/
Cyclops The ASlevel Connectivity Observatory YingJu Ch Cyclops The ASlevel Connectivity Observatory YingJu Ch

Cyclops The ASlevel Connectivity Observatory YingJu Ch - PDF document

pasty-toler
pasty-toler . @pasty-toler
Follow
429 views
Uploaded On 2015-05-24

Cyclops The ASlevel Connectivity Observatory YingJu Ch - PPT Presentation

uclaedu ABSTRACT In this paper we present Cyclops a system that collects and displays information of ASlevel connectivity extracted from looking glasses routeservers and BGP tables and updates of hundreds of routers across the Internet From an op era ID: 73364

uclaedu ABSTRACT this paper

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Cyclops The ASlevel Connectivity Observa..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Figure1:TheInternetTopologyandBGPmonitor-ing.2.BACKGROUNDTheInternetconsistsofalargenumberofnetworkscalledAutonomousSystems(ASes),eachwithanallocateduniqueASnumber.AnASmaycontainoneormultipledestinationnetworks,eachrepresentedbyanIPpre x.Forexample,AS52(UCLA'sASnumber)announces5IPpre xes,andoneofthem,131.179.0.0/16,representsthenetworkofUCLAComputerScienceDepartment.ASesexchangedestinationnetworkreachabilityinformationusingtheBorderGatewayProtocol(BGP).ABGPupdatecontainstheASpathusedtoreachadestinationpre x,i.e.alistofASnumbersofallthenetworkstraversed.Figure1isasimpli edexampletoillustratesBGPupdatepropagation.AS-1ownsapre- xPandannouncesittoneighborAS-2.Whenreceivingtheupdate,AS-2addsitsownASnumbertothepathandfurtherpropagatestheupdatetoitsneighbors.NotethataBGProutermayreceivemultiplepathstoeachdestination,butitonlypropagatesthebestpathtoneighborASes.ForexampleAS-3inFigure1willreceivetwopathstopre xPandselectfP:21gasitsprimarypathandpropagatesittoaBGPcollectorbox;wecalltherouterinAS-3whichisconnectedtothecollectoramonitor.BecauseBGProutersonlypropagatethebestpathtoeachdestinationnetwork,onemaynotbeabletocollectthecompleteASconnectivityfromBGPupdates.InstudyingInternetAS-leveltopology,oneviewstheIn-ternetasanAS-levelgraph,whereeachnoderepresentsanASandeachlinkrepresentsatracexchangeagreementbetweentwoASes;thisagreementisrealizedbytheestab-lishmentofoneormultipleBGPsessionsbetweenthetwoneighborASes,perhapsovermultiplephysicallinksatmul-tipledispersedgeographicallocations.Generallyspeaking,ASescanbeclassi edintotwoclasses:transitsandstubs.AtransitASprovidesInternetaccesstootherASesinadditiontoitowncustomers,whileastubASisasourceordestina-tionofdatatracanddoesnotprovidetransitconnectivitytoanyotherASes.TheAS-linkscanbebroadlyclassi edintwotypes:customer-providerandpeer-to-peer.Inacustomer-providerrelation,thecustomerpaystheproviderfortheInternetaccess,whereasinapeer-peerrelationASesexchangetracwitheachotherwithoutpayment.Therefore,whengivenmultipleroutestoadestinationpre x,aroutertypicallyhasapreferenceor-derofchoosingroutesfromcustomers rst,thenpeersand nallyproviders.InFigure1,assumingAS-1isacustomerofAS-2,AS-2andAS-3arecustomersofAS-4,andAS-2andAS-3arepeers,thenAS-3selectsthepeerroutefromAS-2ratherthantheproviderrouteannouncedbyAS-4.2.1MonitoringandDataCollectionRouteView[6]andRIPE[5]representtwomajorBGPmonitoringprojectstoday.Theymanageasetofcollec-tors,whichestablishBGPsessionswithoperationalrouters,calledmonitors,toreceivetheupdatesandperiodicallydumpasnapshotofeachmonitor'sroutingtable.Thetotalnum-berofmonitorshavebeenincreasingovertime.Atthetimeofthiswritingthereareseveralhundredsofsuchmonitors,althoughonlyabout120orsomonitorsprovideacompleteBGProutingtable;therestprovidesonlyapartialtable.Thetopologydatabasehttp://irl.cs.ucla.edu/topology/,whichisdescribedin[24],includesdatacollectedfromrouteservers,lookingglasses[3],androutingregistrydatabasesinadditiontothedatafromalltheRouteViewsandRIPEcol-lectors1.WetermtheAS-levelconnectivityextractedfromthisdatasetasPublic-View.CyclopsusesthePublic-ViewdatacollectedfromJanuary2004topresent.ItiswellknownthattheinferredAStopologyisratherincomplete,andthatitremainsaresearchchallengetoquan-tifythedegreeofthisincompleteness[21].Cyclops'abilitytovisualizeASconnectivityanditschangesiscon nedbythelimitationofthedataset.Neverthelessasweillustratelaterinthepaper,Cyclopsprovidesvisualdisplayoftopo-logicalchangesbasedontheavailabledataset,avaluablefunctionthatisunavailablepreviously,ando ersitselfasapowerfuldetectionmechanismforroutinghijacks.2.2TopologyInferenceandFaultDetectionForeachspeci cAS-x,thereisalistofneighborASeswithwhomxhastracexchangeagreements;wetermthislistthegroundtruthofAS-x'sconnectivity.Ingeneralwedonotknowthegroundtruthofx,andweinferx'sneighborASesfromtheASpathscarriedinBGPupdates.Atanygiventime,di erencesmayexistbetweenthelistofinferredASneighborsandthatfromthegroundtruth.Thesedi erencecanstemfromseveralreasons.First,thelimitednumberofvantagepointsusedinthePublic-Viewlimitsitscomplete-nessinrevealingallAS-x'sneighbors[21];i.e.someneigh-borsinx'sgroundtruthmaybeinvisibleinPublic-View.Howeverbyaccumulatingtheobservationofx'sneighborsovertime,onecansigni cantlyreducethedi erences[22].Atthesametime,accumulatingtheobservedx'sconnec-tivityovertimecanalsointroducestalelinksthatarenolongerexist,hencecontributingtothedi erencebetweeninferredconnectivityandgroundtruth.Furthermore,falselinkscausedbyBGPmiscon gurations,orevenintentionalroutehijacks,alsocontributetothedi erencebetweentheinferredAS-x'sconnectivityanditsgroundtruth.The rsttwocausesofthedi erences,namelyinvisibleorstaleASlinksintheinferredtopology,resultfromlim-itationsofthemeasurementinfrastructureandhavebeenmitigatedtoacertaindegreerecently[21,22].Thethird 1WecurrentlydonotuseAStopologicaldataderivedfromtraceroutemeasurementsduetotheissuesinconvertingrouterpathstoASpaths,asextensivelyreportedinpre-viouswork[10,18,13,22]. causeistheresultsoffaultsormaliciousattacks,whichcana ectdatadeliverytoAS-xortootherASes.Aspeci cex-ampleofaroutehijackhappenswhenAS-ywantstohijacktractoapre xpownedbyAS-x.AS-ymayannouncepre xptoaneighborAS-z.HoweverAS-zcandetectsuchhijacksbyverifyingtheoriginmapping(p;x)againsttheInternetRoutingRegistry.AmoresubtlehijackbyAS-yistoannouncearoutetopwithafalseASlinky�xintheASpath.Cyclopsprovidesane ectivemeanstodetectbothtypesofroutehijackbyallowingwhoeverknowingthegroundtruthofAS-xtocompareitagainstAS-x'sinferredconnectivity.FalselinksintheinferredASconnectivitycanalsobeduetoBGPmiscon gurations.Forinstance,ifacustomerAS-wstartsadvertisingitsproviderorpeerroutestoitsBGPneighbors,i.e.thecaseofarouteleakage,CyclopswillsuddenlyobservenewASlinksattachedtoAS-w.Infact,operatorshaveindeeddetectedmiscon gurationsusingourinferredASconnectivitydata.3.CYCLOPSDESIGNInthissectionwe rstdiscussthedesigngoalsofCyclops,thenpresentanoverviewofCyclopsdesign,followedbyadescriptionofeachofCyclops'threeoutputmodules,rawdata,webinterface,andthevisualizer.3.1DesigngoalsCyclopsisdesignedtomeettheneedforAStopologicalconnectivityinformationforvariousdi erentpurposes.Inparticular,thedesignhasthefollowinggoalsinmind:BeingabletoquicklylocatehighactivityperiodsinAStopologychanges.ProvidingacomprehensivevisualinspectionofAScon-nectivityandchanges.EnablingnavigationthroughtheASconnectivitytoexaminetopologicaleventcorrelations.Beingabletoscalethedisplaytoallowtheexamina-tionofindividualAS'sconnectivitychangesindetail.The rstgoalisachievedthroughthedevelopmentofanactivitywindow,whichisdescribedinSection3.5.2.Theactivitywindowusesbargraphstodisplayacondensedpre-sentationofASconnectivitychangesoveraspeci edtimeperiod,allowingonetospotperiodswithhighconnectivitychangesinoneglance.Thesecondgoalisrealizedthroughthejudicioususeofvariousgraphicalnotationstodenotenewordeadnodesandlinks,ASdegrees,AStypes,linkages,andnumberofroutescarriedoverthelinksinCyclops'visualizer.TheASconnectivitynavigationisaccomplishedinthevisualizeraswell;onecanmovethefocus,theCy-clops'seye,fromoneAStoanyotherneighborASandsooneandsoforth.Thelastgoalonscalabledisplayismorechallenge.Ontheonehand,onewouldliketobeabletopresentinde-tailalltheconnectivityofagivenAS.Ontheotherhand,largeASescanhavethousandsofneighbornodes,whichmakesthevisualpresentationoftheconnectivitytoalltheneighborsbothinfeasibleandlessuseful,becausethespe-ci cinformationauserisinterestedinwouldbeembeddedinthelargeamountofotherinformation.Weresolvedthiscon ictbyprovidingtheuserawebinterfaceinadditiontothevisualizer.Cyclops'webinterfaceenablesonetoeasily ndouttheinformationneededbyallowingtheusertosortanAS'sneighborlistbyanumberofdi erentmeasurementparameters,asdescribedinSection3.4.ItismostlikelythatotherusagesoftheASconnectivityinformationexistthatwehavenotrecognized,orwillariseoncetheavailabilityofthisinformationiswidelyspread.Tomeettheunknownandfutureneed,wealsoprovideourASconnectivityinformationintherawdataformat,sothatanyinterestedpartiescandownloadandprocessthedatalocallytomeettheirownneeds.Infactwehaveheardfromanumberofcolleagueswhohaveusedourdatainvariousresearchprojects.3.2AnoverviewofCyclopsFigure2summarizestheCyclopsimplementation.DailycollectedBGPdatafromthePublic-View rstgoesthroughapre-processingstagewhereASlinksandtimestampsareextracted.Moreprecisely,foreachASlinkinanASpath,werecordthe rstandlasttimesthelinkwasseen,andwhetherthelinkwasseeninthebeginning,middleorendoftheASpath.Inaddition,wesavethelastseenBGPupdatemessagethatcontainedthatlink.Inthepre-processingstage,wealsogleanASpathstoinferbusinessrelationshipsbetweenASes,i.e.provider-customer,orpeer-to-peer,andthisrelationshipinformationisthenusedtodoASclassi cation.Thespeci cmethodweusetodoASrelationshipinferenceisdeceptivelysimple.WeextracttheASlinksfromtheBGProutescollectedfromtheTier-1ISPmonitorsoverawindowoftimewhichshouldspanseveralmonths.IntheASpatha0{a1{...{an,thelinka0{a1canbeeitherpeer-peerorprovider-customer(a0referstotheTier-1ASthemonitorresidesin),buttheremaininglinksintheASpathshouldbeoftypecustomer-provideraccordingtono-valleypolicy.Furthermore,ifa0{a1turnsouttobeacustomer-providerlink,itwillberevealedinroutesofanotherTier-1AS,thereforewewillbeabletoaccuratelylabelit.Thepeerlinksareinferredbydoingthedi betweentheentiresetoflinksextractedfromallthemonitorsandthesetofcustomer-providerlinks,i.e.thepeerlinksareallthelinksthatarenotpropagatedupstreamtoTier-1s.Inaddition,wesortASesintofourclassesbasedonthenumberofdownstreamcustomerASes:stubsiftheyhave4orlessdownstreamASes,smallISPsiftheyhavebetween5and50downstreams,largeISPsiftheyhavemorethan50downstreams,and nallyTier-1ASes.TomeasurehowmuchanASlinkisused,wekeeptrackofthenumberofBGProutescarriedoneachASlink.Wecallthisnumberthelinkweight,aconceptborrowedfromourpreviouswork[16].Toavoidmeasurementbias,thelinkweightmeasurementonlyusesdatafromtheN'120mon-itorsinPublic-ViewthatprovidefullBGPtablesandresideindi erentASes.Wedenotewji(t)thenumberofroutesofmonitorjthatuselinkiondayt,andwi(t)=1 NPjwji(t)theaverageweightoflinkioveralltheNmonitors.Wefur-thercomputeanexpectedweightofeachlinkovertimeusingaTCPRTTmeasurement-likesmoothedaverage:^wi(t)=0:8^wi(t�1)+0:2wi(t),andkeeptrackofthedi erencebe-tweentheinstantaneouslinkweightondaytandtheex-pectedweightofeachlinki:wi(t)=wi(t)�^wi(t).Asigni cantdi erencecanbeusedtotriggeralarms.Fur-thermore,wekeeptrackoftwodi erentweightsdepending Figure3:AsnapshotofCyclopswebinterface:connectivityofAS174. Figure4:AS174connectivitychangesduringtheperiodof[5/23/08,5/29/08]. Figure5:SnapshotofCyclopsvisualizer.neighborASesarealsoremovedatthesametime,thenweseethatxishavingareducedconnectivitytotherestoftheInternet,andthatxcouldbethemajorfactorcausingthelinkremovals.AnotherfeatureofthevisualizeristhatitsactivitygraphshowstheaggregatedtopologicalchangeactivityoftheentireperiodstartingfromJanuary2004,providinganeasywayfortheusertovisuallyinspectanddetectanomalouseventsanddrilldownthedetails.TheCyclopsvisualizerconsistsofthreemainparts:topologygraph,activitygraph,andcontrolpanel.Wedescribeeachofthesepartsinthefollowingsections.3.5.1TopologyGraphThemaincomponentofthevisualizeristhetopologygraphcenteredattheCyclops'eyex,asshowninFigure5.Asinthewebinterface,thevisualizerhasaconnectivitymodeandachanges-onlymode,de nedbythestartdatet0andenddatet1.Wheninconnectivitymode,allneighborsofxattimet1arerepresentedinthegraph,onenodeperAS(edgesinthegraphrepresentcommercialagreementsbetweenASes).Inchanges-onlymode,onlythelinkre-movalandadditionsthatoccurwithintheinterval[t0;t1]areshown.Wheninchanges-onlymode,wede nenewnodes(orASes)andnewlinksasthosenodes/linksappearingafterthestartdatet0andbeforetheenddatet1.Similarly,thedeadnodes/linksarede nedasnodes/linkswhichwerepresentatthestartdatet0butdisappearedbeforet1.Weusethecolorgreentomarkthebirthofnewnodes/links,redtodenotethedeathofnodes/links,bluetoindicatetheeyeoftheCy-clops,andorangeforallothernodes/links.Furthermore,toputtheimportanceofeachnode/linkinperspective,weusethefollowingparameters:ASdegree,AStype,ageoflinks,andnumberofroutescarriedbyeachlink.Tovisuallydif-ferentiatelargeISPsfromsmallones,wedrawthenodesizeproportionallytotheconnectivitydegreeoftheAS.Wealso Figure6:DetailofCyclopsvisualizer.usedi erentvertexstrokestodenotetheAStype:thickcirclesforTier-1ASes,dottedcirclesfortransitnodes,andsolidcirclesforstubs.Theedgethicknessiseitherpropor-tionaltotheageofthelink(separatinglinksthathavebeenaroundforalongtimefromshort-livedones)ortothenum-berofroutesusingthatlink(separatinglinksthatcarryaheavynumberofroutesfromtheothers).Inaddition,eachlinkhasalabelthatdisplaysthelifetimeindays,aswellasthenumberofroutescarried.Foradeadlink,thenum-berofdayssinceitsdeathisalsoshowninparenthesesinthelabel.Forexample,inFigure6,AS11537connectedtoTier-1AS354994daysago(thisistheageofthelink).ItalsodepeeredwithAS11095(whichisnowdead)82daysagoandastubAS13998147daysago.Theageofthelinkbetween11537and13998was407days,justwhenthelinkwasremoved.Asnotedby[22],changesintheobservedtopologymaynotcorrespondtochangesintherealtopology,e.g.alink Figure7:Activitygraph.x�ymaytemporarilybedownformaintenance,eventhoughthecommercialagreementbetweenxandyisstillup.How-ever,wehavehighcon dencetosayalinkisdeadifitdis-appearsanddoesnotreappearagainforasucientlylongtime.Inthetopologygraph,weusethetransparencyofeachlinktorepresenthowlikelyitisthatthelinkwasac-tuallyremovedfromthetopology.Thelesstransparentthelinksisthelesslikelyitcorrespondstoanactualtopologychange,i.e.theresultoftransientroutingdynamicsshouldberepresentedbymoretransparentlinks.Thecorrelationbetweendi erentchangesisdonebyopen-ingonenodeaftertheother.Whenanodeisopen,itbe-comesanothereye,soallitsneighborsarealsodisplayed.SaywestartwithnodexastheeyeoftheCyclops,thenwe ndaninterestingdepeeringwithaneighbory.Wemightwanttoopenytoverifyifthedepeeringwaspartofaseriesofeventsinitiatedbyy.InSection4weshowhowCyclopscanbeusedtodothis.3.5.2ActivityGraphTheCyclopsactivitybarshowninFigure7isdesignedsothatuserscanhaveasummarizedviewof(de)peeringactiv-ityovertheentireobservationperiod,enablingthedetectionofanomalousevents.Thegreenpositivebarsinthegraphrepresentthenumberofnewlinksover7-daytimeslots,whiletheredbarsonthealternatesideofthetimeaxisrep-resentthenumberofdisappearedlinks.Theactivitygraphenablesuserstoidentifythetimeperiodswithanomalousnumberofchanges,andfurtherexaminethoseperiodsinmoredetail.Thesmallertimewindowinthegraph(repre-sentedinFigure7inadarkercolor)allowsuserstoselectaspeci ctimeintervaltovisualizeinthetopologygraph.Forinstance,inFigure7therearefournoticeablespikesofde-peerings,whichcanbefurtherinvestigatedbyslidingthesmallerwindowtotheappropriateevent.Sincethemag-nitudeofthesmallbarsintheactivitygraphmayvaryalot,andtoavoidonespeci cperiodoverwhelmingtheoth-ers,wemakethescaleoftheY-axisadjustable.Therefore,whensettingthescale,allthebarswhichexceedthegivenvaluewillbesettothemaximumlengthintheplot,andthelengthofotherbarswillbescaledlinearlyrelativetothevalue.Thiscanhelpusers lteroutoutliersandobtainaclearerviewofusualactivity.3.5.3ControlPanelThevisualizercontrolpanelprovidesmultipleoptionstoletusers lterwhattheyareinterestedinvisualizing.Asalreadymentioned,userscanselectbetweenchanges-onlymodeandconnectivitymode.Inthechanges-onlymodeuserscanfocusonexaminingconnectivitychangesinaspe-ci ctimeinterval,andinconnectivitymodeusershaveavisualoftheentireconnectivityoftheCyclops'eyeatagiventime.Theinterfacealsoincludesseveraloutput l-ters,suchas lteringonlybirthordeath,separatingtransitnodesandstubs,andASdegreethreshold.These ltersreducetheamountofinformationinthegraph,makingitmorereadable.3.6Comparisonofvisualizerandwebinter-faceThewebinterfaceandthevisualizerhavedi erentfea-turesandtheirownadvantagesanddisadvantages.Apic-tureisworthathousandwords:thevisualizerisdesignedtosummarizeprimaryinformationintheconnectivitygraphandprovideaviewofthebigpicture.Thegraphicalinter-facemakeseasierthenavigationacrosstimeandlocationandenablestheidenti cationofcorrelationsbetweenpeer-ingsandde-peerings.However,thevisualizerdoesnotscalewellwhenthenumberoflinksgoesabovethe2-digits,asthegraphbecomesunreadable.Thewebinterfaceovercomesthisproblembyprovidingaquickwayofgettingatext-formatorderedlistofneighborsandconnectivitychanges.Userscansortthelistinmultipledi erentwaysaccordingtowhattheyareinterestedincapturing,e.g.shortlifetimes,highdegrees.Furthermore,byprovidingrawdataaccess,CyclopsenablesISPstoruntheirownscriptstocomparethePVwiththegroundtruth,andsignalalarmswhenap-propriate.4.CASESTUDIESInthissectionweshowhowtouseCyclopsinfourdi erentcasestudies.WeextractthesecasesfromanomalouseventsseeninCyclopsinvolvinglargeISPsandcontentproviders.Afterdiscoveringanyanomalousevent,weeithercontactdirectlythenetworkoperatororsearchtheNANOGmailinglist[4]forfurtherveri cation.4.1GooglerouteleakageOur rstcasestudyinvolvesGoogle,whichiscurrentlyprobablythelargestcontentproviderintheInternet.Fig-ure9showstheactivitygraphforGoogle(AS15169)fromJanuary2004toOctober2007,whichisagoodstartingpointtodiscoveranomalousevents.Weobserveabigspike(bothpositiveandnegative)abitafterthehalfoftheperiod,thatrepresentsseveralpeeringsanddepeeringshappeningverycloseintime.Wedrilldowninthisperiodusingtheslid-ingtimewindowandstudytheASconnectivitychangesindetail.AsshowninFigure8(a),onJuly18th2006Googleestablishedconnectionswith36newneighborASes.How-ever,accordingtoFigure8(b),onthenextdayallthesenewlinksweredepeered,andthereforetheyhavealifetimeof0days(whichisshowninthelinklabels).Webelievethaton18July2006Googleaccidentallyleakedaseriesofpeerroutestoitsneighbors,howevertheproblemwaseasily xed.RouteleakagesusuallyresultfromBGPmiscon gu-rationsinrouters,whichstartannounceroutesthatshouldbe ltered.Usuallytheendresultislossofreachabilitytothosedestinations.Notethatthiseventcouldhavealsobeendetectedjustbysortingthelifetimecolumninthewebin-terface,wherethe0lifetimeentrieswouldhavecausesomealarm.4.2YahoooutageOursecondcasestudyalsoinvolvesarouteleakage,thistimea ectingYahoo.Severalsites,includingYahoo(AS Figure9:TheactivityplotforGoogle. Figure10:ThetopologychangegraphforAS10310(Yahoo)on6July2007. Figure11:ThetopologychangegraphforAS9318on6July2007. (a)18July2006 (b)19July2006Figure8:ThetopologychangegraphforGoogleon18and19July2006.10310),wereunreachableonJuly6th2007.Usingthevi-sualizer,weexamineYahoo'sconnectivityaroundthattimeandcheckforanomalousevents.Figure10showsthatYa-hooaddedanewneighborAS9318onthatday,buttheneighborwasremovedwithinthesameday.Thisisusuallyasignofamiscon guration.SincethereisnootherchangeinYahoo'sconnectivity,weopenasecondCyclops'eyeatAS9318andstartlookingforconnectivitychanges.Fig-ure11showsthechangesinvolvingAS9318onthatday,andwenotethatalllinksappearanddisappearwithinthesameday.WebelieveAS9318accidentallypropagatedsomeroutescomingfromYahootootherneighbors,andthereforesomepointsinthenetworkstoppedreachingYahoo'spre- xes.Thiswasfurthercon rmedbyanindependentanalysispostedinNANOGmailinglist.4.3CogentdepeeringsOurthirdcasestudyconcernsasetofdepeeringsmadebyCogent(AS174),asdescribedindetailin[23].Accord-ingto[23],duringApril2007CogentdepeeredseveralsmalleuropeanISPs.Figure12showsthedepeeringsofCogentduringMarchandApril2007ascapturedinCyclopsvisu-alizer.WeobservethatthedepeeringactivityinAprilwasmuchmoreintensethanthatinMarch.Theedgethicknessinthiscaseisproportionaltothelinkage,andfromthegraphwecanobservethatmostofthelinksinvolvedhaveaconsiderableage.Weveri edsomeASesthatwerere-portedby[23]tohavebeendepeered,andallofthemwerecon rmedbyCyclops.InSeptember2007therewasan-otherdiscussionthreadontheNANOGmailinglistaboutwhetherCogentdepeeredwithLimelightNetworks,nLayerCommunications,andWVFiber.Severalpeopletriedto g-ureoutwhathappenedtoCogentbydi erentmethods,suchastracerouteandlookingatRouteViewdata,buttheyob-taineddi erentresults.Figure13showsthechangesinCo-gentconnectivityduringSeptember2007usingCyclopswebinterface.WecanseethatCogentdepeeredwithWVFiber(AS19151)on17SeptemberandLimelight(AS22822)on27September,butitdidnotdepeerwithnLayer.Theseob-servationsareconsistentwiththeconclusionoftheNANOGthreadlateron.4.4DepeeringsinQwestOurlastcasestudyusesthevisualizertocorrelatedi er-entdepeeringevents.Figure14showsthatQwest(AS209)hadtwosigni cantdepeeringswithAS6395andAS8075inApril2007.Inthis gure,thethicknessofedgesispropo-tionaltothenumberofroutescarriedbythelinks,andthe Figure14:Correlatingdi erentdepeeringsa ectingQwestanditsneighborsinApril2007. (a)CogentdepeeringsinMarch2007. (b)CogentdepeeringsinApril2007.Figure12:ThetopologychangegraphforCogentinMarchandApril2007. Figure13:CogentdepeeringsinSeptember2007.edgelabelsindicatethelinkagesandthetimesincede-peeringindays.WeaddedAS8075andAS6395asextraCyclops'eyes,whichwerethetwomostsigni cantdepeer-ingsofQwestatthattime.TheexpandedviewsshowthatthedepeeringbetweenQwestandAS6395ispartofasetofdepeeringsoriginatedfromAS6395somedaysbeforetheobservationtime(valueswithintheparenthesesinthela-bels).Ontheotherhand,thedepeeringbetweenQwestandAS8075seemstobepartofasetofindependentdepeeringsoriginatedfromAS8075.Fromthisanalysis,webelievethetwodepeeringswithQwestwerenotoriginatedfromQwestandarenotrelatedtoeachother.5.RELATEDWORKMostoftherecentworkinnetworkvisualizationhasfo-cusedontheanalysisofBGProutingdynamics[7,15].Thesevisualizationtoolshavebeenusedtodetectanddiag-noseroutingdisruptionsa ectingagivendestinationpre xorgroupofpre xes.Di erentfromtheseexistingtools,CyclopsvisualizerfocusesonhighlightingASconnectivitychangessuchasnewpeeringsanddepeerings,andprovidesmeanstocorrelatetheseeventsamongdi erentASes.TheCooperativeAssociationforInternetDataAnalysis (CAIDA)hasdesignedseveralvisualizationtoolsfortheIn-ternettopology[8].OneofthemisMapnet[11],whichdis-playstheinfrastructure(PoPlevel)ofmultipleU.S.back-boneprovidersoverageographicmap.Otter[12]isanothertoolsetwhichvisualizesawidevarietyofInternetdata,suchasmulticastandunicasttopologydatabases,coreBGProut-ingtables,andSNMPdata.HERMES[9]andVAST[20]alsoaimtovisualizetheASlevelconnectivity.HERMESallowsuserstoexploreandvisualizetheASinterconnec-tions,informationaboutASes,andtheBGProutingpoli-cies,whileVASTisa3-dimensionalgraphicaltoolthatpro-videsinformationaboutboththeoveralltopologicalproper-tiesoftheInternetaswellasindividualASbehavior.Fixe-dOrbit[1]providesawebinterfacetoobtainthelistingofneighborsofagivenAS.AlthoughtheabovementionedtoolsusevariousapproachestovisualizethestaticInternettopol-ogyproperties,noneofthemisabletodisplaythechangesintheconnectivity.Incontrast,CyclopsprovidesaviewofthetopologychangesandthedetailsoftheBGPmessagesusedtoinfereachchange.ThecomparisonbetweenPublic-ViewandgroundtruthenabledbyCyclopswaspartiallyexploredbyLadetal.[14]whenverifyingthelasthopAS.Cyclopsprovidesamorecomprehensiveveri cationbyincludingallthelinksinalltheobservedASpaths,aswellastheBGPmessagesthatcanbeusedfortroubleshooting.6.CONCLUSIONANDFUTUREWORKInthispaperwepresentedCyclops,atoolsetthatdis-playsAS-levelconnectivityandchangesasinferredfromPublic-View.Fromaresearchstandpoint,CyclopsprovidesaninteractivedisplayofeachAS'sconnectivityandnavi-gationmechanismstoexaminethecorrelationofinter-ASlinkchanges,whichcanserveasanimportantinputtothestudyofAS-leveltopologymodels.Fromanoperationalstandpoint,CyclopsprovidesISPsaviewoftheirAScon-nectivityasseenfromtheBGProutingsystem,enablingacomparisonbetweentheobservedconnectivityandtheintendedconnectivity.ISPscanutilizethedataprovidedbyCyclopstodetectanddiagnoseBGPmiscon gurations,routeleakagesorevenroutehijacks.TomakeCyclopsmoreuseful,wehavesketchedoutsev-eralsteps.First,falsedetectionsrequirethatASconnectiv-ityobservedfromtheBGProutingsystembeprovidedinrealtime.Duetothedelaysindatacollection,ourtopologydatabaseisupdatedonadailybasis.Ourverynextstepistoin-tegrateCyclopswithBGPMon[19],anewlydevelopedrealtimeBGPdatacollectionsystemwhichcanprovideCyclopswithrealtimeBGPfeeds.Wealsoplantoexplorethepos-sibilitytomakeCyclopsgeneratealarmsforsuspiciousASconnectivitychangesbasedonmultiplecriteriasuchaslinklifetimeandlinkweightdi erences.Weenvisionasubscribersystem,whereeachASownerisnoti edwithanalarmonalinkwiththeASasoneendistriggered,e.g.ifoneormultiplenewlinksinvolvingtheASsuddenlyoccur.WearealsoaddingtoCyclopsinformationaboutgeo-graphicallocationofPoPswhereeachAShasapresence,andinformationaboutwhichpre xesareannouncedatwhichPoP.GoingbeyondtheconceptoftreatingeachASasanatomisanessentialsteptowardsunderstandingtheinternalstructureofeachAS.7.REFERENCES[1]Fixedorbitwebsite.http://www. xedorbit.com.[2]IrlinternetTopologyCollection.Availablefrom:http://irl.cs.ucla.edu/topology/.[3]LookingGlassSite.http://www.nanog.org/lookingglass.html.[4]Nanogwebsite.http://www.nanog.org.[5]RIPERoutingInformationServiceProject.http://www.ripe.net/.[6]RouteViewsRoutingTableArchive.http://www.routeviews.org/.[7]G.D.Battista,F.Mariani,M.Patrignani,,andM.Pizzonia.BGPlay:Asystemforvisualizingtheinterdomainroutingevolution.InGraphDrawing,volume2912ofLectureNotesComputerScience,pages295{306,2003.[8]CAIDA.CAIDAVisualizationTools.Availablefrom:http://www.caida.org/tools/visualization/.[9]A.Carmignani,G.D.Battista,W.Didimo,F.Matera,andM.Pizzonia.VisualizationoftheHighLevelStructureoftheInternetwithHermes,2002.[10]H.Chang,S.Jamin,andW.Willinger.InferringAS-levelInternettopologyfromrouter-levelpathtraces.InSPIEITCom,2001.[11]K.Cla yandB.Hu aker.MacroscopicInternetVisualizationandMeasurement.Availablefrom:http://www.caida.org/tools/visualization/mapnet/.[12]B.Hu aker,E.Nemeth,andK.Cla y.Otter:AGeneral-purposeNetworkVisualizationTool,inINET1999.Availablefrom:http://www.caida.org/tools/visualization/otter/.[13]Y.Hyun,A.Broido,andkccla y.Onthird-partyaddressesintraceroutepaths.InProc.ofPassiveandActiveMeasurementWorkshop(PAM),2003.[14]M.Lad,D.Massey,D.Pei,Y.Wu,B.Zhang,andL.Zhang.PHAS:Apre xhijackalertsystem.In15thUSENIXSecuritySymposium,2006.[15]M.Lad,D.Massey,andL.Zhang.VisualizingInternetRoutingChanges.IEEETransactionsonVisualizationandComputerGraphics,2006.[16]M.Lad,R.Oliveira,D.Massey,andL.Zhang.InferringtheOriginofRoutingChangesusingLinkWeights.InProc.IEEEICNP,2007.[17]J.Madaadhain,D.Fisher,P.Smyth,S.White,andY.-B.Boey.AnalaysisandvisualizaitonofnetworkdatausingJUNG.InJournalofStatisticalSoftware,toappear.[18]Z.M.Mao,J.Rexford,J.Wang,andR.H.Katz.TowardsanaccurateAS-leveltraceroutetool.InProc.ofACMSIGCOMM,2003.[19]D.Matthews,Y.Chen,H.Yan,andD.Massey.BGPMonitoringSystem.Availablefrom:http://bgpmon.netsec.colostate.edu/.[20]J.Oberheide,M.Karir,andD.Blazakis.VAST:VisualizingAutonomousSystemTopology.InVizSEC'06:Proceedingsofthe3rdinternationalworkshoponVisualizationforcomputersecurity,pages71{80,NewYork,NY,USA,2006.ACMPress.[21]R.Oliveira,D.Pei,W.Willinger,B.Zhang,andL.Zhang.InSearchoftheelusiveGroundTruth:TheInternet'sAS-levelConnectivityStructure.InProc.ACMSigmetrics,2008.[22]R.Oliveira,B.Zhang,andL.Zhang.ObservingtheEvolutionofInternetASTopology.InACMSIGCOMM,2007.[23]T.Underwood.RenesysBlog.Availablefrom:http://www.renesys.com/blog/2007/04/rough_day_at_cogent_part_1_cog.shtml.[24]B.Zhang,R.Liu,D.Massey,andL.Zhang.CollectingtheInternetAs-levelTopology.SIGCOMMComput.Commun.Rev.,35(1):53{61,2005.