/
IEEE TRANSACTIONS ON INFORMATION THEORY VOL IEEE TRANSACTIONS ON INFORMATION THEORY VOL

IEEE TRANSACTIONS ON INFORMATION THEORY VOL - PDF document

pasty-toler
pasty-toler . @pasty-toler
Follow
478 views
Uploaded On 2014-12-21

IEEE TRANSACTIONS ON INFORMATION THEORY VOL - PPT Presentation

48 NO 7 JULY 2002 HighRate Codes That Are Linear in Space and Time Babak Hassibi and Bertrand M Hochwald Abstract Multipleantenna systems that operate at high rates require simple yet effective spacetime transmission schemes to handle the large traf ID: 27297

JULY

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "IEEE TRANSACTIONS ON INFORMATION THEORY ..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.48,NO.7,JULY2002High-RateCodesThatAreLinearinSpaceandTimeBabakHassibiandBertrandM.HochwaldMultiple-antennasystemsthatoperateathighratesrequiresimpleyeteffectivespace–timetransmissionschemestohandlethelargetrafficvolumeinrealtime.Atratesoftensofbitspersecondperhertz,VerticalBellLabsLayeredSpace–Time(V-BLAST),whereeveryantennatransmitsitsownindependentsubstreamofdata,hasbeenshowntohavegoodperformanceandsimpleencodinganddecoding.YetV-BLASTsuffersfromitsinabilitytoworkwithfewerreceiveantennasthantransmit HASSIBIANDHOCHWALD:HIGH-RATECODESTHATARELINEARINSPACEANDTIME18057)satisfythefollowinginformation-theoreticoptimalitycri-—thecodesaredesignedtomaximizethemutualinfor-mationbetweenthetransmitandreceivesignals.WebrieflysummarizethegeneralstructureoftheLDcodes.Supposethatthereare transmitantennas, receiveantennas,andanintervalof symbolsavailabletousduringwhichthepropagationchannelisconstantandknowntothereceiver.Thetransmittedsignalcanthenbewrittenasa matrix thatgovernsthetransmissionoverthe duringtheinterval.Weassumethatthedatasequencehasbeenbrokeninto substreams(forthemomentwedonotspecify )andthat arethecomplexsymbolschosenfromanarbitrary,say -PSKor -QAM,constellation.Wecalla lineardispersioncodeoneforwhich obeys wheretherealscalars aredeterminedby ThedesignofLDcodesdependscruciallyonthechoicesoftheparameters , andthedispersionmatrices Tochoosethe weproposetooptimizeanonlinearinformation-theoreticcriterion:namely,themutualinformationbetweenthetransmittedsignals andthereceivedsignal.Wearguethatthiscriterionisveryimportantforachievinghighspectralefficiencywithmultipleantennas.Wealsoshowhowtheinformation-theoreticoptimizationhasimplicationsforperformancemeasuressuchaspairwiseerrorprobability.SectionIVhasseveralexamplesofLDcodesandperformancecomparisonswithexistingschemes.Wenowpresentthemultiple-antennamodelconsideredinthispaper.A.TheMultiple-AntennaModelInanarrow-band,flat-fading,multiple-antennacommunica-tionsystemwith transmitand receiveantennas,thetrans-mittedandreceivedsignalsarerelatedby (2)where denotesthevectorofcomplexreceivedsignalsduringanygivenchanneluse, denotesthevectorofcomplextransmittedsignals, denotesthechannelmatrix,andtheadditivenoise is unit-variance,complex-Gaussian)distributedthatisspatiallyandtemporallywhite.Thechannelmatrix andtransmittedvector areassumedtohaveunitvarianceentries,implyingthat and Sincetherandomquantities , ,and areindependent,the in(2)ensuresthat isthesignal-to-noiseratio(SNR)ateachreceiveantenna,independentlyof .Weoften(butnotalways)assumethatthechannelmatrix hasindependent Theentriesofthechannelmatrixareassumedtobeknowntothereceiverbutnottothetransmitter.Thisassumptionisrea-sonableiftrainingorpilotsignalsaresenttolearnthechannel,whichisthenconstantforsomecoherenceinterval.Thecoher-enceintervalofthechannelshouldbelargecomparedto Whenthechannelisknownatthereceiver,theresultingchannelcapacity(oftenreferredtoastheperfect-knowledgecapacity)is[2],[1] wheretheexpectationistakenoverthedistributionoftherandommatrix Thecapacity-achieving isazero-meancomplexGaussianvectorwithcovariancematrix ,where isthemaximizingcovariancematrixin(3).Whenthedistributionon isrotationallyinvariant,i.e.,when foranyunitary and (asisthecasewhen hasindependent entries),theoptimizingcovarianceis and(3)becomes Thisexpectationcansometimesbecomputedinclosedform(see,forexample,[22]).Whenthechannelisconstantforatleast channeluseswemaywrite sothatdefining and (wherethesuperscript denotes“transpose”),weobtain Itisgenerallymoreconvenienttowritethisequationinitstrans-posedform wherewehaveomittedthetransposenotationfrom simplyredefinedthismatrixtohavedimension .The isthereceivedsignal, isthetransmittedsignal,and istheadditive noise.In , ,and ,timerunsverticallyandspacerunshorizontally.Weareconcernedwithdesigningthesignalmatrix obeyingthepowerconstraint Equation(3)actuallyslightlygeneralizes[2],[1],whichassumethat IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.48,NO.7,JULY2002Wenotethat,ingeneral,thenumberof matrices neededinacodebookcanbequitelarge.Iftherateinbitsperchanneluseisdenoted ,thenthenumberofmatricesis Forexample,with transmitand receiveantennasthechannelcapacityat 20dB(with distributed )ismorethan12bitsperchanneluse.Evenwitharelativelysmallblocksizeof ,weneed matricesat .ThehugesizeoftheconstellationsgenerallyrulesoutthepossibilityofdecodingatthereceiverusingexhaustiveTheLDcodesthatwepresenteasilygeneratetheverylargeconstellationsthatareneeded.Moreover,becauseoftheirstruc-ture,theyalsoallowefficientreal-timedecoding.Inthenextsec-tion,webrieflydescribeandanalyzesomeexistingspace–timecodessothatwemaymotivatetheLDcodesandexplainhowtheyaredifferent.II.INFORMATIONNALYSISOFPACESincethecapacityofthemultiple-antennachannelcaneasilybecalculated,wemayaskhowwellaspace–timecodeperformsbycomparingthemaximummutualinformationthatitcansup-porttotheactualchannelcapacity.Thedistributionforthe matrix thatachieves(4)isindependent butwecannoteasilyusethisbyitselfasaguidelineforcon-structinganddecodinga(random)constellationof tricesbecauseofthesheernumberofmatricesinvolved.There-fore,aconstellationofmatricesthathassufficientstructureforefficientencodinganddecodingisgenerallyneeded.Onesuchstructureisthatofanorthogonaldesign,originallyproposedin[11]andlatergeneralizedin[12].A.MutualInformationAttainableWithOrthogonalDesignsAnorthogonaldesignisintroducedbyAlamoutiin[11]for andhasthestructure Thecomplexscalars and aredrawnfromaparticular -PSKor -QAM)constellation,butwemaysimplyassumethattheyarerandomvariablessuchthat Weshowthatthisparticularstructurecanbeusedtoachieveca-pacitywhenthereisonereceiveantennabutwhenthereismorethanone.Portionsofourargumentmayalsobefoundin[23],[24].1)OneReceiveAntenna( With ,(5)be- Thiscanberewrittenas Itreadilyfollowsthat Weeffectivelyhaveanequivalentmatrixchannel in(7)thatisascaledunitarymatrix.Maximum-likelihooddecodingof and is,therefore,decoupled[11].Wemayaskhowmuchmutualinformationtheorthogonaldesignstructure(6)canattain?Toanswerthisquestionweneedtocomputethemutualinformationbetweenthetransmittedandreceivedvectors and intheequivalentchannelmodel(7)andcompareitwiththecapacityofan , antennasystem. hasthepowerconstraint ,themaximummutualinformationin(7)issimplythechannelcapacitythatisobtainedwiththestructuredchannelmatrix .Ifwedenotethismaximummutualinformationby ,using(3)weobtain wherethefactor infrontoftheexpectationnormalizesforthetwochannelusesspannedbytheorthogonaldesign.Since,sub-jecttoatraceconstraint,thedeterminantofanypositive-definitematrixismaximizedwhenitseigenvaluesareallequal,itiseasytoseethatthemaximizingcovariancematrixis ,sothatweobtain Theexpressionontherightsymbolicallydenotesthecapacityattainedbyasystemwith transmitantennasand receiveantennasatSNR .Thisequationimpliesthattheor-thogonaldesign(6)canachievethefullchannelcapacityofthe , system,andthereisnolossincurredbyas-sumingthestructure(6)asopposedtoageneraltransmitma- 2)TwoorMoreReceiveAntennas( With receiveantennas,(5)becomes whichcanbereorganizedas Wenowreadilysee Aswith ,maximum-likelihoodestimationof and isdecoupled.However,unlikewith ,theorthogonaldesignstructureprohibitsusfromachievingchannelcapacity. HASSIBIANDHOCHWALD:HIGH-RATECODESTHATARELINEARINSPACEANDTIME1807 Fig.1.Maximummutualinformationachievedbyorthogonaldesign(6)comparedtoactualchannelcapacityforthesystem.Solidline:maximummutualinformationfororthogonaldesign.Dashedline:capacityoftheToseethis,wecomparethemaximummutualinformationbe- and in(10)with ,theactualchannelcapacityforthesystem.Asbefore,themaximummutualinformationin(10)issimplythechannelcapacityforthestructuredchannelmatrix .De-notingthismaximummutualinformationby ,weob- Thelastequationimpliesthattheorthogonaldesign(6)isre-strictiveanddoesnotallowustoachievethefullchannelca-pacityofthe , system,butratherthecapacityof , systemattwicetheSNR.Thus,when wetakealosswiththestructure(6).TheamountofthislossissubstantialathighSNRandisdepictedinFig.1whichshowstheactualchannelcapacitycomparedtothemaximummutualinformationobtainedbytheorthogonaldesign(6).For receiveantennas,theanalysisissimilarandisomitted.Wesimplystatethatfor transmitantennas receiveantennasthe orthogonaldesignallowsustoattainonly ,ratherthanthefull 3)OtherOrthogonalDesigns:Theprecedingsubsectionfocusesonthe orthogonaldesignbuttherearealsoorthogonaldesignsfor .Thecomplexorthogonaldesignsfor arenolonger“full-rate”(see[12])andthereforegenerallyperformpoorlyinthemaximummutualinformationtheycanachieve,evenwhen .Wegiveanexampleofthesenonsquareorthogonaldesigns[12],[25].For ,wehave,forexample,therate orthogonaldesign Thefactor ensuresthat .Itcanbeshownthatmaximum-likelihoodestimationofthevariables isdecoupled.Againusinganargumentsimilarto IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.48,NO.7,JULY2002 Fig.2.Maximummutualinformationachievedbyorthogonaldesign(13)comparedtoactualchannelcapacity.Solidlines:maximummutualinformationorthogonaldesignforreceiveantennas.Dashedlines:capacityoftheonepresentedfor ,itisstraightforwardtoshowthatthemaximummutualinformationattainablewith(13)with receiveantennasis whichis(much)lessthanthetruechannelcapacity .WeomittheproofandreferinsteadtoFig.2whichshowstheactualchannelcapacitycomparedtothemaximummutualinformationobtainedbytheorthogonaldesign(13).B.MutualInformationAttainableWithV-BLASTWeshowedinSectionII-Athat,eventhoughorthogonalde-signsallowefficientmaximum-likelihooddecodingandyield“full-diversity”(theappearanceofthesumofthe inthemutualinformationformulasatteststothis),orthogonaldesignsgenerallycannotachievehighspectralefficienciesinamul-tiple-antennasystem,nomatterhowmuchcodingisaddedtothetransmittedsignalconstellation.Thisisespeciallytruewhenthesystemhasmorethanonereceiveantenna.Anexaminationofthemodel(10)(anditscounterpartsforotherorthogonalde-signs)revealsthattheorthogonaldesigndoesnotallowenough“degreesoffreedom”—thereareonlytwounknownsin(10)butfourequations.Wecanconcludethatorthogonaldesignsarenotsuitableforvery-high-ratecommunications.Ontheotherhand,aschemethatisproventobesuitableforhighspectralefficienciesisV-BLAST[7].InV-BLASTeachtransmitantennaduringeachchannelusesendsanindependentsignal(oftenreferredtoasasubstream).Thus,overablockof channeluses,the transmitmatrixtakesontheform ............ whereeach isanindependentsymboldrawnfromacomplexconstellation.Sincethetransmittedsymbolsarenotdispersedin isarbitrary.(Wecould,forexample,take .)When (thenumberofreceiveantennasisatleastaslargeasthenumberoftransmitantennas),thereexistefficientschemesfordecodingtheV-BLASTmatrices.Thesearebasedon“successivenullingandcanceling”[7],anditsmoreefficientvariants[18],aswellasmorerecentlyonspheredecoding[19].Allthesedecodingschemesessentiallysolveawell-conditionedsystemoflinearequations.Successivenullingandcancelingprovidesafastapproximatesolutiontothemaximum-likeli-hooddecodingproblemwiththebenefitofcubiccomplexityinthenumberoftransmitantennas .Spheredecoding,ontheotherhand,findstheexactmaximum-likelihoodestimateandbenefitsfromavoidinganexplicitexhaustivesearch.Recentwork[20]hasshownanalyticallythatforawiderangeofSNRs,theexpectedcomputationalcomplexityofspheredecodingisalsoroughlycubicinthenumberoftransmitantennas. HASSIBIANDHOCHWALD:HIGH-RATECODESTHATARELINEARINSPACEANDTIME1809Becausethereisnorestrictiononthetransmittedmatrix in(14),themaximummutualinformationthatcanbeachievedbytransmittingV-BLAST-likematricesisindeedthefullmul-tiple-antennachannelcapacity.Nevertheless,V-BLASTsuffersfromtwodeficiencies.First,nullingandcancelingfailswhentherearefewerreceiveantennasthantransmitantennas,sincethedecoderisconfrontedwithanunderdeterminedsystemoflinearequations.Althoughspheredecodingcanstillbeusedtofindthemaximum-likelihoodestimate,thecomputationalcom-plexityisexponentialin .Second,becauseV-BLASTtransmitsindependentdatastreamsonitsantennasthereisnobuilt-inspatialortemporalcoding,andhencenoneoftheerrorresilienceassociatedwithsuchcoding.Weseektoremedythesedeficienciesinthenextsection.III.LPACEInthissection,weproposeahigh-ratecodingschemethatretainsthedecodingsimplicityofV-BLAST,handlesanycon-figurationoftransmitandreceiveantennas,andhasmanyofthecodingadvantagesofschemes,suchastheorthogonaldesigns,withoutsufferingthelossofmutualinformation.Wecallalinear-dispersion(LD)codeoneforwhich (15)where arecomplexscalars(typicallychosenfrom -PSKor -QAMconstellation)andwherethe and fixed complexmatrices.Thecodeiscompletelyde-terminedbythesetofdispersion ,whereaseachindividualcodewordisdeterminedbyourchoiceofthe Weoftenfinditmoreconvenienttodecomposethe theirrealandimaginaryparts andtowrite (16)where and .Thedispersion alsospecifythecode.Theinteger thedispersionmatricesare,forthemoment,unspecified.Withoutlossofgenerality,weassumethat and havevariance andareuncorrelated.Otherwise,wecanalwaysreplacethemwithappropriatelinearcombina-tionsthathavethisproperty—thissimplyleadstoaredefini-tionofthe sand ’s.Thus, areunit-varianceanduncorrelated.RecallfromourmodelinSectionI-AthattheWeremarkthatitisalsopossibletodefine = = ...,sothattheLDcodesbecome A wherethescalars arereal.transmitsignal isnormalizedsuchthat .Thisinducesthefollowingnormalizationonthematrices : Thedispersioncodes(16)subsumeasspecialcasesbothor-thogonaldesignsandV-BLAST.Forexample,the onaldesign(6)correspondsto and whereasV-BLASTcorrespondsto and (20)where and are -dimensionaland columnvectorswithoneinthe thand thentries,respec-tively,andzeroselsewhere.NotethatinV-BLASTeachsignal istransmittedfromonlyoneantennaduringonlyonechanneluse.WiththeLDcodes,however,thedispersionmatricespotentiallytransmitsomecombinationofeachsymbolfromeachantennaateverychanneluse.Thiscanleadtodesirablecodingproperties.Beforewespecifygoodchoicesofthedispersionmatrices,wediscussA.DecodingAnimportantpropertyoftheLDcodes(16)istheirlinearityinthevariables ,leadingtoefficientV-BLAST-likedecodingschemes.Toseethis,itisusefultowritetheblock inamoreconvenientform.Wedecomposethematricesin(21)intotheirrealandimaginarypartstoobtain where and .Equivalently, IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.48,NO.7,JULY2002Wedenotethecolumnsof , , , , ,and by , , , , ,and ,anddefine (22)where .Wethengathertheequationsin and toformthesinglerealsystemofequations ... .. .. wheretheequivalent realchannelmatrixisgivenby ............... Wehavealinearrelationbetweentheinputandoutputvectors and wheretheequivalentchannel isknowntothereceiverbecausetheoriginalchannel ,andthedispersionmatrices areallknowntothereceiver.Thereceiversimplyuses(24)tofindtheequivalentchannel.Thesystemofequationsbetweentransmitterandreceiverisnotunderdeterminedaslongas Wemay,therefore,useanydecodingtechniquealreadyinplaceforV-BLAST,suchassuccessivenullingandcanceling[7],itsefficientsquare-rootimplementation[18],orspheredecoding[19].Themostefficientimplementationsoftheseschemesgen-erallyrequire computations,andhaveroughlyconstantcomplexityinthesizeofthesignalconstellation B.DesignoftheDispersionCodesAlthoughwehaveintroducedtheLDstructure wehavenotyetspecified orthedispersionmatrices and .Wehavetheinequality Intuitively,thelarger is,thehigherthemaximummutualinformationbetween and issincethematrixsignal moredegreesoffreedom.(Recallthatorthogonaldesignsgen-erallyhavelowmutualinformationbecausetheydonothaveenoughdegreesoffreedom.)Ontheotherhand,thesmaller is,themoreofacodingeffectweobtainsincetheequivalent becomes“skinnier”andthesystemofequationsin(23)becomesmoreoverdetermined.Asageneralpractice,wefinditusefultotake sincethistendstomaximizethemutualinformationbetween and whilestillhavingthebenefitofcodinggain.Weareleftwiththequestionofhowtodesignthedisper-sionmatrices.Wemayfirstexaminehowsensitivetheperfor-manceoftheLDcodesistothechoiceofthedispersionma-trices.Experimentswithchoosingrandomdispersionmatricessubjecttothenormalizationconstraint(18),orthemorestrin-gentconstraints for suggestthattheperformancefor“average” isnotgen-erallyverygood.Fig.3showsthebit-errorrateofan , antennasystemwithrandomlychosenversusoptimized(accordingtoacriterionwespecifyshortly)dispersionmatrices.Thedifferenceisdramatic;itisimportanttochoosethedisper-sionmatriceswisely.OnepossiblewayofdesigningthespreadingmatricesistostudythepairwiseprobabilityoferroroftwodifferentLDcode-words,say and Theworstcasepairwiseerrorisgenerallyobtainedwhen and differinonlyoneelement.Wecanthenseektochoosethedispersionmatricesthatminimizestheprobabilityofthiserror.Themaindrawbackofthisstrategyisthatitleadstoacriterionontheindividualcolumnsofthematrix ,ratherthanonthematrixinitsentirety.Therefore,itisconceivablethatdesignsbasedonthiscriterioncouldleadtoa(near)singular ,leadingtootherformsoferrors.Finally,itisnotclearwhateffectminimizingpairwiseerrorprobabilityhasontheoverallerrorprobability,especiallyforahigh-ratesystem.Therefore,thisstrategyforchoosingthedispersionmatricesdoesnotappeartobepromising.Wecanalsostudytheaveragepairwiseerrorprobability,ob-tainedbychoosingGaussian in(25)andaveragingthepair-wiseerrorobtainedbetweenanindependent and .WeshowinAppendixBthattheaveragepairwiseerrorhasupperbound pairwise Wecanthenseektominimizetheupperboundwithanap-propriatechoiceof and .Eventhough(27)isasimpleformula,suggestingthatitcanpossiblybeminimized,wedonotattempttodosohere.Themainreasonisthefollowing.SincemultipleantennasareusedforveryhighAthighSNR,thecapacityofthemultiple-antennasystemgrowsasmin(M;N)log,suggestingthatweneed=min(M;Ndegreesoffreedomperchanneluse. HASSIBIANDHOCHWALD:HIGH-RATECODESTHATARELINEARINSPACEANDTIME1811 Fig.3.Bit-errorperformancecomparisonforarandom( drawnfromacomplexGaussiandistributionandnormalized)andanoptimizedLDcodefortransmitandreceiveantennafor,andratebits/channeluse(obtainedbytransmitting64-QAMon ; rates,thepairwiseerrorprobabilityforanytwosignalsisex-tremelysmall.InSectionI-Awearguethatevenforthesmalltest-caseof transmitand receiveantennas,wecouldtheoreticallyhaveaconstellationsizeofasmanyas signal-matricesat 20dB.Itisthereforeconceivablethatthepairwiseerrorprobabilitybetweenanytwocouldberoughly .Tryingtominimizeaquantitysuchas(27)thatisalreadysosmallcanbenumericallyquitedifficult.Fortunately,informationtheorysuggestsanaturalalternativethatisconnectedwithminimizing(27)butismorefundamental.RecallfromSectionII-Athatorthogonaldesignsaredeficientinthemaximummutualinformationtheysupportfor or .Wethereforechoose tomaximizethemu-tualinformationbetween and in(23).ThisguaranteesthatwearetakingthesmallestpossiblemutualinformationpenaltywithintheLDstructure(16).Weproposetodesigncodesthatare“blessed”bythe“logdet”formula(3).Weformalizethedesigncriterionasfollows.TheDesignMethod1)Choose (typically, 2)Choose thatsolvetheoptimizationproblem foranSNR ofinterest,subjecttooneofthefollowing ii) , iii) , where isgivenby(24)withthe havingindependent Notethat(28)iseffectively(3)with ;asmentionedinSectionIII,wemaytaketheentriesof (the ’sand ’s)tobeuncorrelatedwithvariance .Moreover,becausetherealandimaginarypartsofthenoisevector in(23)alsohavevariance ,theSNRremains .Wealsonotethat(28)differsfrom(3)bytheoutsidefactor becausetheeffectivechannelisreal-valuedandtheLDcodespans channeluses.Wenowmakesomeremarks.1)Clearly, 2)Theproblem(28)canbesolvedsubjecttoanyofthecon-straintsi)–iii).Constrainti)issimplythepowerconstraint(18)thatensures .Constraintii)ismorerestrictiveandensuresthateachofthetransmittedsignals and aretransmittedwiththesameoverallpowerfromthe antennasduringthe channeluses.Finally,constraintiii)isthemoststringent,sinceitforcesthesym- and tobedispersedwithequalenergyinallspatialandtemporaldirections. IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.48,NO.7,JULY20023)Sinceconstraintsi)–iii)aresuccessivelymorerestric-tive,thecorrespondingmaximummutualinformationsobtainedin(28)arenecessarilysuccessivelysmaller.Nevertheless,wehavefoundthatconstraintiii)generallyimposesonlyasmallinformation-theoreticpenaltywhilehavingtheadvantageofbettercoding(ordiversity)gains.Usingsymmetryargumentsonemayconjecturethattheoptimalsolutiontotheproblemwithconstrainti)shouldautomaticallysatisfyconstraintii).Butwehavenotexperimentedsufficientlywithconstrainti)toconfirmthis;weinsteadusuallyrestrictourattentiontoconstraintsii)andiii).Wehaveempiricallyfoundthatoftwocodeswithequalmutualinformations,theonesatisfyingthemorestringentconstraintgiveslowererrorrates.ExamplesofthisphenomenonappearinSectionIV.4)Thesolutionto(28)subjecttoanyoftheconstraintsi)–iii)ishighlynonunique:simplyreorderingthe givesanothersolution,asdoespre-orpost-multiplyingallthematricesbythesameunitarymatrix.However,thereisalsoanothersourceofnonuniquenesswhichismoresubtle.Equation(23)showsthatwecanalwayspre-mul-tiplythetransmitvector bya orthogonalmatrix toobtainanewvector withen-triesthatarestillindependentand -distributed.Thus,wemayrewrite(23)as Defining , ,and asin(22)allowsustowritethenewequivalentchannel asshownin(29)atthebottomofthepage.Sincetheentriesof and havethesamejointdistribution,themaximummutualinformationobtainedfromtheequivalentchannels and arethesame.Thisimpliesthatthetransformationfromthedispersionmatrices to (30)where isanorthogonalmatrix,pre-servesthemutualinformation.Thus,thetransformation(30)isanothersourceofnonuniquenesstothesolutionofThisnonuniquenesscanbeusedtoouradvantagebecauseajudiciouschoiceoftheorthogonalmatrix allowsustochangethedispersioncodethroughthetransformation(30)tosatisfyothercriteria(suchasspace–timediversity)withoutsacrificingmutualinfor-mation.ExamplesofthisappearinRemark7,whereweconstructunitary fromtherank-oneV-BLASTdispersionmatrices(20),andinSectionIVinsomeofthetwoandthree-antennaLDcodeconstructions.5)Theconstraintsi)–iii)areconvexinthedispersionma- sincetheycanberewrittenas ii¢) , iii¢) , allofwhichareconvex.However,thecostfunction isneitherconcavenorconvexinthevariables .Therefore,itispossiblethat(28)haslocalmaxima.Nevertheless,wehavebeenabletosolve(28)withrelativeeaseusinggradient-basedmethodsanditdoesnotappearthatlocalmaximaposeagreatproblem.TableIinSectionIV-Agathersthemaximummutualinformationsobtainedviagradient-ascentforavarietyofdifferent , ,and TheresultsshowthatmaximummutualinformationsobtainedarequiteclosetotheShannoncapacity(whichisclearlyanupperboundonwhatcanbeachieved)andsotheysuggestthatthevaluesobtained,ifnottheglobalmaxima,arequiteclosetothem.(Forconvenience,weincludethegradientofthecostfunction(28)inAppendixA.) ......... ......... ...... (29) HASSIBIANDHOCHWALD:HIGH-RATECODESTHATARELINEARINSPACEANDTIME18136)Weknowthatfor , , ,onesolutionto(28),foranyoftheconstraintsi)–iii),istheorthogonaldesign(19).Thisholdssimplybecausethemutualinfor-mationofthisparticularorthogonaldesignachievestheactualchannelcapacity .Wenotethattherearealsomanyothersolutionsthatworkequally7)When and onesolutionto(28),subjecttoeitherconstraintsi)orii),isgivenbytheV-BLASTmatrices(20)sincetheseachievethefullcapacityofthemultipleantennalink.TheV-BLASTmatrices,however,arerank-oneandthereforedonotsatisfyconstraintiii).Butitisalsopossibletoobtainanexplicitsolutionto(28)subjecttoiii).For ,onesuchsetofmatricesisgivenby (31)where ...... ......... TheabovecodecanbeconstructedbystartingwiththeV-BLASTmatrices(20)andapplyingthetransformation(30)withasuitable .Wedonotgivethefull here,andonlymentionthat,for ,thetransformationis withsimilarexpressionsforthe .Itcanbereadilycheckedthatthematrix constructedfromthecoef-ficientsrelating to isorthogonal.Fig.4inSectionIVpresentsaperformancecomparisonoftheLDcode(31)withV-BLAST.8)Theblocklength isessentiallyalsoadesignvariable.Althoughitmustbechosenshorterthanthecoherencetimeofthechannel,itcanbevariedtohelptheoptimiza-tion(28).Wehavefoundthatchoosing oftenyieldsgoodperformance.9)AlthoughtheSNR isadesignvariable,wehavefoundthattheoptimization(28)isnotsensitivetoitsvalueforlarge ( 20dB).Oncetheoptimizationisperformed,theresultingLDcodegenerallyworkswelloverawiderangeofSNRs.10)Itdoesnotappearthat(28)hasasimpleclosed-formsolutionforgeneral , , ,althoughweseeinSec-tionIVthat,insomenontrivialcases,itcanleadtoso-lutionswithsimplestructure.Wehavefoundthattheso-lutionto(28)oftenyieldsanequivalentchannelmatrix thatis“asorthogonalaspossible.”Althoughcompleteorthogonalityappearsnotalwaystobepossible,ourex-periencewithoptimizing(28)showsthatthedifference canbemadequitesmallwithaproperchoiceof and (seeTableIinSec-tionIV-A).Thus,thereappearstobeverylittlecapacitypenaltyinassumingtheLDstructure(16).11)Whentheequivalentchannelmatrix isorthogonal,maximum-likelihooddecodingandtheV-BLAST-likenulling/canceling[7]performequallywellbecausetheestimationerrorsof aredecoupled.12)Thedesigncriterion(28)dependsexplicitlyonthenumberofreceiveantennas ,boththroughthechoice andthroughthematrix in(24).Hence,theoptimalcodes,foragiven , ,and ,aredifferentfordifferent Nevertheless,acodedesignedfor receiveantennascanalsoeasilybedecodedusingnulling/cancelingorspheredecodingwith antennas.Hence,ifwewishtobroadcastdatatomorethanoneuser,wemayuseacodedesignedfortheuserwiththefewestreceiveantennas,witharatesupportedbyalltheusers.13)Theultimaterateofthecodedependsonthenumberofsignalssent ,theblocklengthofthecode ,andthesizeoftheconstellationfromwhich arechosen.Weassumethattheconstellationis -PSKor Thentherateinbitsperchanneluseiseasilyseentobe 14)Astandardgray-codeassignmentofbitstothesymbolsofthe -PSKor -QAMconstellationmaybeused.15)Weseethattheaveragepairwiseerrorprobability(27)andthedesigncriterion(28)haveasimilarexpression.Byinterchangingtheexpectationandlogin(28),weseethatmaximizing(28)hassomeconnectionstominimizingOntheotherhand,ourdesigncriterionisnotdirectlyconnectedwiththediversitydesigncriteriongivenin[9]and[10],whichisconcernedwithmaximizing Aconstellationattainsfulldiversityif(33)isnonzero.Thiscriteriondependsonlyonmatrixpairs,andthere-foredoesnotexcludematrixdesignswithlowspectralefficiencies.Athighspectralefficiencies,thenumberofsignalsintheconstellationofpossible matricesisroughlyex-ponentialinthechannelcapacityatagivenSNR.Thisnumbercanbeverylarge—inSectionIVwepresenta IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.48,NO.7,JULY2002codefor and thateffectivelyhas matrices.Therelationbetweenthediversitycriterionandtheperformanceofsuchalargeconstellationisverytenuous.Evenif formanypairsof ,ourprobabilityofencounteringoneofthesematricesmaystillbeexceedinglysmall,andtheconstellationperformancemaystillbeexcellent.Forsuchalargeconstellationitisprobablymoreimportantforthematricesinthisconstellationtobedistributedinthespaceofmatricesaccordingtothedistributionthatat-tainscapacity;themutualinformationcriterionattemptstoachievethisdistribution.AstheSNRisallowedtoincrease,theperformanceofsomegivenspace–timecodewithsomegivenratebe-comesmoredependentonthediversitycriterionsincemakingadecodingerrortoa“nearestneighbor”becomesrelativelymoreimportant.Chernoffboundcomputationsin[10]showthatthepairwiseerrorfallsoffas ,where istherankof .However,byincreasingtheSNRandkeepingthecode(andhencerate)fixed,weareeffectivelyreducingtherelativespectralefficiencyofthecodeascomparedwiththechannelcapacity.Wearethere-foreledagaintotheconclusionthatdiversityplaysasec-ondaryroleathighspectralefficiencies.InSectionIV,wepresentacomparisonofcodesthatsatisfyvariouscombi-nationsofthemutualinformationanddiversitycriteria.Thecodethatsatisfiesbothcriteriaperformsbest,fol-lowedbythemutualinformationcriteriononly,followedbythediversitycriteriononly.16)Althoughthedispersionmatrices can,ingen-eral,becomplex,wehavefoundthatconstrainingthemtoberealimposeslittle,ifany,penaltyintheoptimizedmutualinformation.17)Ourmutualinformationcalculationsanddesignexam-plesassumethatthechannelmatrix hasindependent entries,butdesignsforotherchanneldistribu-tionsusingthemutualinformationcriterionarealsopos-IV.EXAMPLESOFLDCODESANDInthissection,wepresentsimulationsthatcomparetheper-formanceofLDcodestoV-BLASTandorthogonaldesignsoverawiderangeofSNRsandvariouscombinationsofreceiveandtransmitantennas.AlltheLDcodesaredesignedforatargetSNRof 20dB(seeRemark9inSectionIII-B).LDVersusV-BLAST: , , Welookfirstatan , systematrate compareV-BLASTwithanLDcode.InV-BLAST, andthematricesaregivenby(20).TodesignanLDcodewealsochoose butusethematricesgivenby(31)thatsatisfyconstraintiii)in(28).Toachieve ,wetransmitquaternaryphase-shiftkeying(QPSK)on .There-sultscanbeseeninFig.4,wherethebiterrorsarecompared.EventhoughbothV-BLASTandtheLDcodesupportthefullchannelcapacity,whichis11.28bits/channeluseatSNR dB,theLDcodehasbetterperformance;thiscanprobablybeattributedtothespatialandtemporaldispersionofthesymbolsthatV-BLASTlacks.Sincewearetransmittingatarate ourspectralefficiencyislowrelativetothechannelcapacity,andwemaythereforeanticipatesignificantcodingadvantagesfromalsosatisfyingthediversitycriterion(33)—seeRemark15inSectionIII-Bforanexplanationoftherelativeimportanceofdiversityatlowspectralefficiencies.TheLDcode(31)maybemodifiedasinRemark4inSectionIII-B,withoutchangingitsmutualinformation,bypremultiplyingthetransmittedsignalvectorbyanorthogonalmatrix .In[26],atwo-antennacodeisdesignedusingthefulldiversitycriterion.Thiscodealsohappenstosupportthefullcapacityofthechannel,andwemayputitintoourLDcodeframeworkbychoosing tobetheblock-diagonalmatrixshownin(34)atthebottomofthepage(wherethesubscript“ ”denotesrealpart,and“ ”denotesimaginarypart)andwhere and .Theresultisacodethatsatisfiesboththemutualinformationcriterionanddiversitycriterion;itisalsodisplayedinFig.4andhasthebestperformance.Althoughthecodesinthefigureallsatisfythemutualinformationcondition,theimportanceofalsosatisfyingthediversitycriterionatrelativelylowspectralefficienciesisunderscored.Thenextexampleshowsthatsatisfyingthemutualinformationconditionismostimportantathigherspectralefficiencies.LDVersusOD: , WeshowinSectionII-A2thatthe orthogonaldesignisdeficientinmutualinformationwhen .Thisdeficiencyshouldbereflectedinitsperformancewith .Wetestitsperformancewhen at versustheLDcodegivenby(31)for and .TheresultcanbeseeninFig.5whichclearlyshowsthebetterperformanceoftheLDcodeoverawiderangeofSNRs.Toachieve ,weseefrom(32)thattheorthogonaldesignneedstochoose and a256-QAMconstellation,whiletheLDcodecanchoosefroma16-QAMconstellationbecauseithasfoursymbols Wenotethattheorthogonaldesignhasgooddiversity(33)[12] (34) HASSIBIANDHOCHWALD:HIGH-RATECODESTHATARELINEARINSPACEANDTIME1815 Fig.4.TheuppertwocurvesarethebiterrorperformanceofV-BLAST(20)withnulling/canceling(upper),andwithmaximum-likelihooddecoding(lowThelowertwocurvesaretheLDcodegivenby(31)for(upper)andthecode(34)with (lower).Forboththesecodes,spheredecodingisusedtofindthemaximum-likelihoodestimates.Therateis,andisobtainedbytransmittingQPSKon ; butachievesonly7.47-bits/channelusemutualinformationat 20dB,whiletheLDcodeachievesthefullchannelcapacityof11.28bits/channeluse.TheorthogonaldesignandLDcodearemaximum-likelihooddecoded(usingthespheredecoderinthecaseoftheLDcode).Theorthogonaldesigniseasiertode-codethantheLDcodebecause and maybedecodedsep-arately,anditsperformanceisbetterforSNR 35dB(wherespectralefficiencyislowcomparedwithcapacity).ButwemayobtainacodethatisuniformlybetteratallSNRsbyusing(34)toimprovethediversityof(31)withoutchangingitsmutualinformation.Asshownin[26],setting isagoodchoicewhentransmitting16-QAM.TheperformanceofthisconstellationisalsoshowninFig.5.ItsperformanceisbetterthantheunmodifiedLDcodeathighSNR.Clearly,thebestcodesatisfiesboththemutualinformationanddiversitycriteria,ifpossible.LDVersusOD: , , Wepresentacodefor transmitantennasand receiveantennasandcompareitwiththeorthogonaldesignpre-sentedinSectionII-A3withblocklength .Theorthog-onaldesign(13)iswrittenintermsof and as Itturnsoutthatthisorthogonaldesignisalocalmaximumto(28)for and .Itachievesamutualinformationof5.13bits/channeluseat 20dB,whereasthechannelcapacityis6.41bits/channeluse.TofindanLDcodewiththesameblocklength,wefirstob-servethat mustobeytheconstraint ,with and .Therefore, ,andtoobtainthehighestpossiblemutualinformationwechoose .Afteroptimizing(28)usingagradient-basedsearch(AppendixA)andconvergingtoalocalmaximumat 20dB,wefind(36)asshownatthebottomofthefollowingpage.Thiscodehasamutualinforma-tionof6.25bits/channeluseat 20dB,whichismostofthechannelcapacity.Thematrix hassomeinterestingfeatures.First,ithasorthogonal(butnotorthonormal)columns;second,itscorresponding matrixisnonzeroinonly12ofits56off-diagonalentries.Fig.6comparestheperformanceoftheorthogonaldesign(35)withtheLDcode(36)atrate .(From(32),therateofeithercodeis ;weachieve havingtheorthogonaldesignsend256-QAM,andtheLDcodesend64-QAM.)Thedecodinginbothcasesismaximumlike-lihood,whichinthecaseoftheLDcodeisaccomplishedwiththespheredecoder,andinthecaseoftheorthogonaldesignissimplebecause aredecoupled.Wealsocomparede-codingwithnulling/canceling,whichappearstobeonlyslightlyworsethanmaximumlikelihood(thisisperhapsbecausethecolumnsoftheLDcodeareorthogonal—seeRemark11in IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.48,NO.7,JULY2002 Fig.5.Biterrorperformanceoftheorthogonaldesign(19)andtheLDcodegivenby(31)for(dashedline)andthecode(34)with (lowersolidline).Therateisimplyingthattheorthogonaldesigntransmits256-QAMwhereastheLDcodestransmit16-QAM.Thedecodingismaximumlikelihoodinbothcases.SectionIII-B).WeseefromFig.6thattheLDcodeperformsuniformlybetter. , LDCodeFrom OrthogonalDessign , , LDcode(36)isobtainedviaagradientsearchandhasmutualinformation6.25bits/channeluseat 20dB.However,thisislessthanthefull , capacityof ,andwewouldliketoclosethegapalittle.WeshouldbeabletomakeanLDcodewithmutualinformationatleastaslargeasthemutualinformationofthetwo-antennaorthogonaldesign(6),whichis .Wedonotresumeourgradientsearchsincethevalue appearstobealocalmaximum,butrathertryaslightlydifferentapproach.Webeginwiththetwo-antennaorthogonaldesignandcreateathree-antennaLDcodethatpreservesitsmutualinformation.Onepossiblecodeisobtainedbysymmetricallyconcate-natingthree orthogonaldesigns(normalizedtoobeythepowerconstraint) WhenviewedasanLDcode,(37)hasthedeficiencythat and areonlynonzerofortwo-channelusesandnotforthefullsix-channeluses.Moreover, and haveranktwo,rather (36) HASSIBIANDHOCHWALD:HIGH-RATECODESTHATARELINEARINSPACEANDTIME1817 Fig.6.Block(dashed)andbit(solid)errorperformanceoforthogonaldesign(35)andtheLDcode(36)forantennas.Therateis6bits/channeluse,obtainedintheorthogonaldesignbytransmitting256-QAMon ... andobtainedintheLDcodebytransmitting64-QAMon ... .Theuppermostblockandbitcurvesaretheorthogonaldesign,decodedwithmaximumlikelihood.Thelowertwoblockandbitcurves(veryclosetooneanother)aretheLDcodedecodedwithnulling/canceling(upper)andmaximumlikelihood(lower).Thecomparisonofblockerrorismeaningfulherebecausetheblocksizeinallcasesisthantheirfullpossiblerankofthree.Consequently,constraintiii)inSectionIII-Bisnotsatisfied,andaswepointoutinRe-mark3,oftwocodesthathavethesamemutualinformation,theonesatisfyingthestrongerconstraintgenerallyperformsbetter.Itisclearthatthecode(37)isreallyonlyatwo-antennacodeincrudedisguiseandperformsworsethan(36),eventhoughitsmutualinformationisslightlyhigher.Toimproveitsperformance,weseektomodifyitsothatcon-straintiii)issatisfiedwithoutchangingitsmutualinformation.OnepossiblemodificationisdescribedinRemark4inSec-tionIII-B.(See,inparticular,thetransformationinvolving (30).)Let denotethe discreteFouriertransform(DFT)matrix,andchoose tobethe realorthogonalmatrixob-tainedbyreplacingeachelement of bythe realmatrix .Thetransformationof tonewdispersionmatrices is Theresulting matrixisshownin(39)atthebottomofthefollowingpage.Eachdispersionmatrixspansallsixchannelusesandisunitary .Thus,constraintiii)issatisfied.Becausethetransformation(38)isaspecialcaseofthetransformation(30),themutualinformationisstill6.28bits/channeluse( 20dB).WeseeinFig.7thatthiscodeperformsverywell:displayedis(37)(whichhasthesameperformanceasthe onaldesign)andtheLDcodes(36)and(39)forrate (ThesymbolconstellationishenceQPSK.)Thecode(37)hastheworstperformance.TheLDcode(36)with hasbetterperformance,despiteitslowermutualinformation,becauseitsatisfiesconstraintiii).Thebestperformer,however,is(39),becauseitsmutualinformationishigherthan(36)( versus ),itsatisfiesconstraintiii),andperhapsalsobecauseithasalongerblocklength( versus TwoLDCodes: , , Fig.8demonstratesthedramaticimprovementofincreasingthenumberoftransmitterantennasfrom to with .AnLDcodewasdesignedfor , ,and thatattains11.84bits/channeluseatSNR 20dB,whereasthechannelcapacityis12.49bits/channeluse.Wedonotexplicitlypresentthecodebecause andtherearetherefore24 and matrices.(Thereadermayobtainthecodebycontactingtheauthors.)WecomparethiscodewiththebestLDcodewehavefor transmitantennas((31)modifiedwith(34)where ). IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.48,NO.7,JULY2002 Fig.7.Biterrorperformancefor,and.Thetopcurveis(37),whoseperformanceisidenticaltoaorthogonaldesign.ThemiddlecurveistheLDcode(36),andthelowercurveistheLDcode(39).Inallcases,thetransmittedsymbolsareQPSK,decodedviamaximumlikelihood.LDCode: , , ThelastexampleisanLDcodefor and atrate 16bits/channelusedisplayedinFig.9.Itisworthnotingthatthecapacityofan , systemat20dBis24.94-bits/channeluse.WethereforerestrictourattentioninthisfiguretorelativelyhighSNR.TheLDcodewasdesignedusinggradientsearchappliedto(28)untilalocalmaximumwasobtainedat 20dB.Thecodeattainsamutualinformationof23.10-bits/channeluse,with andhas .To ,wechoose froma16-QAMcon-stellation.Becauseofthesheernumberofmatricesinvolved,weagaindonotexplicitlypresenttheLDcodehere.Wein-cludethisexampletodemonstratethatveryhighratesarewellwithinthereachofthesecodes,evenwithmaximum-likelihooddecoding.Thefigurecomparestheperformanceofnulling/can-celingversusmaximum-likelihooddecodingwiththespherede-coder,andmaximumlikelihoodperformsfarbetter.Itisremark-ablethatthespheredecodersucceedsatallinobtainingthemax-imum-likelihoodestimate,sinceafullexhaustivesearchwouldneedtoexamine hypotheses.A.TableofMutualInformationsTableIsummarizesthemutualinformationsofsomeLDcodesthatwegenerated,includingtheexamplesfromthe (39) HASSIBIANDHOCHWALD:HIGH-RATECODESTHATARELINEARINSPACEANDTIME1819 Fig.8.BiterrorperformanceofthebestLDcodefor((31)modifiedwith(34))andanLDcodefor,andTherateisandisobtainedbytransmitting16-QAMoneachsymbol.Thedecodinginbothcasesismaximumlikelihood.TheLDcodeforachieves11.84bits/channelusemutualinformationat20dBversusthechannelcapacityof,andbenefitsdramaticallyfromthetwoextratransmitantennas.TABLEIUTUALNFORMATION ;T;M;NBTAINEDVIAPTIMIZATIONOFTHE(28),COMPAREDTOTHECTUALAPACITY;M;NALUESOF20dB previoussection,andtheactualchannelcapacitiesat 20dB.Ascanbeobserved, isverycloseto ;thereislittlepenaltyinthelinearstructureofthedispersioncodes.Whenstudyingthistable,weshouldbearinmindthattheentriesfor arenotnecessarilythebestachievablesince(28)wasmaximizedviagradientascent.Ourmaximaarethereforequitepossiblylocal.Further-more,thevaluesof areforcodeswithblocklengthsobeying .Conceivably,increasing couldalsoyieldhighervaluesfor V.CThelineardispersioncodeswehaveintroducedaresimpletoencodeanddecode,applytoanycombinationoftransmitandreceiveantennas,subsumeasspecialcasesmanyearlierspace–timetransmissionschemes,andsatisfyaninformation-theoreticoptimalityproperty.Wehavearguedthatcodesthataredeficientinmutualinformationcanneverbeusedtoattaincapacity.Wealsohaveshownthatinformation-theoreticopti-malityhasatheoreticalconnectionwithlowpairwiseerrorprob-abilityandgoodperformanceathighspectralefficiencies.TheLDcodesaredesignedtobelinearwhilehavinglittle(ifany)penaltyinmutualinformation,andadditionalchannelcoding canbecombinedwithanLDcodetoattainmost(ifnotall)ofthechannelcapacity.WehavegivensomespecificexamplesoftheLDcodes,andpresentedarecipeforgeneratingmorecodeswithinthislinearstructureforanycombinationoftransmitandreceiveantennas.Oursimulationsindicatethatcodesgeneratedwiththisrecipecomparefavorablywithexistingspace–timeschemesintheirgoodperformanceandlowcomplexity.Wehavearguedthatthediversitycriterioncommonlyusedtodesignspace–timecodesplaysasecondaryroletomutualinformationcriterionathighspectralefficiencies.Thediversitycriterionalonemayleadtocodedesignsthatcannotattaincapacity.Inoursimulations,wedecodedtheLDcodesbyeithermax-imumlikelihoodorbynullingandcanceling.Becauseofthelinearrelationbetween and in(25),themaximum-likeli-hoodsearchcouldbeaccomplishedefficientlyusingthespheredecodingalgorithm,which,forSNRsofinterest,haspolyno-mialcomplexityinthenumberofantennas. IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.48,NO.7,JULY2002 Fig.9.BiterrorperformanceofanLDcodefor=32withnulling/canceling(uppercurve)andmaximum-likelihooddecoding(lowercurve).Therateis=16andisobtainedbytransmitting16-QAMoneachsymbol.TheLDcodeachievesmutualinformation23.10-bits/channeluseat20dBversusthechannelcapacityofWehaveusedtheaveragecapacity(acrossdifferentchannelrealizations)asourdesignmetric,ratherthananoutagecapacity(forone-channelrealization),becausechannelsarerarelystaticforverylongandbecausetheoutagecapacitydoesnothaveasimpleclosed-formexpression.Itisreasonabletoexpectthatcodesthatworkwellonaverageshouldalsohelpreducetheprobabilityofoutageevents,butthisremainstobeexplored.ItwouldbeinterestingtoseeiftheLDcodesthatsatisfy(28)possessanygeneralalgebraicstructure.Thiswouldleadtobettertheoreticalunderstandingofthecodes,aswellastopossiblyfasterandbetterdecodingalgorithms.Thecodes(36)and(39),forexample,arelocalmaximaofthecostfunctionandyethavesimplestructure.Itwouldalsobeimportanttocharac-terizetheoreticallyhowclose canbemade —whatisthepenaltyincurredbytheLDstruc-ture?Ourexperiencesuggeststhatthepenaltyissmall.Perhapsthepenaltyapproacheszeroas Finally,therearepotentiallymanywaystooptimizethecostfunction(28),andthegradientmethodwechoseisonlyoneofthem.MoresophisticatedoptimizationtechniquesmayalsobeOMPUTATIONInallthesimulationspresentedinthispaper,themaxi-mizationofthecostfunctionin(28),neededtodesigntheLDcodes,isperformedusingasimpleconstrained-gradient-ascentmethod.Inthisappendix,wecomputethegradientofthecostfunctionin(28)thatthismethodrequires.Moresophisticatedoptimizationtechniquesthatwedonotconsider,suchasNewton–Raphson,scoring,andinterior-pointmethods,canalsousethisgradient.Tohelpcomputethisgradient,werewritethecostfunctionin(28)asshownin(A1)atthebottomofthepage,where , ,and aredefinedin(22)for and Wewishtocomputethegradientofthecostfunctionin(A1)withrespecttothespreadingmatrices , , ,and .Tosimplifythegradientcalculation,weassumethelog-arithmin(A1)isbase .Thegradientwithrespectto computedhereexplicitly—theremainingthreegradientsfollowsimilarargumentsandaregivenattheendofthesection. ....... . . ...... (A1) HASSIBIANDHOCHWALD:HIGH-RATECODESTHATARELINEARINSPACEANDTIME1821 thentryofthegradientofafunction is (A2)where and arethe -dimensionaland unitcolumnvectorswithoneinthe thand thentries,respectively,andzeroselsewhere.Definingthematrixappearinginthe of(A1)as ,sothat ;wethenobtain ......... .. ... ......... transpose higherorderterms.(A3) yields(A4),shownatthebottomofthefollowingpage,whereinthelaststepweuse .Thisnowleadsto ......... .. ... ......... ......... .. ... ......... ........ wherewehavedefinedthe matrix as .. ...... Thisconcludesthegradientcalculationwithrespectto Similarexpressionscanbefoundforthegradientswithre-spectto , ,and .With ... ......... thesegradientsare (A8) (A9) (A10) VERAGEAIRWISEROBABILITYOFRRORThesignalmodel(25)is where isagivenreal matrix.Wecomputethepairwiseerrorbyconditioningon pairwise pairwise IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.48,NO.7,JULY2002Weassumethattwoindependent signalvectors and arechosenwithentriesfromindependentzero-meanrealGaussiandensitieswithvariance .Theentriesoftheadditive noisevector arealsochosenfromthisdensity.Wewanttheprobabilitythatamaximum-likelihooddecodermistakes for ,giventhat istransmitted,averagedover ,andconditionedon .Because hasaGaussiandistribution,weequivalentlywant pairwise transmitted (B12) Equation(B12)followsbecause and areindependentGaussianvectorsandwehavereplacedthedifferenceofthetwovectorsbyasinglevectorwithtwicethevariance.Tocompute(B13),welookatthecharacteristicfunctionofthescalar Wecanwrite Thecharacteristicfunctionof is Weusetheformula forpositivereal ,where isareal vector,toconcludethat Thisimpliesthat pairwise (B14) ......... ... ... ......... transpose higherorderterms ........ ... ... ......... transpose higherorderterms(A4) HASSIBIANDHOCHWALD:HIGH-RATECODESTHATARELINEARINSPACEANDTIME1823Wewishtoswitchtheorderofintegration,andwehavetomakesurethat iswell-behavedasafunctionof and .Wecanensureitsgoodbehaviorbyshiftingthepathofintegrationto .(Theformalargumentforwhythisdoesnotaffectthevalueoftheintegralisomitted.)Weobtain pairwise Wenowcompute byfirstcomputingtheeigen-valuesof .Theeigenvaluesof arethesolutionsto asapolynomialin .Usingastandarddeterminantidentity[27],wecanwritethisequationas where aretheeigenvaluesof .Solvingthislastequationyields zeroeigenvalues,withthe eigenvaluesgivenby Therefore, and(B15)becomes pairwise Togetanupperboundonthepairwiseerrorprobability,weignorethesecondappearanceof in(B16)toobtain pairwise Itfollowsthat pairwise Applyingaunionboundtothisaveragepairwiseprobabilityoferroryieldsanupperboundonprobabilityoferrorofasignalconstellation.Supposethatthetransmissionrateis ,sothatthereare elementsinourconstellationfor ;then [1]G.J.Foschini,“Layeredspace–timearchitectureforwirelesscommu-nicationinafadingenvironmentwhenusingmulti-elementantennas,”BellLabs.Tech.J.,vol.1,no.2,pp.41–59,1996.[2]I.E.Telatar,“Capacityofmulti-antennaGaussianchannels,”Europ.Trans.Telecommun.,vol.10,pp.585–595,Nov.1999.[3]A.Wittneben,“Basestationmodulationdiversityfordigitalsimulcast,”Proc.IEEEVehicularTechnologyConf.,1991,pp.848–853.[4]N.SeshadriandJ.Winters,“Twosignalingschemesforimprovingtheerrorperformanceoffrequency-division-duplex(fdd)transmissionsys-temsusingtransmitterantennadiversity,”inProc.IEEEVehicularTech-nologyConf.,1993,pp.508–511.[5]A.Wittneben,“Anewbandwidth-efficienttransmitantennamodulationdiversityschemeforlineardigitalmodulation,”inProc.IEEEInt.Com-municationsConf.,1993,pp.1630–1634.[6]J.Winters,“ThediversitygainoftransmitdiversityinwirelesssystemswithRayleighfading,”inProc.IEEEInt.CommunicationsConf.,1994,pp.1121–1125.[7]G.D.Golden,G.J.Foschini,R.A.Valenzuela,andP.W.Wolniansky,“DetectionalgorithmandinitiallaboratoryresultsusingV-BLASTspace–timecommunicationarchitecture,”Electron.Lett.,vol.35,pp.14–16,Jan.1999.[8]G.J.Foschini,G.D.Golden,R.A.Valenzuela,andP.W.Wolniansky,“Simplifiedprocessingforhighspectralefficiencywirelesscommuni-cationemployingmulti-elementarrays,”J.Select.AreasCommun.,vol.17,pp.1841–1852,Nov.1999.[9]J.-C.Guey,M.P.Fitz,M.R.Bell,andW.-Y.Kuo,“SignaldesignfortransmitterdiversitywirelesscommunicationsystemsoverRayleighfadingchannels,”inProc.IEEEVehicularTechnologyConf.,1996,pp.[10]V.Tarokh,N.Seshadri,andA.R.Calderbank,“Space–timecodesforhighdataratewirelesscommunication:PerformancecriterionandcodeIEEETrans.Inform.Theory,vol.44,pp.744–765,Mar. IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.48,NO.7,JULY2002[11]S.M.Alamouti,“AsimpletransmitterdiversityschemeforwirelessIEEEJ.Select.AreasCommun.,pp.1451–1458,Oct.[12]V.Tarokh,H.Jafarkhani,andA.R.Calderbank,“Space–timeblockcodesfromorthogonaldesigns,”IEEETrans.Inform.Theory,vol.45,pp.1456–1467,July1999.[13]B.M.HochwaldandT.L.Marzetta,“Unitaryspace–timemodulationformultiple-antennacommunicationinRayleighflatfading,”IEEETrans.Inform.Theory,vol.46,pp.543–564,Mar.2000.[14]B.HochwaldandW.Sweldens,“Differentialunitaryspacetimemod-IEEETrans.Commun.,vol.48,pp.2041–2052,Dec.2000.[Online]Available:http://mars.bell-labs.com.[15]B.Hughes,“Differentialspace–timemodulation,”IEEETrans.Inform.,pp.2567–2578,Nov.2000.[16]A.Shokrollahi,B.Hassibi,B.Hochwald,andW.Sweldens,“Represen-tationtheoryforhigh-ratemultiple-antennacodedesign,”IEEETrans.Inform.Theory,vol.47,pp.2335–2367,Sept.2001.[Online]Available:[17]V.TarokhandH.Jafarkhani,“Adifferentialdetectionschemefortransmitdiversity,”J.Select.AreasCommun.,pp.1169–1174,July[18]B.Hassibi,“Anefficientsquare-rootalgorithmforBLAST,”Trans.SignalProcessing.[Online]Available:http://mars.bell-labs.com,submittedforpublication.[19]M.O.Damen,A.Chkeif,andJ.-C.Belfiore,“Latticecodedecoderforspace–timecodes,”IEEECommun.Lett.,vol.4,pp.161–163,May[20]B.HassibiandH.Vikalo,“Ontheexpectedcomplexityofspherede-coding,”inpreparation.[21]B.HassibiandB.Hochwald,“Howmuchtrainingisneededinmul-tiple-antennawirelesslinks?,”IEEETrans.Inform.Theory.[Online]Available:http://mars.bell-labs.com,submittedforpublication.[22]T.Marzetta,B.Hassibi,andB.Hochwald,“Structuredunitaryspace–timeautocodingconstellations,”IEEETrans.Inform.Theoryvol.48,pp.942–950,Apr.2002.[23]B.HassibiandB.Hochwald,“High-ratelinearspace–timecodes,”inProc.38thAllertonConf.Communications,ControlandComputingOct.2000,pp.1047–1056.[24]S.SandhuandA.Paulraj,“Space–timeblockcodes:Acapacityperspec-tive,”IEEECommun.Let.,vol.4,pp.384–386,Dec.2000.[25]G.GenesanandP.Stoica,“Space–timediversityusingorthogonalandamicableorthogonaldesigns,”inProc.Int.Conf.Accoustics,SpeechandSignalProcessing,2000,pp.335–338.[26]M.O.Damen,A.Tewfik,andJ.-C.Belfiore,“Aconstructionofaspace–timecodebasedonthetheoryofnumbers,”IEEETrans.Inform.,submittedforpublication.[27]T.Kailath,A.Sayed,andB.Hassibi,LinearEstimation.EnglewoodCliffs,NJ:Prentice-Hall,2000.