/
IEEE TRANSACTIONS ON INFORMATION THEORY VOL IEEE TRANSACTIONS ON INFORMATION THEORY VOL

IEEE TRANSACTIONS ON INFORMATION THEORY VOL - PDF document

pasty-toler
pasty-toler . @pasty-toler
Follow
386 views
Uploaded On 2015-01-19

IEEE TRANSACTIONS ON INFORMATION THEORY VOL - PPT Presentation

45 NO 5 JULY 1999 Design of Successively Re64257nable TrellisCoded Quantizers Hamid Jafarkhani Member IEEE and Vahid Tarokh Member IEEE Abstract We propose successively re64257nable trelliscoded quan tizers for progressive transmission Progress ID: 33147

JULY

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "IEEE TRANSACTIONS ON INFORMATION THEORY ..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.45,NO.5,JULY1999DesignofSuccessivelyRe nableTrellis-CodedQuantizersHamidJafarkhani,Member,IEEE,andVahidTarokh,Member,IEEEAbstractÐWeproposesuccessivelyre nabletrellis-codedquan-tizersforprogressivetransmission.(Progressivetransmissionisanessentialcomponentofimageandmultimediabrowsingsystems.)Anewtrellisstructurewhichisscalableisusedinthedesignofourtrellis-codedquantizers.Ahierarchicalsetpartitioningisdevelopedtopreservesuccessivere nability.Two IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.45,NO.5,JULY1999 Fig.3.Ahierarchicalsetpartitioningforatwo-levelSR-TCQ(Foratrainingsequencewith samples, wecanexpressthesample-averagedistortionas Foragivensetofcodebooks,usingtheViterbialgorithmwiththedistortionmeasurein(3)providesthebestoutputsatdifferentlevelsofre nement.Letusde ne asthesetofalltrainingsampleswhichareencodedas .Thenifwereplaceeachcodevector withanewcodevector de nedby theresultingsetofcodebooksprovidesalowerdistortionwhenthesamepathandcodewordswhichhavebeenusedfortheoldcodevectorsareutilized.Notethat doesnotnecessarilymeanthat istheclosestcodevectorto .Also, 'sarenotdisjoint.ThefollowingalgorithmcanbeusedtodesignSR-TCQ's:DesignAlgorithmforSR-TCQ's:‰0‹Initialization:(a)Pickasmallpositivenumber (b)Pickaninitialsetofcodebooks..(c)Set and ‰1‹EncodethetrainingsequenceusingtheViterbialgo-rithmandthedistortionmeasurein(3).Denotetheresultingdistortionas ‰2‹Updatethecodebooksbyusing(4)to ndthebestsetofcodevectors.‰3‹If ,set andgoto‰1‹.Otherwise,stop.Sincethedistortionisreducedateachstepofthealgorithmandthedistortionislower-boundedbyzero,convergenceisC.OverlappingIntervalsInthissubsection,weexplainthereasonforoverlappingintervalsinourhierarchicalsetpartitioning.Asanexample,Fig.3demonstratesasetofcodebooksforTS-TCQandSR-TCQ( bit/sample).AsitisseenfromFig.3,theresultingcodevectorsdonotconstructatree-structuredscalarquantizerwithnonoverlappingintervals.Forexample, branchesintervene and branches.Thisisduetothefactthattheoutputcodevectorofthe rststageisselected or .So,forexample,asampleclosetoacodevectorin maybeencodedtoacodevectorin viceversa.ThecrossinginFig.3allowstheencoderto xsuchshortcomingsatthesecondlevelofre nement.AnotherexampleisgiveninFig.4toshowthehierarchicalsetpartitioningwhentheincrementalratesaremorethanone.AscanbeseeninFig.4,thenumberofintervalscorrespondingtoeachpathinthetrellisismorethanonewhichresultsinparalleltransitionsfortrellispaths.V.COMPUTATIONALInthissection,wecomparethecomputationalcomplexityofTCQ,MS-TCQ,TS-TCQ,andSR-TCQforafour-statetrelliswitheachother.Thecomputationalcomplexityofthedecodersaremoreorlessthesameandmuchlowerthanthecomplexityofencoders.So,weonlyconsidertheencodersinouranalysis.Letusassumethatweonlyhavetwolevelsofre nementandeachcodebookispartitionedintofoursets.So,foradoubledcodebookTCQwithrate ,eachpartition codevectorscorrespondingto branches.Sinceparallelbranchescomefromthesamenode IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.45,NO.5,JULY1999TABLEIIISNRRESULTSOFEMORYLESS TABLEIVSNRRESULTSOFEMORYLESS the stages).ForanSR-TCQ,theencodingdecisionsaremadesimultaneouslyforbothstages.So,theunderlyingtrelliscontains16states.Weneed16multiplications,80additions, comparisonsperinputsamples.OneoftheadvantagesofTCQoverotherquantizationschemesisthefactthatitscomputationalcomplexityisroughlyindependentoftherate[12].Mostotherquantizationschemes(excludingscalarquantizers)sufferfromanexponentialgrowthincomputationalburdenwiththerate.Therate-scalableTCQ'sproposedinthisworkpreservethecomplexityadvantageofaTCQ,i.e.,theircomputationalcomplexityisroughlyindependentoftheencodingrates.VI.SIMULATIONESULTSANDInthissection,wepresentsimulationresultsandcom-pareourresultswiththoseofTCQ,MS-TCQ,Lloyd±Maxquantizer,andthedistortion-ratefunctionforGaussianandLaplacianmemorylesssources.WepresentresultsforTS-TCQ'sandSR-TCQ'swithtwolevelsofre nement(SR-TCQisdesignedfortwoequiprobablestages).Theproposedalgo-rithmsarenotrestrictedtotwostages;however,havingtwostagessimpli esthepresentationandallowsacleardiscussiononresults.TablesIandIIshowtheR-Dperformanceofdiffer-entquantizers(four-statetrellis)forzero-mean,unit-variancememorylessGaussianandLaplaciansources,respectively.TheacronymN/Astandsfornotavailablethroughoutthetables.TheTS-TCQresultsarebetterthanthoseofMS-TCQ.Thesignal-to-noiseratio(SNR)differenceismorethan2dBinonecase.ThecomputationalcomplexityisthesamealthoughthememoryrequirementsofTS-TCQismorethanthatofMS-TCQ.TheperformanceofthesecondstageofSR-TCQisafewtenthsofadecibelbetterthanthatofTS-TCQwhilethe rststageofSR-TCQperformsalmostaswellasthe rststageofTS-TCQ.Oneinterestingobservationisthefactthatfora ,byincreasingthebitrateofthe rststage ,theperformanceofthesecondstageofTS-TCQandSR-TCQisimproved.ThisisnotatrendforMS-TCQ.Also,notethatthereisalwaysacombinationofratesforwhichSR-TCQoutperformsTCQatrate (althoughthecomparisonisnotcompletelyfairsinceSR-TCQismorecomplexthanTCQ).Wealsoprovidethesimulationresultsforatwo-stageSR-TCQwhichuses insteadof asthedistortionmeasureinTablesIIIandIV.Theperformanceoftheresultingquantizer,denotedSR-TCQ2,isidenticaltothatofaTCQusingthetrellisofFig.2althoughtheencodinganddecodingprocessesaredifferentandSR-TCQ2providesanembeddedbitstream.ThemotivationbehindSR-TCQ2isthefactthatsomeoftheresultsinTablesIandIIaresogoodthatmakesthestudyofthebestpossiblelaststageperformanceofanSR-TCQanditscomparisonwithanonscalableTCQinteresting.Tohaveamoreconclusivecomparison,wealsoprovidetheperformanceofTCQ'swithfourand16states.TablesIIIandIVshowthatnotonlydoesSR-TCQ2providesomedegreesofrate-scalability,butalsoitsperformanceisbetterthanthatofa16-statedoubledcodebookTCQatallreportedrates.NotethatthecomputationalcomplexityofSR-TCQ2islessthanthatofSR-TCQbecausethereisnoneedtocalculatethedistortionsoftheintermediatestagesandmultiplythembydifferentweights.FortheLaplaciansource,theresultsofSR-TCQ2aremuchbetterthanthoseofadoubledcodebookTCQ.ThisisduetothefactthatdoublingthecodebookisnotenoughforaLaplaciansource[12].Quadrupledcodebooksprovideabetterperformancewhileincreasingthecomputationalcomplexityalmostbyafactoroftwo[12].InTableIV,wealsotabulatetheperformanceofthebestquadrupledcodebookresultsfrom[12].AsimilarquadrupledcodebookcanbeusedinthedesignofSR-TCQ's.Theproposedalgorithmsmaybeextendedtotrellis-codedvectorquantizerspresentedin[18].Anotherfutureworkin-cludesthedesignofentropyconstrainedsuccessivelyre nabletrellis-codedquantizers.Suchanextensionisachievablebycombiningtheschemesproposedin[10]andthetrellisintro-