/
Centrifuges Centrifuges

Centrifuges - PowerPoint Presentation

phoebe-click
phoebe-click . @phoebe-click
Follow
448 views
Uploaded On 2017-09-27

Centrifuges - PPT Presentation

Centrifuge is equipment that is used to separate solid matter from a liquid suspension by means of centrifugal force They sediment particles cells bacteria casts parasites etc suspended ID: 591265

microscope light condenser objective light microscope objective condenser specimen image lens solution wavelength magnification force centrifuges sample visible oil

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Centrifuges" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

CentrifugesSlide2

Centrifuge

is equipment that is used to separate solid

matter from

a liquid suspension by means of centrifugal force.

They sediment

particles (cells, bacteria, casts, parasites, etc

.) suspended

in fluid by exerting a force greater than that

of gravity

. The suspended materials are deposited in the order

of their

weight.

There are many types of centrifuges, but the basic principle

is the

same, that is, the all use centrifugal force. Slide3

When a body is rotated in circular movement at speed, centrifugal force is created that drives the body away from the center of the circular movement. The greater the outward pull due to rotation, that is centrifugal force, the more rapid and effective is the sedimentation.

As a result, heavier elements are thrown to the bottom of the tube followed by lighter particles

Centrifugal

force increases with the speed of rotation that

is the

revolution of the rotor per minute and the radius

of rotation

.

The

actual sedimentation achieved at a given

speed depends

therefore, on the radius of the centrifuge.

Most techniques

requiring centrifugation will usually specify

the required

relative centrifugal force (RCF) expressed in gravity

.Slide4

For example, an RCF of 2000 x G refers to a force 2000 times the force of gravity.

Most centrifuge manufacturers specify both the RPM and G.

RCF (g) = 1.12x10-5xr (in cm) (rpm) 2

Where;

RCF

= relative centrifugal force.

r

= radius from the shaft to the tip of the centrifuge tube.

rpm

= Revolution per minute.

g

= Gravitational forceSlide5

Basic components of centrifuges

Central

Shaft: -

It is a part that rotates when spinning

is effected

manually.Head: - It is a part that holds the bucket and connected directly to the central shaft or spindle.Bucket or tube: - Are portions that hold test tubes containing a given sample to be spined.Slide6

Classifications of centrifuges

Hand

centrifuges

These centrifuges

are:

Operated by hand or water pressure and they are most commonly used in small laboratory for routine purposes, Used for preparation of urinary sediments and to concentrate parasites from the given specimen and it is not advisable to use them to separate serum from whole blood.Slide7

Electrical Centrifuges

Electrical centrifuges are those centrifuges that are

operated by

electrical power and produce high centrifugal force.

They are

used in most medical laboratories.Slide8

Kinds of

centrifuges

1

.

Micro-centrifuges or

serofuges They are used for spinning small tubes as in blood bank laboratories.2. Medium size centrifuges.Are used for centrifuging of urine specimens for microscopic analysis of urinary sediments.3. Large centrifugesThey are widely applied in bacteriology and medical chemistry laboratoriesSlide9

Use and care of centrifuges

Reading

the manufacturer’s instructions

.

Placing a centrifuge on a firm level bench out of direct sunlight, towards the back of the bench.Always closing the centrifuge top before turning it on.Always balancing the tubes that are being centrifuged.Tubes of the same weight should be placed directly opposite to each other. Tubes should also be of the same size and should also contain the same amount of liquidNever open the centrifuge while it is still spinning. Never try

to slow it down with your hand.

Most

centrifuges

have a

brake, which will cause the centrifuge to stop faster.Slide10

Colorimeters or photometersSlide11

Photometry

means

“the measurement of light

If

a substance can be converted to a soluble, colored material, its concentration may be determined by the amount of color present in the solution. Photometer & Spectrophotometer are instruments used for this type of measurement, in which a photocell or photomultiplier tube is used to detect the amount of light that passes through a colored solution from a light source.

The

greatest sensitivity is obtained when the light permitted to pass through the solution is of a particular wavelength.

(The wavelength shows the maximum absorbance for the solution color).Slide12

Characteristics of Light

Light

is a form of electromagnetic energy that travels in waves.

The

wavelength of light is the distance between two beaks of the light wave, is inversely proportional with its energy.In the visible region the color of light is a function of its wave length increasing from violet towards the red color Objects that appear colored absorb light at particular wavelength and reflect the other parts of the visible spectrum resulting in many shades of color.

Slide13

Example:

a

substance that absorbs violet light at 400 nm reflects all other light and appears as yellow green

.

- To measure the concentration of a blue solution, light is passed through it at about 590 nm. The amount of yellow light absorbed varies directly in proportion to the concentration of the blue substances in the solution.Slide14

wavelengths

of various types of

Radiation

Approximately wavelength

Types of radiation

< 0.1

Gamma

0.1-10

X-rays

<380

Ultraviolet

380-750

Visible

>750

Infrared

>25 x 107

radiowaves

Energy

WavelengthSlide15

The

visible

Spectrum

Color of reflected light

Color of absorbed light

Approximately wavelength

Green

Yellow

Violet

400-435

Yellow

Blue

435-500

Red

Green

500-570

Blue

Yellow

570-600

Green blue

Orange

600-630

Green

Red

630-700Slide16

Beer’s law

When the light of an appropriate wavelength strikes a

cuvette

that contains a colored sample, some of the light is absorbed and the rest is transmitted through the sample to the detector. % percent transmittance which represents the proportion of light reaches the detector.

% T = It \ Io x 100 %

Where:Io: is the intensity of light striking the sample.It

:

is the intensity of transmitted light.

It

Io

Slide17

Beer’s law

If

the concentration of a solution is increased, the It will decrease and then % T is decreased.

The

relationship between the concentration and %T is not linear, but if the logarithm of the %T is plotted against the concentration, a straight line is

obtainedThe term absorbance is used to represent – log % T

A = - log % T = 1/ log % TSlide18

Beer-Lambert Law

A = a b c

Which states that “the absorbance of a solution is directly proportional with the concentration of the dissolved substance”

Where: - A is the absorbance - a is the molar absorbtivity

coefficient.

- b is the light bath through a solution

.

For x substance:

Ax = a b cx

(1)

For standard substance:

Ast

= a b

cst

(2)Slide19

Then we can determine the concentration of x substance by measuring both sample and standard absorbance, which can be made by spectrophotometers.

Slide20

Requirements for

the Beer’s - Lambert’s law to hold

true

1- Solution

Requirements

The solution must be the same through out and the molecules of which it is composed must not associate or dissociate at the time absorbance is being measured.2- Instrument RequirementThe instrument used in colorimetric tests must show satisfactory accuracy, sensitivity and reproducibility at the different wavelengths used. The cuvettes used in the instrument must be optically matched, free from scratches clean.Slide21

UV – Visible photometry

Typical

coloremetric

instruments contain five

components:Stable source of radiation energy.A transparent container for holding the sample.A device that isolates a restricted region of the spectrum for measurement.A radiation detector which converts

radiant energy

to electrical signals.

A

signal processor and read out which displays

the

transudated

signals, a meter scale,

a

digital meter or a recorder chart. Slide22

UV – Visible photometry Slide23

1- Radiation sources

In

UV region

:The most commonly used is deuterium lamp or hydrogen lamp. That produced light with (160-375) nm. In

visible region:

Tungeston

filament lamp is the most commonly used and produces light at (350-2500) nm

.Slide24

2- Wavelength selectors

A-

Filters

:

may be formed of a transparent dielectric layer such as calcium fluoride, the thickness of this layer is controlled carefully and determines the wave length of transmitted light. Or formed of colored glass that absorbs certain portions of spectrum and transmits others, according to its color. B- Monochromators :

Which may be:

1-

Grating

monochromator

:

Grooves formed of relatively broad faces and narrow unused face (fig 3-A )

Slide25

2-

Prism:

Principle

:

Suppose a radiation of 2 wave length enter from the entrance slit, they strike the mirror to be reflected on the dispersing element to produce angular dispersion of light which face a black surface and come out

from the

exit slit only, by moving

monochromator

, a

s

pecific wave

length will pass from the exit slit.

For

prism by moving it only one

will exitSlide26

Colorimeters

Photometers

Used

filters

as

wavelength selector

Spectrophotometer

Used

monochromators

as

Wavelength selectorSlide27

3-

Sample containers

:

Cuvettes

that hold the samples must be made of

material that passes

radiation in the spectral region of

intrest

.

Quartz

or fused silica may be used in the spectral region

(

350-3000 nm), mean it may be used in the UV, visible

and

a part of infrared.

4-

Radiation detectors and read out.Photomultiplier tube Phototubes silicon diode electrode Photoconductivity detector Slide28

-

One of them may be used to transform radian energy into electrical energy. Which may be measured by galvanometer or any or any read out device.

Principle of phototube:

Photoemissive

cathode that tends to emit electrons when irradiated. These electrons flow to the

anode generating current. Slide29

Flame photometry or flame emission spectroscopy

Flame

photometry is a spectral method in which excitation

is caused

by spraying a solution of the sample in a hot flame.

A characteristic radiation is emitted in a flame by individual elements and the emission intensity is proportional to the concentration of the element introduced into the flameFlame photometry is used for the determination of electrolytes in a given solution. It is most commonly used for the quantitative analysis of sodium and potassium ions in body fluids.Slide30

MicroscopeSlide31

Microscope

is an important device that enables us to visualize minute objects (animate and inanimate) that cannot be seen by our naked eye.Slide32

Major

parts of

microscope

A

.

Frame work of the microscopeThis includes:An arm (stand): - The basic frame of the microscope to which the base, body and stage are attached.- A stage: - the table of the microscope where the slide or specimen is placed. - A foot, or base: -

is the rectangular part up on which the whole instruments rest.Slide33

B. Focusing

system

This

encompasses:

Coarse

and fine focusing adjustmentsCourse adjustmentThe course focusing adjustment is controlled by a pair of large knobs positioned one on each side of the body. Rotations of these knobs move the tube with its lenses, or in some microscope the stage, up or down fairly rapidly.Fine adjustment While low power objectives can be focused by the course adjustment, high power objectives require a fine adjustment. Slide34

Condenser adjustments

The

condenser is focused usually by rotating a knob to one side of it. This moves the condenser up or down. The condenser aperture is adjusted by the iris diaphragm, which is found just below the condenser. The principal purpose of the condenser is to condense the light required for visualizationSlide35

Magnification system

This

comprises:

Objectives

Objectives

are components that magnify the image of the specimen to form the primary image. For most routine laboratory work, 10x, 40x, and 100x (oil immersion) objectives are adequate. Slide36

Eyepiece

Eyepiece is the upper optical component that further magnifies the primary image and brings the light rays to a focus at the eye point

It is available in a range of magnifications usually of 4x, 6x, 7x, 10x, 15x and sometimes as high as 20x.

N.B:

Based on their number of eyepiece, microscopes can be classified as monocular and binocular microscopes.Slide37

C.

Illumination system

Condenser

and iris

- Condenser is a large lens with an iris diaphragm.

- The condenser lens receives a beam from the light source and passes it into the objective.   Slide38

-The

iris is a mechanical device mounted underneath the

- Condenser and controls the amount of light entering the condenser.

Mirror

- Mirror is situated below the condenser and iris.

- It reflects the beam of light from the light source up wards through the iris into the condenser. The mirror is used to reflect ray or electrical lightSlide39

Sources of illumination

Day Light

Ordinary daylight may be sufficient for some work.

 

Daylight, however, is scarcely enough for oil immersion work.Electric lighttungsten lamps. Many microscopes are now provided with correctly aligned built-in sources of illumination, which use tungsten or quartz halogen lamps operating on 6,8or 12 volts through variable transforms.FiltersLight filters are used in the microscope to:- Reduce the intensity of light;- Increase

resolution

;

-Protect

the eye from injury caused by ultra-violet light.Slide40

Working principle of the microscope

A microscope is a magnifying instrument.

The

magnified image of the object (specimen) is first produced by a lens close to the object called the objective.

This

collects light from the specimen and forms the primary image. A second lens near the eye called the eyepiece (ocular) enlarges the primary image converting it into one that can enter the pupil of the eye. Slide41

The

magnification of the objective multiplied by that of the eyepiece, gives the total magnification of the image seen in the microscope.

See the following example:

Total

Magnification

Eyepiece MagnificationObjective

Magnification

100X

10X

10X

400X

10X

40X

1000X

10X

100XSlide42

 

The

numerical aperture (NA):

Is a designation of the amount of light entering the objective from the microscopic

field

NA = R sin µ Where R is the refractive index of glass µ is the angle made by one ray passing through edge and another through the center of the lensThen NA depends on the radius of the lens. Slide43

Resolving

power:

Is the useful limit of magnification, it is the ability of microscope, at specific magnification to distinguish two separate objects situated close to one another and the ability of the lens to reveal fine details.

 

The smaller the distance between the two specific objects that can be distinguished apart, the greater the resolution power of the microscope.

Minimal distance between two objects = (0.612 X ) / NAThe larger NA, the smaller the resolvable distance and hence, the more efficient the resolution power.Slide44

Working principle of an oil immersion

When

a beam of light passes from air into glass it is bent and when it passes back from glass to air it is bent back again to its original direction.

This

has effect on oil immersion objective and affects the NA of the objective and consequently its resolving power.

The bending effect on the objective can be avoided by replacing the air between the specimen and the lens with oil, which has the same optical properties as glass, i.e. immersion oil. By collecting extra oblique light, the oil provides better resolution and a brighter imageSlide45

Light path through the high dry objective lens (A)

& Oil immersion lens (B)

A

BSlide46

Routine use of the microscope

A

microscope must always be used with gentleness; care and the following should be noted

.

1. Place

the microscope on a firm bench so that it does not vibrate.• Make sure that it is not be exposed to direct sun light.• The user must be seated at the correct height for the convenient use of the microscope.2. Select the appropriate source of light.3. Place the specimen on the stage, making sure that the underside of the slide is completely dry.

 Slide47

4. Select the objective to be used.

It

is better to begin examination with 10x objective.

The

10x objective can be used for adjusting the illumination and for searching the specimen before using a high power lens.

5. Bring the objective as close as possible to the slide preparation and while viewing in the eye piece slowly move the objective up ward with the coarse adjustment until the image comes into view and is sharply focused. 6. Adjust the light source until the illumination of image is at its brightest.Slide48

7. Focus the condenser.

To do this, open fully the iris of the condenser. Using the condenser adjustment knob, focus the condenser on the details of the light source.

 

8

. Adjust the aperture (opening) of the condenser iris according to the specimen being examined.

The wider the condenser aperture, the brighter will be the specimen and the smaller will be the details, which can be resolved.The smaller the aperture, the greater will be the contrastSlide49

9

. Examine the specimen by systematically moving the slide with the mechanical stage

.

 

N.B:

The image of the specimen will be up side down and will move in the opposite direction to the side.10. For a higher magnification, swing the 40x objective into place.• Focus the 40x objective, using the fine adjustment.• If for any reason the image is not visible, lower the objective until it is nearly but not quite touching the specimen.• Then looking through the eyepiece, focus up wards with the fine adjustment until the image comes into view.Slide50

For the highest magnification, add a drop of immersion oil to the specimen and swing the 100x oil immersion objective into place, then open the iris fully to fill the objective with light. Example, stained blood smear, acid-fast stain, etc.Slide51

Types of microscopy

Ultraviolet Microscopy:

The shorter wavelength of UV can extend the limit of microscope resolution to about 0.1

m. However, UV light is invisible to the human eye, so the image must be recorded on a photographic plate or fluorescent screen.

Because this light is absorbed by glass, all lenses must be made of quartz, such microscopes are two expensive for routine useSlide52

Fluorescence microscopy

A sample labeled with a fluorescent dye is illuminated with UV light, the location of the dye in the specimen is revealed by its fluorescence or emission of visible light

Dark

field

Microscopy

One sees a black background, against which suspended bacteria or element appear bright. The dark field microscope uses a special condenser that illuminate the sample with a hallow cone of light in such a manner the light is not directed into the objective lens, revealing the shape of that object. Slide53

Phase contrast

Microscopy

Bacterial or animal cells are difficult to be seen using the light microscope unless the sample is dried and stained. This microscope enhances the slight difference in refractive index between the cells and the medium and thus can be used to visualize the living bacteria and platelets, in which the slight differences in RI are converted to differences in light intensity.

 

 Slide54

Electron

Microscopy

Since magnification greater than 1500X to 2000X are not practical with the light microscope due to decreased efficiency in resolving power. The electron microscope has come into use, where magnification of 50,000X may be obtained, with a high degree of resolving power.

There are two types of electron microscope:

Transmission Electron Microscope (TEM) {2 dimensional}

Scanning Electron Microscope (SEM) {3 dimensional}Slide55

Care, cleaning, and repair of the

microscope

1

.

Care and cleaning

A microscope is a delicate instrument both mechanically and optically. Therefore, the following important points should be taken into considerations1. Always carry a microscope using both hands.2. When not in use, a microscope should be protected from dust, moisture, direct sunlight and put in microscope case.Slide56

3.

Keep it standing in place ready for use, but protected by light cover

.

4. In humid climate it is necessary to cover the microscope in a plastic bag with a drying agent (silica gel) over night to avoid molds growing on the lenses.

5. At the end of each day’s work, the surface lenses of the objectives, eyepieces, and condenser should be cleaned using lens tissue

.N.B: Never clean the lens of the objectives and eyepiece with alcohol.Slide57

 

2.

Repair of the microscope

Except for obvious and simple measures, if a microscope becomes damaged optically or mechanically, it is better to send it or the damaged part to a reliable scientific

instrument repairer

or preferably to the manufacturer.