridman,A.Farsi,Y.Okawachi,andA.L.Gaeta, “ Demon- strationoftemporalcloaking, ” Nature 481 ,62 – 65(2012). 16.R.Fleury,J.Soric,andA.Alu, “ Physicalboundsonabsorption andscatteringforcloakedsensors, ” arXiv:1309.3619 (2013). 17.R.Houdin, TheSecretsofStageConjuring (Wildside,2008). 18. “ Invisibility, ” http://www.youtube.com/watch?v=RwgIr06OJLo . 19. “ MirrorsTricksofMagicShowsattheScienceandTechnology MuseumMadaTech — 12, ” http://www.youtube.com/watch? v=_hF8xuPShsM . 20.E.WolfandT.Habashy, “ Invisiblebodiesanduniquenessof theinversescatteringproblem, ” J.Mod.Opt. 40 ,785 – 792 (1993). 21.J.C.HowellandJ.B.Howell, “ Simple,broadband,optical spatialcloakingofverylargeobjects, ” Phys.Opt.,ar- Xiv:1306.0863(2013). 22. “ Human-scaleinvisibilitycloakunveiled, ” MITTechnology Review(June6,2013). 23.A.Boyle, “ This ‘ InvisibilityCloak ’ CouldConcealSatellitesor HideYourKids , ” (NBCNews,2013). 24.H.Chen,B.Zheng,L.Shen,H.Wang,X.Zhang,N.I.Zheludev, andB.Zhang, “ Ray-opticscloakingdevicesforlargeobjectsin incoherentnaturallight, ” Nat.Commun. 4 ,2652(2013). 20March2014/Vol.53,No.9/APPLIEDOPTICS1963